diff --git a/Seminar_materials/seminar_05/Seminar 5 (Random variables).html b/Seminar_materials/seminar_05/Seminar 5 (Random variables).html new file mode 100644 index 0000000..a8af412 --- /dev/null +++ b/Seminar_materials/seminar_05/Seminar 5 (Random variables).html @@ -0,0 +1,8045 @@ + + + + + +Seminar 5 (Random variables) + + + + + + + + + + + + +
+
+ +
+ + +
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+ + +
+
+ +
+
+ +
+ + +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+ + +
+
+ +
+
+ +
+
+ + diff --git a/Seminar_materials/seminar_05/Seminar 5 (Random variables).ipynb b/Seminar_materials/seminar_05/Seminar 5 (Random variables).ipynb new file mode 100755 index 0000000..1d7d795 --- /dev/null +++ b/Seminar_materials/seminar_05/Seminar 5 (Random variables).ipynb @@ -0,0 +1,713 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "a8f7b639", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "# Seminar 5" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "c3b1f285", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "skip" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/33/j0cl7y453td68qb96j7bqcj4cf41kc/T/ipykernel_1174/3109700056.py:10: DeprecationWarning: `set_matplotlib_formats` is deprecated since IPython 7.23, directly use `matplotlib_inline.backend_inline.set_matplotlib_formats()`\n", + " dp.set_matplotlib_formats(\"retina\")\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "\n", + "import scipy.stats as sts\n", + "\n", + "import IPython.display as dp\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "\n", + "dp.set_matplotlib_formats(\"retina\")\n", + "sns.set(style=\"whitegrid\", font_scale=1.5)\n", + "sns.despine()\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "86abdf41", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "skip" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "plt.rc(\"figure\", figsize=(20, 10))\n", + "plt.rc(\"font\", size=13)" + ] + }, + { + "cell_type": "markdown", + "id": "03f66a6c-3707-4dcb-b4d4-e39a8d80875f", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Recap\n", + "\n", + "A certain company has $n + m$ employees, consisting of $n$ women and $m$ men. The company is deciding which employees to promote.\n", + "\n", + "- Suppose for this part that the company decides to promote $t$ employees, where $1 \\leqslant t \\leqslant n + m$, by choosing $t$ random employees (with equal probabilities for each set of $t$ employees). What is the distribution of the number of women who get promoted?\n", + "- Now suppose that instead of having a predetermined number of promotions to give, the company decides independently for each employee, promoting the employee with probability $p$. Find the distributions of the number of women who are promoted, the number of women who are not promoted, and the number of employees who are promoted." + ] + }, + { + "cell_type": "markdown", + "id": "bb686e89-2abb-4c2a-9a58-c19a518d6f7f", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Solution\n", + "\n", + "- We are interested in the number of women $X$ in the set of $t$ promoted employees sampled from $n$ women and $n$ men. What is the distribution in question?" + ] + }, + { + "cell_type": "markdown", + "id": "94b28ea1-315a-4b01-bfca-8b4b944f108b", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "fragment" + }, + "tags": [] + }, + "source": [ + "- It is hypergeometric distribution $HGeom(n, m, t)$, so we know the answer\n", + " $$\n", + " \\mathbb{P}(X = k) = \\frac{\\begin{pmatrix}n\\\\k\\end{pmatrix}\\begin{pmatrix}m\\\\t-k\\end{pmatrix}}{\\begin{pmatrix}n+m\\\\t\\end{pmatrix}}\n", + " $$\n", + "- If the company decides independently for each of $n$ women if they will be promoted with equal probabilities $p$, the number $Y$ of promoted women follows which distribution?" + ] + }, + { + "cell_type": "markdown", + "id": "515ae39a-09c8-46b8-bb95-ad2586ee4101", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "fragment" + }, + "tags": [] + }, + "source": [ + "- It is Binomial distribution $Bi(n, p)$, so we know the answer:\n", + " $$\n", + " \\mathbb{P}(Y = k) = \\begin{pmatrix}n\\\\k\\end{pmatrix} p^k (1 - p)^{n-k}\n", + " $$" + ] + }, + { + "cell_type": "markdown", + "id": "6744a597", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## CDFs\n", + "\n", + "Reminder: the cumulative distribution function (CDF) is defined as\n", + "$$\n", + "F_X(x) = \\mathbb{P}(X " + ] + }, + "metadata": { + "image/png": { + "height": 610, + "width": 1183 + }, + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "my_binomial = sts.binom(n=3, p=0.7) # import scipy.stats as sts\n", + "x = np.arange(-1, 5) # import numpy as np\n", + "y = my_binomial.pmf(x)\n", + "\n", + "fig, ax = plt.subplots(1,2)\n", + "ax[0].stem(x, y, label=\"PMF\")\n", + "for xx, yy in zip(x, y):\n", + " ax[0].text(xx, yy + 0.02, str(round(yy, 2)), horizontalalignment=\"center\")\n", + "ax[0].set_xlabel(\"x\")\n", + "ax[0].set_ylabel(\"PMF\")\n", + "ax[0].legend();\n", + "\n", + "y = my_binomial.cdf(x)\n", + "\n", + "ax[1].step(x, y, where=\"post\", label=\"CDF\")\n", + "for xx, yy in zip(x, y):\n", + " ax[1].text(xx, yy + 0.02, str(round(yy, 2)), horizontalalignment=\"center\")\n", + "ax[1].set_xlabel(\"x\")\n", + "ax[1].set_ylabel(\"CDF\")\n", + "ax[1].legend();" + ] + }, + { + "cell_type": "markdown", + "id": "3b1e6740", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Example 2\n", + "\n", + "A coin is tossed repeatedly until it lands Heads for the first time. Let $X$ be the number of tosses that landed Tails, and let $p$ be the probability of Heads of the coin. Find the distribution of $X$ and its PMF and CDF." + ] + }, + { + "cell_type": "markdown", + "id": "d0404925", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Solution 2\n", + "\n", + "$$\n", + "\\mathbb{P}(X = k) = \\mathbb{P}(k \\text{ tails}) \\cdot \\mathbb{P}(1 \\text{ heads}) = (1 - p)^k p\n", + "$$\n", + "\n", + "Geometric distribution $X \\sim Geom(p)$" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "9860f960", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACT4AAATACAYAAADTW8q7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAABYlAAAWJQFJUiTwAAEAAElEQVR4nOzde5yVVb0/8M8MzHDHCxL8FBUjesz7HdHylhZqntS05GReKU+llXnNW+nR0sqjp6gMzczMtCzNyPJSaiZGinhJcSsmnLIcb9wRGIb5/THMNAgDM1xm2DPv9+vFi7X3s561vnt8ZMPen2etivr6+gAAAAAAAAAAAJSTyo4uAAAAAAAAAAAAoK0EnwAAAAAAAAAAgLIj+AQAAAAAAAAAAJQdwScAAAAAAAAAAKDsCD4BAAAAAAAAAABlR/AJAAAAAAAAAAAoO4JPAAAAAAAAAABA2RF8AgAAAAAAAAAAyo7gEwAAAAAAAAAAUHYEnwAAAAAAAAAAgLIj+AQAAAAAAAAAAJQdwScAAAAAAAAAAKDsCD4BAAAAAAAAAABlp3tHFwBQzoqi+GiSzybZOQ1/pr6U5OdJvlEqlea1cax+SWYlqVhF1/1LpdIDba8WAAAAAAAAADoPKz4BrKaiKL6R5NYk+yTpmaQuyTZJvpzk8aIoBrVxyJ3SEHqqS1Kzkl+L1kL5AAAAAAAAAFDWrPgEsBqKovh4kjOTLEnyxSTXlEqlhUVR7JfkR0neneSmJAe1Ydidlv7+SKlUet/aqxYAAAAAAAAAOh8rPgG0UVEU3ZJ8ZenDr5dKpf8tlUoLk2TpFnSHpGHVpgOLojigDUPvtPT3yWunUgAAAAAAAADovASfANruwCTvSlKf5Kq3HyyVSs8kuXPpw+PaMO5OS39/Yg1qAwAAAAAAAIAuQfAJoO32X/r7U6VS6dUW+ty39PdRrRmwKIruSbZd+vCJ1S8NAAAAAAAAALqG7h1dAEAZ2mbp71NW0ueFpb8PKopiQKlUemMVY74nSY8ktUnqi6L4TpL3JdkgyctJfpPk26VSafbqlw0AAAAAAAAAnYfgE0Dbbbr093+spM/Lzdr/L8mqgk87Lf29IsmjSbo1O7ZFkpFJTimK4tBSqfR060sFAAAAAAAAgM5J8KkTmzRp0uQkWyWZm2RqB5cDncaAAQO2eeONN/LBD37w6EmTJu2+oj5f//rXe5599tlJknPOOefGSZMmrXSlpn333XfYgw8+mCTd3/Wud8048sgjpxVFMXfBggWVjzzyyIDbb7992Lx58zbv37//o/fdd99jG2200eK1/sIAAID10buS9E3y0q677rpzRxcD6yufgwEAAEBZW+3PwASfOret0rBN1gZJNuvgWqDTqKysTJJssMEGWybZckV9+vTp09Surq5e5R/MW2yxRbbZZpu84x3vyCc/+cmNKioqNkqSXr165ZBDDslOO+2U888/P7Nnz+7xu9/9bu/Ro0evldcCAACUja06ugBYz/kcDAAAAMpfmz8DE3zq3OYm2aCysjK9e/fu6FpYj82dOzdJ0rdv3w6upDz07NkzSUMAqqWfWePPNEn69eu3yp/t0UcfnaOPPrrF4+9+97tz0EEHZfz48fnLX/6ST37yk6tRedfk+qazc43Tmbm+6exc47TG/Pnzs2TJkqTh3/hAy3wOxip576Wzc43Tmbm+6exc43Rmrm9aY00+AxN86tymJtmsd+/eKYqio2thPTZp0qQkcZ200sYbb5y///3v6du3b4s/s8ZVoZJk2223zbve9a41nrcx+FRTU5OhQ4emR48eazxmV+D6prNzjdOZub7p7FzjtEapVGr8gNDWXbByPgdjlbz30tm5xunMXN90dq5xOjPXN62xJp+BVa66CwDNDR48OElSU1PTYp/mxwYOHLhW5u3Xr19Te8GCBWtlTAAAAAAAAAAoV4JPAG00fPjwJMm0adNa7DN9+vQkDaGnDTbYYKXjzZ8/Pz/5yU8yduzYPP/88y32e/3115MkPXr0WCYEBQAAAAAAAABdkeATQBuNGDEiSTJlypTMmjVrhX0mTJiQJNljjz1WOV737t3zta99Ld/+9rczfvz4Fvs9/PDDSZIdd9xxma30AAAAAAAAAKAr8s05QBvttttuGTRoUBYvXpzrrrtuueOlUin3339/kmT06NGrHK+6ujp77bVXkuS2227Lm2++uVyfZ555JnfddVeS5KMf/eialA8AAAAAAAAAnYLgE0AbVVZW5vTTT0+SXHvttbnmmmuyYMGCJMnEiRNzyimnpK6uLiNHjszuu+/edF5NTU1GjRqVUaNG5aabblpmzNNOOy3du3fPG2+8kTFjxuTpp59OfX19amtrc9ddd+Wkk05KbW1t9txzz3zoQx9qvxcLAAAAAAAAAOup7h1dAEA5OuKIIzJ58uTceuutueqqqzJ27NhUV1dn3rx5SZKtttoqV1999TLn1NbW5qWXXkqSzJgxY5lj22+/fS6//PKcd955eeaZZ3LUUUelV69eqaury6JFi5IkO++8c8aOHZuKiop1/wIBAAAAAAAAYD0n+ASwmi655JLstddeufnmm/Pss89mwYIFGTp0aA466KCccsop6devX5vGO+yww7LNNtvk+uuvzyOPPJJXX301vXv3zvbbb58Pf/jDOeqoo9KtW7d19GoAAAAAAAAAoLwIPgGsgcat61pjyJAhKZVKK+0zbNiwXHbZZWujNAAAAAAAAADo1Co7ugAAAAAAAAAAAKBl06ZNy4477piTTz55tcdYtGhRxo0bl8MOOyw77LBDdttttxxzzDH5xS9+kfr6+rVYbfux4hMAAAAAAAAAAKyn5s6dmy9+8YtZsGDBao+xcOHCnHTSSXnssceSJL17987ChQszefLkTJ48OQ888ED+93//N5WV5bWGUnlVCwAAAAAAAABAh7MCUfuYOXNmPvWpT+WZZ55Zo3EuueSSPPbYY9l4441z7bXX5vHHH8/jjz+eSy+9NNXV1bnnnntyzTXXrKWq24/gEwAAAAAAAAAArba2ViA68cQTc+WVV+b5559Pt27dmlYgOu+88/K5z30uS5YsWYtVl5/JkyfnyCOPzKRJk9ZonL///e+5/fbbkyRf//rXs88++6SioiJVVVU5+uijc9555yVJrrvuusyePXuN625Pgk8AAAAAAAAAALSKFYjWvblz5+ass87K6NGj8/LLL2fo0KHZfffdV3u8n/3sZ6mrq8vw4cPzvve9b7njRx99dDbeeOPMmzcv991335qU3u66d3QBAAAAdE2LFi3K3LlzM2/evLz11ltZsmRJl1y+esqUKR1dAmtBRUVFunXrlr59+6Z///7p3bt3KioqOrosYDV4f+r8usJ7b0VFRSorK9OrV6/06dMnffv2TXV1dUeXBQBAJzB58uScccYZefnll9donLevQNQYxmlcgWjx4sX5yle+kuuuuy7HHnts+vfvv8a1l5O///3vufPOO1NRUZGPfexjOfvss3PppZfm0UcfXa3xJk6cmCQZOXLkCo937949e+yxR373u9/loYceypFHHrnatbc3wScAAADa3ZtvvpmampqOLqND9ezZs6NLYC2qr6/P4sWLM3PmzMycOTN9+/bNZpttlspKi21DOfH+1Ll1pffe+vr61NXVZe7cuZk7d25qamoyaNCgbLzxxh1dGgBAm9111125+eab8+yzz6auri5DhgzJqFGjcvLJJ6d3795tHu9f//pXrrvuujz44IOpqanJRhttlG222Saf+MQnsvfee7d4Xn19fX7zm9/k5z//eZ599tksXrw4m2++eQ488MB84hOfyEYbbbQmL3O9N3fu3Fx88cX59a9/nfr6+gwdOjQDBw5c7SBOa1Yg+ta3vpU333wz9913X1kFcdaGioqK7L///jnttNOy7bbbrvF4U6dOTZIMGzasxT5Dhw5dpm+5EHwCAACgXdXU1OTNN99MkvTr1y99+/ZNnz590q1bty4VEpk3b16SpE+fPh1cCWvDkiVLsmjRosyZMyczZszI3Llz8/LLL2fIkCFWfoIy4f2p8+tK771LlixJXV1d5s2bl7lz52bOnDmpqalJbW1tBg0a1NHlAQC02hVXXJHrr78+ScNKQFVVVZk6dWrGjh2b8ePH5yc/+Uk22WSTVo83YcKEnHbaaZk7d26ShnD8nDlzcv/99+f+++/PUUcdlYsvvjjduy8bpVi0aFG++MUv5t57703SEErp379/XnjhhZRKpfz0pz/N97///eywww5r6ZWvf6xA1L623nrrtbbN37x585r+PTR48OAW+73jHe9Ikrz66qtrZd724l/sAAAAtJuFCxfmzTffTEVFRTbddNMMGTIkG264YaqqqnypTFmrrKxMz549M3DgwGyxxRbp1q1b5s6dm/nz53d0aUAreH+is6msrExVVVU23HDDDBkyJJtuumkqKiry5ptvZuHChR1dHgBAq9x55525/vrrU1lZmfPOOy+PP/54Jk+enBtvvDGbbrpppk2blrPOOqvV402fPj2nnnpq5s6dm0033TTjxo3L5MmT8/jjj+eGG27IZpttlttuuy2XX375cud+9atfbQo9jR49Og8//HD+8pe/ZMKECfnEJz6RN998M8cff3z++c9/rrXXv75pXIHoF7/4RS655JL07dt3jcbrzCsQrW8ag35J0qtXrxb7Na6S2xiSKhf+1Q4AAEC7mTVrVpJkgw02yAYbbNDB1cC60bNnz2y44YZJktmzZ3dsMUCreH+is2t+bTde7wAA67O6urqMHTs2STJmzJgcf/zxqa6uTpKMGDEi48aNS7du3TJhwoQ88sgjrRrzu9/9bubNm5d+/frlxhtvzL777pvKyspUVFRk5MiRueGGG9KrV6/cfPPNee6555rO+7//+7/ceuutSZJPfOIT+cpXvpIBAwYkSTbaaKNccMEF+djHPpb58+evMDTVWTSuQLQ2tl3r7CsQrW/q6uqa2lVVVS32a/x/bPHixeu8prVJ8AkAAIB20xgC8aUynV3//v2TLHtHHbD+8v5EV9B4fQvlAgDlYMKECZk+fXoqKipywgknLHd8+PDhOeCAA5Ikv/rVr1Y53pIlS/KHP/whScOKTZtvvvlyfbbYYosceuihqauryy233NL0/B/+8IcsWbIkPXr0yOc///kVjv/pT386SXLvvffmtddeW2U9XV1nX4FofdP4c0yS2traFvstWrQoycrDUesjwScAAADaTePdQs3/sQ2dUeMdcs3vqAPWX96f6Aoar+9yu3sbAOiaJk6cmCQpiqJpdaW3GzlyZJLkoYceWuV4M2fObAqA77777i3222abbZIkjz76aNNz06dPT9Kw4lG/fv1WeN7/+3//LxtvvHGWLFmSxx57bJX1dHWdfQWi9U2fPn2a2gsWLGixX+OxNd3GsL0JPgEAANBu6uvrkySVlf45SudWUVGR5N/XPLB+8/5EV+C9CQAoJ1OnTk2SDBs2rMU+Q4cOTZK8/vrrmTFjxkrHax60WdkKQ43/Jpg+fXrT35saz13VjRKN506bNm2l/ej8KxCtb3r06JGNNtooycq3DaypqUny7y0Gy4V/yQMAAACsZY1fLgPA+sJ7EwBQThrDGYMGDWqxT/Njq9pebqONNmoK2zz//PMt9iuVSkkawjizZs1Kkmy66aZJkhdffDFLlixZ4Xmvv/56Xn/99STJG2+8sdJa6PwrEK2Phg8fniR56aWXWuzTGNp717ve1R4lrTWCTwAAAAAAAADQCnfddVeOPfbY7LLLLtlxxx1z6KGH5tvf/nbmz5+/WuP961//yg033JAvfOEL2X777bPPPvvkv/7rv/Lwww+v8ty77747J554YvbYY49st912ed/73pfTTz89Tz755GrVsj6ZN29ekqR3794t9unRo0dTe+7cuSsdr3v37tlrr72SJDfeeGPT+M3V1NRk/PjxTY8XLlyYJNlnn32SNISbfvazn61w/Ouvv76pvbIgDw06+wpE66MRI0YkSf785z+v8PjixYubtnhc2XaQ6yPBJwAAAAAAAABYhSuuuCKnn356Hn300SxatCiVlZWZOnVqxo4dmyOOOKJpxZ/WmjBhQj70oQ/lnnvuyauvvprKysrMmTMn999/f0466aScf/75Wbx48QrPvfDCC/O5z30uEyZMyKxZs1JVVZVXX301d911V4455pj8+Mc/XhsvucM0vu6VbXFWXV3d1G6+lV1LPvOZz6SqqirTpk3LCSeckKeeeipJw1bAjz32WE488cRlxmnc6m6bbbbJgQcemCS59NJLc+211zYFrWbNmpWrrroq119/fVNIy9bCrdOZVyBaHx188MGpqKjIM888k4ceemi547feemvefPPN9OvXLx/60Ic6oMLVJ/gEAAAAAAAAACtx55135vrrr09lZWXOO++8PP7445k8eXJuvPHGbLrpppk2bVrOOuusVo83ffr0nHrqqZk7d2422WSTnH322Zk8eXIef/zx3HDDDdlss81y22235fLLL1/u3J///OdNKw+deuqpmTRpUiZPnpz77rsv+++/f5YsWZLLLrusKdhTjhq3pautrW2xz6JFi5raKwtINdp+++1z6aWXpqqqKk899VSOPvro7Lzzztlll13y8Y9/PDNnzsyll17a1L/5ilJf+9rXstNOO6W2tjbf/OY3s8cee2TEiBHZc889c8011+Soo47KAQccsEztrFxnXoGoo9TU1GTUqFEZNWpUbrrppmWODRs2LEcccUSS5Iwzzsi9996b+vr6LF68OD/72c+a/qw56aSTym5rQcEnAAAAAAAAAGhBXV1dxo4dmyQZM2ZMjj/++KbVhkaMGJFx48alW7dumTBhQh555JFWjfnd73438+bNS79+/XLBBRdkp512SmVlZSoqKjJy5MjccMMN6dWrV26++eY899xzy5z7k5/8JEnykY98JKeddlpTSGHzzTfPt771rWy++eapr6/Pz3/+87X1I2h3ffr0SbLybeOaH2ttUOPwww/PbbfdlkMPPTSbbLJJFi9enE022SQnnXRSfv3rX2fzzTdPknTr1i0bbLBB03n9+/fPj3/843zpS1/KNttsk6qqqtTX12fEiBH5zne+k0svvTSzZ89OkqYt3Fi5zrwCUUepra3NSy+9lJdeeikzZsxY7vh5552XHXbYIbNmzcqpp56anXfeOTvvvHMuvPDCLFq0KAcffHA+/elPd0Dla0bwCQAAAAAAAABaMGHChEyfPj0VFRU54YQTljs+fPjwptV+fvWrX61yvCVLluQPf/hDkmT06NF5xzvesVyfLbbYIoceemjq6upyyy23LHPsxRdfTJLstNNOy51XXV2dHXfcMUnyr3/9a5W1rK8GDx6cpGEFm5Y0PzZw4MBWj7311lvnf/7nf/Lwww/n6aefzr333ptzzjknAwYMaPrZDh48OJWVy8Ypqqurc8IJJ+T222/Pk08+mb/85S+54YYbmrbBazx3s802a3UtnV1NTU3OOOOMnHHGGV1qBaL1Vb9+/fKTn/wkZ555ZrbeeuskSWVlZbbbbrt8+ctfzv/8z/+koqKig6tsu+4dXQAAAACw/vr2t7/ddFfrylRVVaV3794ZOHBgtttuu+yzzz754Ac/mO7dl//o4dxzz83tt9++zHM///nPs8MOO7SptnHjxuXKK69serzZZps1fXDc3AEHHJCXX365TWM39+ijj6Z///6rfT4A7WvSpEm5995788QTT2TatGmZO3duqqqqsuGGG6Yoirz//e/PwQcfvNIvT1b0XvV2VVVV6dWrVwYMGJBhw4blwAMPzEEHHdSqL2VaM/7KfOc732n6gg0AWPcmTpyYJCmKIgMGDFhhn5EjR+bee+9d4co1bzdz5sym1YFWtoXXNttskyRN23012mCDDfLaa69l8uTJ+ehHP7rMscWLF2fKlClJki233HKVtayvhg8fnrvvvjvTpk1rsc/06dOTNISemq/OtCqLFy9e4ecVScPfJZNk2223Xe5YbW1ti1vqvfLKK02fPTT+d6PhZ9YYwGtpBaKpU6fmqaeeyqmnnppevXqlrq6uaRvDcl2BaF25/PLLV7j9ZaMhQ4akVCqtdIzq6up88pOfzCc/+cm1XV6HseITAAAArMT0V2bnzodezK33lnLnQy9m+iuzO7qk9VJtbW1mzZqVqVOn5o477sgXv/jFHHrooav8sKXR7373uzbP+dvf/rbN5wDQeU2cODFHHnlk/vM//zM//OEPM3ny5MyYMSO1tbWZP39+/vnPf+b+++/PBRdckPe///259dZb12i+2trazJ49Oy+99FLuu+++nHvuudlvv/3yy1/+ci29IgBgfTF16tQkDSvUtGTo0KFJktdff32FAY/m6urqmtq9evVqsV/jikPTp09PfX190/P77rtvkuT222/PNddck3nz5iVpWF3nrLPOyosvvph+/frl+OOPX2kd67MRI0YkSaZMmZJZs2atsM+ECROSJHvssUerxjznnHOy3Xbb5atf/eoKjy9YsCD33XdfkmS//fZrer5UKmWPPfbIDjvskDfffHOF544fPz5Jsummm6YoilbVQ+ddgYj2ZcUnAAAAWIEnn38tP723lGf+9sZyx7Z954CMPqjIju9u/TLqncF2222XQw45ZIXH6urqMmfOnJRKpfzxj39MfX19pk2blk984hO54447summm6507Lvvvjtnn312q2uZNm1ann322TbVnyTHHHNMtthiizad07NnzzbPA0D7qa+vz5VXXplrr7226bmqqqrsscceKYoiG264YRYuXJjnn38+jzzySObOnZuZM2fmoosuylNPPZVLL710pV+m7L333tl7772Xm7O2tjYzZ87MtGnT8pe//CXz58/PnDlz8qUvfSkvvPBCzjnnnFbVv6LxV2X48OFt6g8ArJlXX301STJo0KAW+zQ/9tprr2WjjTZqse9GG22Unj17ZsGCBXn++eebAh9v13gzUePNRhtuuGGShm3BnnrqqTz//PO56qqrcvXVV6dPnz6ZO3dukoYg0Pnnn9/mf/+uT3bbbbcMGjQoNTU1ue6663LGGWcsc7xUKuX+++9P0rBdYGu8853vTG1tbe67776ceeaZ6d279zLHv//972fGjBkZPHhwDjvssKbnt9pqq9TV1WXJkiX59a9/vVyg7LXXXsv111+fJBkzZkybX2s5a80KRDfffHOSZNddd11hn864AhHtS/AJAAAA3uaeidMz9udPpNnNlMt45m9v5MJxE3La0TvloBHlu2x8Ww0fPjwnn3zyKvtNnjw5Y8aMydy5czNr1qxceuml+e53v7vCvj169MjChQvzj3/8I3/961+z3XbbtaqWu+66q021NzrkkEOa7hoFoHO47LLL8uMf/zhJUlFRkWOPPTaf+cxnsvHGGy/Tb968eXnrrbfywx/+MNddd12S5Lbbbssmm2yS008/vcXxd95551W+/82ZMyff/OY3c8sttyRJrr/++gwePLhVqyy0ZnwAoGM1rqj09qBMcz169GhqNwaQWtK9e/fstdde+cMf/pAbb7wxF1100XI33dTU1DStIpQkCxcubGpvvPHG+dnPfpYvfOELeeCBB1JfX7/MnIsXL85bb73Vuhe3nqqsrMzpp5+ec889N9dee2369OmTE044IT179szEiRNzzjnnpK6uLiNHjlxmu8Campqmv4Mde+yxOfbYY5uOHXnkkbnmmmtSU1OTM888M1/+8pczaNCgzJ49Oz/4wQ/y/e9/P0ly5plnprq6uum86urqfPSjH83111+fq6++OoMGDcpBBx2Ubt265bHHHstFF12UN954I+9+97tz9NFHt9NPCGhkqzsAAABo5snnX1tp6KlRfX3y7Z8/kSeff619CisjO++8c84///ymx/fff39qampW2Pe9731vU/vuu+9u9RyN29y1NigFQOc0fvz4ptBTZWVlrrzyylxwwQXLhZ4a9erVK2eddVbOOuuspufGjRuXKVOmrFEd/fr1y8UXX5xTTjml6blvfOMbefnll9doXABg/bB48eIkDatKtqR5UKb5VnYt+cxnPpOqqqpMmzYtl112WV588cUkDStLPvbYYznxxBOXGaf5Vnd///vfc/TRR+ehhx7KqaeemgcffDBPP/10fvnLX2a//fbL448/nuOPPz6PPPJIm1/r+uSII47Ixz72sdTX1+eqq67Kbrvtll122SXHHXdc/vWvf2WrrbbK1Vdfvcw5tbW1eemll/LSSy8tt+XgwIEDc9lll6V79+75/e9/n3322Se77rpr9thjj1xzzTVJkvPPP3+Z1Z4afe5zn8vOO++c+fPn5/Of/3x23HHH7Ljjjvn4xz+eF198McOGDcsPf/jDZa4DoH0IPgEAAEAzP723tMrQU6P6+uSW+0rrtqAyddhhh6Vv375JkiVLluQvf/nLCvvtt99+TXfMtjb4NHXq1Dz//PNJ0uLWewB0fm+99Va+9rWvNT3+7Gc/m0MPPbRV544ZM6Zpq40lS5Zk7Nixa6WmL3zhC9lxxx2TNHzp1tKKhwBAeWlcjam2trbFPosWLWpqrywg1Wj77bfPpZdemqqqqrz44ou58MILs/POO2eXXXbJxz/+8cycOTOXXnppU//GFaXeeuutHHvssXnhhRdy0UUX5bTTTsvgwYNTXV2dbbfdNt/73vfy/ve/PwsXLsz555/fqhDW+uySSy7J//7v/2bEiBHp2bNnFi1alKFDh+aTn/xkfv7znzdt/9dahxxySG699dZ88IMfzMYbb5wFCxZkwIABGTVqVH7605/muOOOW+F5vXr1yo033pgzzjgjRVGksrIy9fX1ec973pMzzjgjv/jFL7LJJpushVcMtJWt7gAAAGCp6a/MzjN/e6NN5/z1xTcy/ZXZ2XJw/3VUVXmqqqrKlltumWeeeSZJ8sorr6ywX48ePbLvvvvmt7/9baZPn54pU6bkPe95z0rHbtzmrlevXtl///3z9a9/fe0WD51YURQ9kzybZKsk+5dKpQfW0rjVSU5O8rEkOyTpk6QmyRNJbiiVSr9cG/NAc3fccUdef/31JMkmm2yST33qU206/7/+67/yyU9+MpWVlXn11VdTW1vbqi8pV6aysjKf+9znmrau+9WvfpUvfelLTWFgAKA89enTJ0myYMGCFvs0P9ba9/7DDz88W2+9dS6//PI8++yzeeuttzJ48OAceOCBGTNmTNPqkd26dcsGG2yQpGGr3ldeeSVbbLFFPvaxjy03ZmVlZc4999z8/ve/z8svv5wJEybkfe97X6tf6/po1KhRGTVqVKv6DhkyJKXSym9S22677fKtb32rzXVUV1fnU5/6VJv/3gmsW4JPAAAAsNSTL6zetnVPvvCa4NMKVFRUNLVX9kXywQcf3LR13e9+97tWB5+arxYFtNr/piH0tNYURbFFkvFJtn/boc2X/jqsKIrfJvnPUqk0c23OTdc2fvz4pvaHPvShNm8r8t73vjfXXnttdtlll7UaTNp7770zYMCAvPHGG6mtrc1jjz2W/fbbb62NDwC0v8GDB+fJJ59scRv3JMscGzhwYKvH3nrrrXPaaaclSdOKlI3++Mc/Ns1fWdmwmdOTTz6ZJNlpp52W+Xd3c1tssUUGDhyY1157LdOmTSv74BPAynTJ4FNRFFsl+VySDyQZmmRJkn8kuTvJNaVS6bm1MMcJSX7YhlMuLpVKX1nTeQEAAFh9by1Y3K7ndWa1tbX529/+1vR4yJAhLfbdd99907t378yfPz+/+93vcvrpp7fY97nnnstLL72UJK3ezghoUBTFhUnW6q3JRVH0T3JfkuFLn6pJcluSV5JsneTIJL2SHJzk50VRHFwqlfyhyRp766238sQTTzQ9HjFiRJvHqKyszD777LMWq2pQUVGR3XbbrWkL1z//+c+CTwBQ5oYPH567774706ZNa7HP9OnTkzSEnhpXZ2qNxYtb/uvxpEmTkiTbbrtt03MzZsxI0rBd78o0hsIXLlzY6loAylFlRxfQ3oqi+HiSvyb5QpJtkvRO0jcNH8R8PsmTRVF8bi1MtfNaGAMAAIB21Kvn6t0ftLrndWa333575s+fn6RhO7uVfSHds2fP7L///kmSadOm5bnnWr4fqXG1p759+2bfffddixVD51UURVVRFN9Kcsk6GP6r+Xfo6YEkW5dKpVNLpdKlpVLp2CQ7JWlMQR6Y5JProAa6oL/97W/LfEm40047dVwxK7DVVv9eWK3xS1AAoHw1/pt2ypQpmTVr1gr7TJgwIUmyxx57tGrMc845J9ttt12++tWvrvD4ggULct999yXJMiHqwYMHJ8kyIfC3e/PNN/Ovf/0rSTJ06NBW1QNQrrrUJ7NFURya5Mb8O/A1Mcm9S9sHJNkrSXWS/y2KYlapVPrRGkzXGHxakuTcJPWr6D9hDeYCAABgLdhxeOuXol8b53VW99xzT772ta81Pf7oRz+afv36rfScUaNG5Te/+U2S5O67787WW2+9wn6NW+K9//3vb/OWRklDcOqvf/1rq/oeeOCB2XLLLds8B6xPiqLYMsnNafjca22PPSj/XkFqbpKj376VXalUer4oig8neSJJtyQXFEVxrVWfWFONX+QlDdupbrzxxh1YzfIGDBjQ1J45c+ZK+06ePDk/+MEPWjXutttumz333HNNSgOgE7rrrrty880359lnn01dXV2GDBmSUaNG5eSTT16t7cH/9a9/5brrrsuDDz6YmpqabLTRRtlmm23yiU98Invvvfdy/b/97W9n7NixrR7/1FNPbdrarVzstttuGTRoUGpqanLdddfljDPOWOZ4qVTK/fffnyQZPXp0q8Z85zvfmdra2tx33315//vfn549ey5z/Pvf/35mzJiRwYMH57DDDmt6fv/9989tt92Wf/zjH7n99ttzxBFHLDf29773vSxZsiT9+/fPyJEj2/pyAcpKlwk+FUXRN8l1+Xfo6fRSqXR1sy4XFkXxqSTXJKlIMrYoirtKpdJrqzFXRZIdlz58vlQqfWP1KwcAAKC9bDm4f7Z954A887c3Wn3OdsMGZMvB/ddhVeuPF154ocUvZt96663U1NTk0UcfbdqKLmlY8eILX/jCKsduvt3d3Xffnc9//vPL9Xn66afzf//3f0lWf5u7W265pdV9t9xyS8EnylZRFP2SnJeGVc8bv0GpSfL3JLutpWn+M0nV0vYPSqXS6yvqVCqV/loUxe1JjkqyaRpuQLxnLdVAF9W4qmCSbLjhhh1XSAt69erV1G7cjqYlDz/8cB5++OFWjXvccccJPgGwjCuuuCLXX399koYwcFVVVaZOnZqxY8dm/Pjx+clPfpJNNtmk1eNNmDAhp512WubOnZukYYXeOXPm5P7778/999+fo446KhdffHG6d//318y9e/de5RxvvfVW5s2blyTrXWC5NSorK3P66afn3HPPzbXXXps+ffrkhBNOSM+ePTNx4sScc845qaury8iRI7P77rs3nVdTU5Pjjz8+SXLsscfm2GOPbTp25JFH5pprrklNTU2+853v5KSTTkqSzJ49Oz/4wQ/y/e9/P0ly5plnLnPjz/vf//7suuuumTRpUi688MLMnDkzRx99dPr27Zs333wz11xzTW688cYkyec///n06dNnnf98ADpSlwk+peHus8FL27e8LfSUJCmVSuOKohiW5Ow0bH931tJ2W70zSeOn3pNW43wAAAA6yOiDilw4bkLqV7Vub5KKiuSYA4t1X9R64q9//WurV0tKkj333DNXXnll+vbtu8q+PXr0yAEHHJDx48fnxRdfzAsvvJDhw4cv06dxm7sNN9wwe+211hevgc7m5DSsQt7o/iQnpGG7u7UVfPpAs/ZvV9H3rjQEn5Lk8HSS4NPtD0zNT+95Lm8trOvoUjpcrx7dMvoDW+eI/d7VLvN169atqV1bW9suc7bFokWLmtqVlZUr6QkAq+/OO+/M9ddfn8rKypx77rkZPXp0qqurM3HixJx77rmZNm1azjrrrPzwhz9s1XjTp0/Pqaeemnnz5mXTTTfNV77ylbzvfe9LRUVF/vznP+f888/Pbbfdll69euWCCy5oOu/kk0/OySef3OK4ixYtykc+8pE8//zz2W+//Vq9ItL65ogjjsjkyZNz66235qqrrsrYsWNTXV3dFOjaaqutcvXVVy9zTm1tbdPNQW8PQw8cODCXXXZZzjrrrEyaNCmTJk1K3759M2/evNTX16eioiLnn3/+Mqs9JUlFRUXGjh2bT33qU3n66adz+eWX54orrkj//v0ze/bs1C/9QOOTn/zkMkErgM6qKwWfjm/WvmIl/a5I8vkkPZL8Z1EU55RKpVZ83L2MnZu1H2/juUAnNv2V2Xnyhdfy1oLF6dWze3YcPrDLrA4AAFAudnz3wJx69E4Z+/MnVhp+qqhITjt6p+z4btvcJQ13+Pbt2zdDhgzJ9ttvn1GjRmWXXXZp0xgHH3xwxo8fnyT53e9+t0zwqb6+Pr/73e+SJAcddFCqqqpWOMaq3HjjjRkxYsRqnQtl6l9JLkxyfalUqi+KtRrWbP4/+cRV9G1+vNP8T3jHg1OFnpZ6a2Fd7nhwarsFn5pvoTp79uzU1dUtE4bqaHPmzGlq9++/8s9+ynG7HwA6Xl1dXdP2cmPGjGlaVShJRowYkXHjxuXDH/5wJkyYkEceeaRV251997vfzbx589KvX7/ceOON2XzzzZuOjRw5MjfccEP+4z/+IzfffHOOOuqoFrcof7uvf/3ref755zNo0KBcfvnlZR0KvuSSS7LXXns1bS24YMGCDB06NAcddFBOOeWUVW7z/naHHHJItthii1xxxRV57rnnMn/+/AwYMCC77bZbTjjhhOy8884rPG/jjTfOzTffnF/+8pcZP358nn/++cyfPz+bbLJJdt1113ziE5/IbrutrfsdANZvXSL4VBTF4CQ7LH34r1Kp9ERLfUul0ptFUUxMsk+SzZLsnuQvbZxyp2ZtwScgTz7/Wn56b2mFW6Zs+84BGX1Q4QszAID1yAdGbJlBG/XOLfeV8tcXl/873HbDBuSYA7ve3+GOOOKIXH755ets/Pe9733p06dP5s2bl7vvvnuZL4GfeOKJ/POf/0yy+tvcQRfzjySnJ7m2VCrNW9uDF0XRP8k7lj6cUSqVZq7ilP9r1m6fZEw7OHzfd1nxaalePbrl8H3b7z/tFlts0dResmRJ3nzzzQwcuP68L7/55ptN7Y022qgDKwGgs5owYUKmT5+eioqKnHDCCcsdHz58eA444IDce++9+dWvfrXK4NOSJUvyhz/8IUkyevToZUJPjbbYYosceuihue2223LLLbfkK1/5yirr/Mtf/pIf//jHSZKvfOUrneJ9cdSoURk1alSr+g4ZMiSlUmmlfbbbbrumLeJ33XXXVtdRXV2dY445Jsccc0yrzwHojLpE8CnLrsC0qrvPGvvss7Q9Im0PPjXOV5/k8aIouqchQLVtkp5puNPuT6VSqaaN4wJl6J6J01e6WsAzf3sjF46bkNOO3ikHjdiyfYsDAKBFO757YHZ898BMf2V2Tv3G/U3Pjz1rf6t2riM9evTI/vvvn/Hjx+eFF17Iiy++mGHDhiVJfvvbhl20Ntlkk+yxxx4dWSaUhVKpdNs6nuL/NWv/Y1WdS6XS3KIo5iTpl6R/URQ9S6XSgnVWXTs5Yr93tdsKRyxriy22aNrOJUkmT56cD3zgA6s4a3l/+tOfstFGG+U973nPWl194plnnmlqb7vttmttXABoNHFiw1eeRVFkwIABK+wzcuTI3HvvvXnooYdWOd7MmTOb3ld33333Fvtts802SZJHH310lWPW19c33Txz4IEH5oADDljlOQDQVuW7jmDbDG/WfqkV/df0DrSdlv7+9ySfTDI9yYQk1yb5dpLbkvyrKIrbi6IYthrjA2XiyedfW+UWKUlSX598++dP5MnnX2ufwgAAaLW3h5yEntatgw8+uKnduLVd823uPvjBD65XWxlBF7ZBs/b8Vp7zVrO2P0xZI5WVlctsXfrwww+v1jhf/vKXc+SRR2bPPffMfffdt1ZqW7RoUZ599tmmx9tvv/1aGRcAmps6dWqSNN0ssiJDhw5Nkrz++uuZMWPGSserq/v3Cpa9evVqsV9jUHj69OmpX8WXH7fffnueeeaZVFVV5eyzz15pXwBYXV1lxac23YGW5J/N2oPaMlFRFO9IsunSh1sk+WYLXSuSHJ5k36IoDi+VSn9syzxAefjpvaVVhp4a1dcnt9xX6nLbpQAAQHPNt7u755578tnPfjaPP/54amoaFk0+5JBDOrhCYKkezdqtXbmpefCpR4u91sDcuXMzadKk1Tq3Z8+emTdvre8KyDp00EEH5d57702S3HPPPfnc5z6Xnj17rvK8xv/OkyZNyj/+0fBx8axZs7L55ps3HVu8eHFT/0WLFrXp2rjrrrsyf35DHrB///7ZYYcdljt/TcZfE0uWLMmCBQtW+/8TyoP/vnRmru9/mzZtWlO7pZ/L66+/3tR+8MEHV7h9XaO6urpUV1dn0aJF+f3vf9/iSoh/+tOfkiS1tbX54x//mL59+66w35IlS/I///M/SZK99947r7/++jL1sGKucToz1zfrSldZ8amtd6Ctyd1nO7/t8ctJTksyNA0f6GyR5L+WPp8kGyX5VVEU1sSGTmb6K7PzzN/eaNM5f33xjUx/ZfY6qggAANZ/PXr0aNr+4Lnnnsvf//733H333UmSwYMHZ9ddd+3I8oB/q2vWbuUtP8tYnXNgGfvuu2823bThHtQ333wzP/rRj1p9bn19fb7zne80Pd5zzz0zZMiQNa6prq4uN910U9Pjgw8+ONXV1Ws8LgC83VtvNXyd2aNHy3ny5u9Bjf1b0q1bt6ZVCn/7299mwYLls+0zZszIhAkTmh4vWrSoxfEmTZqU1157LRUVFfnQhz600rkBYE10lRWf2noH2prcfbZTs/aTSQ4qlUrN9676e5LvF0Vxe5IHkrwnyYZJ/jfJoW2cq1XW5E43uhbXydr159Kc1Tpv/B8ez55Fv7VcDa5vOjvXOJ2Z67vzKfcVNdZ27ev7z6L5B9mLFy9eK/U2X+Vi4cKFy415wAEH5Ne//nWSZPz48U3BpwMPPLBpBY1GzR8vWbJkhfUtWbKkqb1gwQKrasDaMbdZe9VL7DRovmdKa1eJapO+ffumKIo2nzdlypQkSZ8+fdZ2SaxjZ5xxRs4444wkyXXXXZf3vOc9y2yb2lzjn/99+vTJ17/+9TzxxBNJGrbsOeOMM5b579+9+78/Oq+urm71tXHVVVflueeeS5L07t07p5122grPXd3x11RlZWV69+6d97znPe0yH+2r8e8cguJ0Rq7v5TW+l2y55ZYt/lwaV85Nkne9612r/Pl96UtfyujRo/PKK6/k6quvzoUXXpgddtgh9fX1mTRpUtMKTo223377DB48eIVjXX311UkaVmg87LDDWvuyuizXOJ2Z67t93f7A1Nzx4NQcvu+7csR+5bP+TqlUyty5c1fdcQW6yopPa3IHWlv7X52GMNOhST70ttBTk1Kp9GqS45o9dUhRFO9u41zAemxh7erdvLq65wEAQGcxcuTIpu0SbrrpprzyyitJkg984AMdWRawrOafRvZu5TnNg0+WO2at+NCHPpT/+I//SNKw2tLpp5+e//7v/84bb6x4Fe6ampp8/vOfzw9+8IOm50499dTssMMOa1TH66+/nosuuijXXHNN03PnnntuBg4cuEbjAkBLGrd3ra2tbbFP8xtZqqqqVjnm9ttvn0svvTRVVVV56qmncvTRR2fnnXfOLrvsko9//OOZOXNmLr300qb+La02NX369PzlL39Jkhx77LGtej0ArB0/vee5vDl7YX56z3MdXUq76SorPrX1DrTVvvusVCotTPLc0l+r6vtYURSPJdlt6VMHJnm+LfO1xure6UbXIWW7brw8/8Xc/9Rf23zeu965RXbdddg6qKhrcn3T2bnG6cxc351TZ1hRY23V3nzVifVZ860Runfvvlbqbb7KRY8ePZYbs0+fPjnggANy55135vXXX0+SDBkyJCNGjFhurN69/523qKysXGF9lZX/vu+rZ8+eZbWqxprc7Qbr2CtpuGGwIsmmq+pcFEW/JI3LG79ZKpVa3hcF2uirX/1qFixYkHvuuSf19fW56aabcuutt2bEiBHZZptt0q9fv8yZMydPPfVUHnvssWVWHjzxxBPzmc98ZqXjT548eZmgVNKwVd78+fMze/bsTJkyJU899dQyXy5/+tOfzsc+9rG1+0IBoJnGf9esaEu6Rs2PNd5csiqHH354tt5664wbNy4TJ07M7NmzM3jw4Bx44IEZM2ZMXn755SQNW+NtsMEGKxzj97//fZJk4MCB2X333Vs1L9B5TZgyJw88PTuLbv5HR5fSpby1sG7VnTqJrhh8as0daM2DT7PWci1v92j+HXx65zqeC2hHOw5fvTv6Vvc8AADoTA4++ODceeedTY8POeSQDqwGeLtSqTS/KIppSbZKsklRFH1KpdLK9pHcoll7rd/4R9dWVVWVb33rW/nxj3+c73znO5k5c2Zqa2vzpz/9KX/6059WeM7AgQNz3nnnter95eGHH87DDz/cqloGDRqUc845J4ceemibXgMAtNXgwYPz5JNPLrOd3ds1P9aWVQi33nrr5ba1a/THP/6xaf7mN5k01xh8+uAHP9hiH6DreODp2Vm02I437a1Xj24dXUK76SrBp381a6/yDrQkmzVrv7KWa3m7Gc3a/dfxXEA72nJw/2z7zgF55m8rXlp9RbYbNiBbDvZHAQBAcy/fcWf+76e3ZslK7mJd185t1n74wzd2WB2VPXtmi9Efy2aH/0eH1dBe3vve9zat0JHEF8iwfno6DcGnJNkjyf0r6btns/bj66wiuqyKioocd9xxOfLII3PffffloYceynPPPZeamprMnz8/PXr0yMYbb5xtttkmBx54YA4++OBlVjVcHdXV1enTp0823XTTbL311tl3332z3377tbjtDwCsTcOHD8/dd9+dadOmtdhn+vTpSRpCTy2tzrQiixcvXmal3uYaV+jedtttV3h8zpw5mTx5cpKG4BOA0FP769WjW0Z/YOuOLqPddJXg0zPN2kNb0X+N70AriqJvqVRqzVr0/Zq1Z67OXMD6a/RBRS4cNyH1rXg/r6hIjjnQtpQAAG/38h13dmjoaX2yZMGCvHzHne0afDrttNNy2mmnrdUxL7/88lx++eUr7VNdXZ3HHntslWMNHjw4pVJppX3+8Ic/tKk+oNV+k6TxD6RDsvLgU/Nlde5ZZxXR5fXt2zeHH354Dj/88OWOtWWb2da8V62JdT0+AJ3fiBEjMnbs2EyZMiWzZs1aYbBpwoQJSZI99tijVWOec845+c1vfpOPfvSjueiii5Y7vmDBgtx3331Jkv3222+FYzzzzDOpq6tL9+7ds8MOO7Ty1QBdxa+v/HBHl0An1FWCT39NUp+kIklrNpJdrTvQiqLonqSUhlWlehZFMahUKr26itO2b9ae0tq5gPKw47sH5tSjd8rYnz+x0vBTRUVy2tE7Zcd32+YOAODtNjv8Pzp8xaf1RWXPnl1itSegbPwyydgkVUlOKYrif0ql0r/e3qkoih2SHL704WtJfttuFQIAdFK77bZbBg0alJqamlx33XU544wzljleKpVy//0NufTRo0e3asx3vvOdqa2tzX333ZczzzwzvXv3Xub497///cyYMSODBw/OYYcdtsIxnnmmYT2KYcOGpWfPnm19WdAubn9gan56z3N5a2FdR5cCrAVdIvhUKpXeLIriz0lGJtmyKIptS6XSMyvqWxTFgDQszZ0kbySZ1IZ5FhdFsTBJ47v4wUl+1FL/oig2S7L30of1SdyCCp3QB0ZsmUEb9c4t95Xy1xeX3/Zuu2EDcsyBhdATAEALNjv8Pzpl2Kctq04ArI9KpdLrRVGMTXJ6GlY1/3VRFIc1Dz8VRfHuJHckqVz61OWlUmlRuxcLANDJVFZW5vTTT8+5556ba6+9Nn369MkJJ5yQnj17ZuLEiTnnnHNSV1eXkSNHZvfd/70uRE1NTY4//vgkybHHHptjjz226diRRx6Za665JjU1NTnzzDPz5S9/OYMGDcrs2bPzgx/8IN///veTJGeeeWaLW8Y2rsg7bNiwdfXSYY0JPXWMXj26dXQJdFJdIvi01K1pCD4lyVeSHN1Cvy8laXynvqlUKi1p4zy3J3nP0vbZRVH8dCUf5vxPGu6IS5LflEql6W2cCygTO757YHZ898BMf2V2Tv3Gv1f+H3vW/tlycP8OrAwAAABWrCiKB5Lsu/ThxaVS6Ssr6PblJIcleVeSXZM8WxTFz5L8X5IiyVFJei3t+8ck31qHJQMAdClHHHFEJk+enFtvvTVXXXVVxo4dm+rq6qYbbbbaaqtcffXVy5xTW1ubl156KUkyY8aMZY4NHDgwl112Wc4666z8/ve/z+9///v07ds38+bNS319fSoqKnL++ee3uNpTkrz++utJkn79+q3FVwprl9BT+6vuXpHRH9i6o8ugk+pKwafrkpyRZPMkRxVF8d9JLiqVSk2bTxVF8akkX1z68K0k31yNeb6d5NQk/ZNsk+TmoiiOL5VK85rN0yvJVUk+uvSpBUtrAzq5t4echJ4AAAAoZ6VSaU5RFPsn+U2SHZJsmORTK+j6hyRHlkqlxe1YHgBAp3fJJZdkr732ys0335xnn302CxYsyNChQ3PQQQfllFNOaXMA6ZBDDskWW2yRcePG5dFHH83s2bMzYMCA7LbbbjnhhBOy8847r/T8xjBV//6+/6A8/PrKD3d0CZ3epEkNm2ztuuu7OrgSOqsuE3wqlUrziqL4TJJfpWFp7QuSfLgoil8nWZzk/fn3tnNJ8oVSqfSPt49TFMUNSY5f+vBHpVLphLfN80pRFGOS3LJ0no8keW9RFLcleTnJZkkOX/p7ktQlOb5UKj2/Fl4mAAAAALSrUqn0j6Iodk1yUpKPJdk+yUZJZiaZlORHSW5pfgMiAABrz6hRozJq1KhW9R0yZEjTdnQt2W677fKtb63eQp233377ap0HAKurywSfkqRUKo0viuLYJNcm6ZOGD2G2f1u3xUnOLpVK49Zgnp8XRVGX5PokGyQZlOSzK+j6apJTSqXSHas7FwAAAAC01tKb+E5oZd/92jDu4iTjlv4CAAAAaBeVHV1AeyuVSj9N8p4k30jyTJK5SRYmeTENgaidS6XSVWthnl8meWeS85L8KckbSWqTvLL08ZlJthZ6AgAAAAAAAACAtutSKz41KpVKf09y9tJfbT33hLT+rrg3k3xt6S8AAAAAAAAAWMaEKXPywNOzs+jmf3R0KQBlp8ut+AQAAAAAAAAA64sHnp6dRYvrO7qMLqdXj24dXQKwFgg+AQAAAAAAAEAHEXpqf716dMvoD2zd0WUAa0GX3OoOAAAAAAAAANY3v77ywx1dAkBZseITAAAAAAAAAABQdgSfAAAAANay+nrbFACwfvHeBAAAdEaCTwAAALSbioqKJMmSJUs6uBJYtxq/XG685oH1m/cnugLvTQAAQGck+AQAAEC76d69e5JkwYIFHVwJrFuLFi1KknTr1q2DKwFaw/sTXUHj9d14vQMAAHQGgk8AAAC0m/79+ydJZs2a1cGVwLo1e/bsJEnfvn07uBKgNbw/0RU0Xt+N1zsAAEBnIPgEAABAu9lggw2SNHzx5stlOqsFCxZk5syZSXy5DOXC+xOdXfNru/F6B1iX7rrrrhx77LHZZZddsuOOO+bQQw/Nt7/97cyfP3+1xnvjjTdyww035MADD8z222+fffbZJ//1X/+Vhx9+uM1j/elPf8rWW2+doihWqxYAYP1iTVsAAADaTY8ePbLxxhvnzTffzD//+c/MmTMnffv2TZ8+fdKtW7dUVFSkoqKio8uENqmvr099fX0WLVqU2bNnZ+bMmamrq0vfvn3Tu3fvji4PaAXvT3Qmje9LdXV1mTdvXubOnZs5c+YkSTbeeOP06NGjgysEOrsrrrgi119/fZKkqqoqVVVVmTp1asaOHZvx48fnJz/5STbZZJNWjzdhwoScffbZeeutt5IkPXv2zJw5c3L//ffn/vvvz1FHHZWLL764VVt5zpw5M1/60pdSX1+/ei8OAFjvCD4BAADQrgYNGpSqqqrU1NRkzpw5TV/EdTVLlixJklRWWoy5M+rbt28222wzQQkoI96fOr+u/t47ePDgbLTRRh1dBtDJ3Xnnnbn++utTWVmZc889N6NHj051dXUmTpyYc889N9OmTctZZ52VH/7wh60ab/r06Tn11FPz1ltvZZNNNslXv/rVvO9970tFRUX+/Oc/5/zzz89tt92WXr165YILLljleBdddFFeffXVNX2ZAMB6pGv+Cw8AAIAOtfHGG2fYsGEZPHhw+vbt27SaRleyYMGCLFiwoKPLYC2pqKhI9+7ds+GGG2aLLbbIkCFDuuwX61DOvD91bl3pvbeioiLdunVL3759M3jw4AwbNkzoCVjn6urqMnbs2CTJmDFjcvzxx6e6ujpJMmLEiIwbNy7dunXLhAkT8sgjj7RqzO9+97uZN29eevfunQsuuCD77rtvKisrU1FRkZEjR+aGG25Ir169cvPNN+e5555b6Vh33HFH7r777vTs2XPNXigAsF6x4hMAAAAdorq6OtXV1V32S7hJkyYlSd7znvd0cCUANNfV3586M++9AOvWhAkTMn369FRUVOSEE05Y7vjw4cNzwAEH5N57782vfvWrjBw5cqXjLVmyJH/4wx+SJAceeGDe8Y53LNdniy22yKGHHprbbrstt9xyS77yla+scKyXX345//3f/53evXvnlFNOyVVXXdXm1wcArJ/ceggAAAAAAACskYkTJyZJiqLIgAEDVtinMez00EMPrXK8mTNnZvbs2UlWHlrdZpttkiSPPvroCo8vWbIk55xzTubOnZsvfelL2XzzzVc5NwBQPgSfAAAAAAAAgDUyderUJMmwYcNa7DN06NAkyeuvv54ZM2asdLy6urqmduOWeSvSuMX09OnTU19fv9zx6667Lo8++mj222+/fPSjH13pnABA+bHVHQAAAAAAALBGXn311STJoEGDWuzT/Nhrr7220q1lN9poo/Ts2TMLFizIP/7xjxZXfSqVSkmS2trazJo1KxtuuGHTsSlTpuRb3/pWNtxww1x66aVteTld2u0PTM1P73kuby2sW3VnAOhgVnwCAAAAAAAA1si8efOSJL17926xT48ePZrac+fOXel43bt3z1577ZUk+e1vf5sFCxYs16empibjx49verxw4cJl2meddVZqa2vzla98JQMHDmzdC0HoqQP16tGto0sAKDuCTwAAAAAAAMAaWbx4cZKkqqqqxT7Nt6xrvpVdSz7zmc+kqqoqr7zySi677LI89dRTSZL6+vo89thjOfHEE5cZp/lWd9/85jfzwgsv5LDDDsvBBx/c5tfTlQk9dYzq7hUZ/YGtO7oMgLJjqzsAAAAAAABgjfTs2TNJw5ZzLVm0aFFTe2UBqUbbb799Lr300px33nl58cUXc/TRRzetKDV//vwMGDAgl156ab74xS8m+feKUhMmTMiPf/zjDB48OBdddNFqvyaSX1/54Y4uoUuYNGlSkmTXXd/VwZUAlB/BJwAAAAAAAGCN9OnTJ0lWuCVdo+bH+vbt26pxDz/88NTX1+dXv/pVXnjhhcyePTuDBw/OgQcemDFjxuTll19OknTr1i0bbLBBZs2alXPPPTdJ8tWvfjX9+/df3ZcEAJQBwScAAAAAAABgjQwePDhPPvlkampqWuzT/NjAgQNbPfYWW2yR0047Lbvuuutyx/74xz82zV9ZWZk//OEPqampSWVlZc4+++zl+i9cuLCpvffeeydJTjrppJx88smtrgcAWH8IPgEAAAAAAABrZPjw4bn77rszbdq0FvtMnz49SUPoaYMNNmj12HV1denWrdsKjzVuEbbtttsmSerr65MkS5Ysyeuvv77ScRuPz58/v9W1AADrF8EnAAAAAAAAYI2MGDEiY8eOzZQpUzJr1qwVBpsmTJiQJNljjz1aNeY555yT3/zmN9lvv/1y4oknLnd8wYIFue+++5Ik++23X5LkyCOPzJFHHtnimL/5zW/yxS9+MUlSKpVaVQcAsP6q7OgCAAAAAAAAgPK22267ZdCgQVm8eHGuu+665Y6XSqXcf//9SZLRo0e3asx3vvOdqa2tzaRJk7JgwYLljn//+9/PjBkzMnjw4Bx22GFr9gIAgLIk+AQAAAAAAACskcrKypx++ulJkmuvvTbXXHNNU1hp4sSJOeWUU1JXV5eRI0dm9913bzqvpqYmo0aNyqhRo3LTTTctM+aRRx6Z3r17580338x3vvOd1NTUJElmz56dq666Kt/73veSJGeeeWaqq6vb42UCAOsZW90BAAAAAAAAa+yII47I5MmTc+utt+aqq67K2LFjU11dnXnz5iVJttpqq1x99dXLnFNbW5uXXnopSTJjxoxljg0cODCXXXZZzjzzzEyaNCn77LNP+vbtm3nz5qW+vj4VFRU5//zzrfYEAF2Y4BMAAAAAAACwVlxyySXZa6+9cvPNN+fZZ5/NggULMnTo0Bx00EE55ZRT0q9fvzaNd8ghh2TevHm58847M3Xq1MyePTsDBgzIbrvtlhNOOCE777zzOnolAEA5EHwCAAAAAAAA1prGretaY8iQISmVSivt8853vjNf+MIXsuuuu65xbYceemgOPfTQNR4HAFg/VHZ0AQAAAAAAAAAAAG0l+AQAAAAAAAAAAJQdwScAAAAAAAAAAKDsCD4BAAAAAAAAAABlR/AJAAAAAAAAAAAoO4JPAAAAAAAAAABA2RF8AgAAAAAAAAAAyo7gEwAAAAAAAAAAUHYEnwAAAAAAAAAAgLIj+AQAAAAAAAAAAJQdwScAAAAAAAAAAKDsCD4BAAAAAAAAAABlR/AJAAAAAAAAAAAoO4JPAAAAAAAAAABA2RF8AgAAAAAAAAAAyo7gEwAAAAAAAAAAUHYEnwAAAAAAAAAAgLIj+AQAAAAAAAAAAJSd7h1dAAAAAAAAAEBLJkyZkweenp1FN/+jo0sBANYzVnwCAAAAAAAA1lsPPD07ixbXd3QZXU6vHt06ugQAWCXBJwAAAAAAAGC9JfTU/nr16JbRH9i6o8sAgFWy1R0AAAAAAABQFn595Yc7ugQAYD1ixScAAAAAAAAAAKDsCD4BAAAAAAAAAABlR/AJAAAAAAAAAAAoO4JPAAAAAAAAAABA2RF8AgAAAAAAAAAAyo7gEwAAAAAAAAAAUHYEnwAAAAAAAAAAgLIj+AQAAAAAAAAAAJQdwScAAAAAAAAAAKDsCD4BAAAAAAAAAABlR/AJAAAAAAAAAAAoO4JPAAAAAAAAAABA2RF8AgAAAAAAAAAAyo7gEwAAAAAAAAAAUHYEnwAAAAAAAAAAgLIj+AQAAAAAAAAAAJQdwScAAAAAAAAAAKDsCD4BAAAAAAAAAABlR/AJAAAAAAAAAAAoO4JPAAAAAAAAAABA2ene0QUAAAAAAADAunTXXXfl5ptvzrPPPpu6uroMGTIko0aNysknn5zevXu3ebxXX3011113XR588MH885//TPfu3bPVVltl1KhROe6449KzZ88VnrdkyZL84he/yC9/+cs8//zzWbhwYd7xjndkzz33zMknn5xhw4at6UsFAOhSBJ8AAAAAAADotK644opcf/31SZKqqqpUVVVl6tSpGTt2bMaPH5+f/OQn2WSTTVo93pQpU3LiiSdmxowZSZKePXtm0aJFeeaZZ/LMM8/k17/+dW644YYMGDBgmfNqa2vz2c9+Ng8++GCSpLKyMj179szLL7+cX/ziFxk/fny++c1v5gMf+MBaeuUAAJ2fre4AAAAAAADolO68885cf/31qayszHnnnZfHH388kydPzo033phNN90006ZNy1lnndXq8RYtWpTTTjstM2bMyLvf/e7ceuuteeKJJzJ58uR84xvfSJ8+ffL888/nvPPOW+7csWPH5sEHH0xVVVUuuuiipvPuvPPO7Lzzzlm4cGHOOuus/POf/1ybPwIAgE5N8AkAAAAAAIBOp66uLmPHjk2SjBkzJscff3yqq6uTJCNGjMi4cePSrVu3TJgwIY888kirxvzjH/+Yv//976msrMw111yTnXbaKRUVFamurs5//Md/5Nxzz02SPPDAA6mpqWk6b8mSJbnllluSJJ/+9Kfz8Y9/PD169EiSFEWR733ve+nbt28WLFiQO++8c639DAAAOjvBJwAAAAAAADqdCRMmZPr06amoqMgJJ5yw3PHhw4fngAMOSJL86le/atWYf/vb35Ikm2yySTbbbLPlju+xxx5N7VdeeaWp/cYbb2TmzJlJkp122mm58zbaaKMMHz48SfKvf/2rVbUAACD4BAAAAAAAQCc0ceLEJA0rKg0YMGCFfUaOHJkkeeihh1o1Zv/+/ZMkr732Wl5++eXljj/11FNJkm7dumXIkCHLnFdRUZEkmTx58nLnzZ07Ny+99FKSZMstt2xVLQAACD4BAAAAAADQCU2dOjVJMmzYsBb7DB06NEny+uuvZ8aMGascc++990737t1TX1+fz372s3nqqadSX1+fxYsX5957781ll12WJDnmmGOWCVv16NEje+65Z5Lk+9//fn72s59l4cKFSZKXXnopp556ambOnJnBgwfnqKOOWq3XCwDQFXXv6AIAAAAAAABgbXv11VeTJIMGDWqxT/Njr732WjbaaKOVjrn55pvn/PPPzyWXXJIpU6bk6KOPTs+ePVNXV5fa2tr0798/n//85/Nf//Vfy5178cUX57jjjssrr7ySCy+8MF/+8pfTs2fPzJ8/PxUVFXn/+9+f888/v2lVKQAAVs2KTwAAAAAAAHQ68+bNS5L07t27xT49evRoas+dO7dV4/7nf/5nxo0bl169eiVJFixYkNra2iRJXV1dFi1a1PS4uS233DK33357dthhhyTJkiVLMn/+/CRJfX19lixZkrfeeqtVNQAA0EDwCQAAAAAAgE5n8eLFSZKqqqoW+1RXVze16+rqWjXud77znXzmM5/J0KFDc8MNN+Spp57KI488kosvvjgVFRX53ve+l9NOO2258NPTTz+dI444Is8//3zOP//8TJgwIU899VRuuumm7LTTTrn//vvz8Y9/PKVSaTVeLQBA1yT4BAAAAAAAQKfTs2fPJFnh6kuNFi1a1NReWUCq0Y9//ON861vfymabbZabbropI0eOTI8ePbLxxhvnmGOOyfXXX5+qqqo8+OCDueOOO5rOq6mpyfHHH59XXnkl3/72t3PcccdlwIAB6dGjR3bffff8+Mc/zvbbb5+ZM2fm4osvXv0XDQDQxQg+AQAAAAAA0On06dMnScNWdC1pfqxv374rHW/x4sX53ve+lyT59Kc/vcL+O+64Yw4++OAkyW233db0/A9/+MPMmzcve+65Z/bZZ5/lzquurs4ZZ5yRJJk0aVL+9re/rbQWAAAaCD4BAAAAAADQ6QwePDhJw2pLLWl+bODAgSsd7+WXX84bb7yRJNlll11a7LfbbrslSaZNm9b03JNPPpkk2XnnnVs8b9ddd21qNz8XAICWCT4BAAAAAADQ6QwfPjzJykNE06dPT9IQetpggw1WOt6MGTOa2kuWLGmxX+OWeQsXLlzu3Pr6+hbP6969eyorK5c7FwCAlgk+AQAAAAAA0OmMGDEiSTJlypTMmjVrhX0mTJiQJNljjz1WOd6gQYOa2pMnT26x3zPPPJMk2XLLLZuea1x96vHHH2/xvGeffbYpUDV06NBV1gMAgOATAAAAAAAAndBuu+2WQYMGZfHixbnuuuuWO14qlXL//fcnSUaPHr3K8f7f//t/2XrrrZMk48aNW+GqTP/85z9zxx13JEk++MEPNj2/3377JUkeffTR/PnPf17h+N/97neTNASmGucBAGDlBJ8AAAAAAADodCorK3P66acnSa699tpcc801WbBgQZJk4sSJOeWUU1JXV5eRI0dm9913bzqvpqYmo0aNyqhRo3LTTTctM+ZZZ52VysrK/O1vf8vxxx+fv/71r0katr6bMGFCjjvuuMydOzdDhgzJcccd13TeMcccky233DL19fX57Gc/m1/+8pdZtGhRkoaw1BlnnJHf//73qaioyLnnnpuKiop1+rMBAOgsund0AQAAAAAAALAuHHHEEZk8eXJuvfXWXHXVVRk7dmyqq6szb968JMlWW22Vq6++eplzamtr89JLLyVJZsyYscyx9773vbn44otzySWXZPLkyfnIRz6S3r17Z8mSJU2hqs022yzjxo1L3759m87r2bNnrr322nzqU5/KtGnT8qUvfSkXXHBB+vbt27QNX7du3XL++efngAMOWFc/DgCATkfwCQAAAAAAgE7rkksuyV577ZWbb745zz77bBYsWJChQ4fmoIMOyimnnJJ+/fq1abyPfvSj2WWXXXLDDTfkz3/+c2pqatK9e/dss802+cAHPpBPfOITy4SeGm255Zb55S9/mZ/+9Ke55557MnXq1MyfPz+bbrppRowYkRNOOMEWdwAAbST4BAAAAAAAQKfWuHVdawwZMiSlUmmlfd71rnfl0ksvbXMdffr0yZgxYzJmzJg2nwsAwPIqO7oAAAAAAAAAAACAthJ8AgAAAAAAAAAAyo7gEwAAAAAAAAAAUHYEnwAAAAAAAAAAgLIj+AQAAAAAAAAAAJQdwScAAAAAAAAAAKDsCD4BAAAAAAAAAABlR/AJAAAAAAAAAAAoO4JPAAAAAAAAAABA2RF8AgAAAAAAAAAAyo7gEwAAAAAAAAAAUHYEnwAAAAAAAAAAgLIj+AQAAAAAAAAAAJQdwScAAAAAAAAAAKDsCD4BAAAAAAAAAABlR/AJAAAAAAAAAAAoO4JPAAAAAAAAAABA2RF8AgAAAAAAAAAAyk73ji4AAAAAAAAAysntD0zNT+95Lm8trOvoUgAAujQrPgEAAAAAAEAbCD11jF49unV0CQDAekbwCQAAAAAAANpA6Kn9VXevyOgPbN3RZQAA6xlb3QEAAAAAAMBq+vWVH+7oEjq9SZMmJUl23fVdHVwJALC+seITAAAAAAAAAABQdgSfAAAAAAAAAACAsiP4BAAAAAAAAAAAlB3BJwAAAAAAAAAAoOwIPgEAAAAAAAAAAGVH8AkAAAAAAAAAACg7gk8AAAAAAAAAAEDZEXwCAAAAAAAAAADKjuATAAAAAAAAAABQdgSfAAAAAAAAAACAsiP4BAAAAAAAAAAAlB3BJwAAAAAAAAAAoOwIPgEAAAAAAAAAAGVH8AkAAAAAAAAAACg7gk8AAAAAAAAAAEDZEXwCAAAAAAAAAADKjuATAAAAAAAAAABQdgSfAAAAAAAAAACAsiP4BAAAAAAAAAAAlB3BJwAAAAAAAAAAoOwIPgEAAAAAAAAAAGVH8AkAAAAAAAAAACg7gk8AAAAAAAAAAEDZEXwCAAAAAAAAAADKjuATAAAAAAAAAABQdgSfAAAAAAAAAACAsiP4BAAAAAAAAAAAlB3BJwAAAAAAAAAAoOwIPgEAAAAAAAAAAGVH8AkAAAAAAAAAACg7gk8AAAAAAAAAAEDZEXwCAAAAAAAAAADKjuATAAAAAAAAAABQdgSfAAAAAAAAAACAsiP4BAAAAAAAAAAAlB3BJwAAAAAAAAAAoOwIPgEAAAAAAAAAAGVH8AkAAAAAAAAAACg7gk8AAAAAAAAAAEDZEXwCAAAAAAAAAADKjuATAAAAAAAAAABQdgSfAAAAAAAAAACAsiP4BAAAAAAAAAAAlB3BJwAAAAAAAAAAoOwIPgEAAAAAAAAAAGVH8AkAAAAAAAAAACg7gk8AAAAAAAAAAEDZEXwCAAAAAAAAAADKjuATAAAAAAAAAABQdgSfAAAAAAAAAACAsiP4BAAAAAAAAAAAlB3BJwAAAAAAAAAAoOwIPgEAAAAAAAAAAGVH8AkAAAAAAAAAACg7gk8AAAAAAAAAAEDZEXwCAAAAAAAAAADKjuATAAAAAAAAAABQdgSfAAAAAAAAAACAsiP4BAAAAAAAAAAAlJ3uHV0AAAAAALD2FUWxVZLPJflAkqFJliT5R5K7k1xTKpWeW0vz9EpyYpIjk+yQZMMk85K8sHSu75VKpX+ujbkAAAAAmrPiEwAAAAB0MkVRfDzJX5N8Ick2SXon6Ztk6ySfT/JkURSfWwvzbJfkqSTfSfL+JAOTVKUh/LR7kguSlJbWAwAAALBWdckVn9rrbreVzH9Hkg8nSalUqliXcwEAAADQtRRFcWiSG/Pvmx4nJrl3afuAJHslqU7yv0VRzCqVSj9azXk2T3JfkkFLn5qV5I4kf0uyaZJRSbZMQ+Dqx0VRLCqVSj9fnbkAAAAAVqTLBZ+W3l02Lg13uTW39dJfny6K4qxSqfStdTT/yVkaegIAAACAtakoir5Jrsu/Q0+nl0qlq5t1ubAoik8luSZJRZKxRVHcVSqVXluN6a7Iv0NPdyc5tlQqvd6slp5Jvp7ktKVzfbcoit+USqX5qzEXAAAAwHK61FZ3ze52aww9TUxy6dJfE5Y+13i32/HrYP6tkly1tscFAAAAgKU+lWTw0vYtbws9JUlKpdK4JN9Y+rBvkrPaOklRFH2SHLn04dwkxzQPPS2dZ0EattV7fOlTmyQ5qK1zAQAAALSkywSfWrjbbc9SqXTh0l97JzklSf3S42OLohi4FuevTEPoqt/aGhMAAAAA3qb5zXxXrKTfFUkWLm3/Z1EUFW2c511JeixtP10qlWauqFOpVKpPw3Z4jYa1cR4AAACAFnWZ4FPa6W63lTgryXuXtmvX4rgAAAAAkKIoBifZYenDf5VKpSda6lsqld5Mw2roSbJZkt3bOF1ds/amq+g7oFn79RZ7AQAAALRRVwo+tdfdbsspimLHJJcsfTguyT/XdEwAAAAAeJudm7UntthrxX1GtHGuF5MsWtresiiK/1xRp6Io3pnko0sfLkryQBvnAQAAAGhRlwg+tfPdbm+fu0eSHyepTvJSkjPWZDwAAAAAaMHwZu2XWtH//5q139WWiUql0ltJftDsqRuKoriqKIrtiqLoXRTF0KIoPp3kkST9lvb5SqlU+r/lBgMAAABYTV0i+JT2vdvt7S5Lsn2SJUlOKJVKc9dwPAAAAABYkf/XrP2PVvRvvir5oNWY75wkf1rarkryhSRPJ5mXhuDVd5O8Y2ktJ5VKpa+txhwAAAAALeoqwad2u9utuaIo9k1y+tKHV5VKpT+u7lgAAAAAsAobNGvPb0X/t5q1+7d1slKpNCfJgWkIPK1svofTsPITAAAAwFrVvaMLaCftfbdbiqLon+RHaQiXPZvkgtUZBwAAAABaqUez9oJW9G8efOrRYq+V+1iSzyfpnaQmyR1puKlwQJJRSbZZ2ueIoihOKZVKN6zmPK0yd+7cTJo0aV1OQSfgGqGzc423Pz/z9uNnTWfnGqczc32zrnSV4FO73u221LeSbJlkcZLjSqVSaz5sWid84ENruU7an595+/GzprNzjdOZub7p7FzjwFpU16xd38Zz29o/RVFclYbVnpLkxiSfKZVK85odPzPJZ5JcnaQ6yQ+Koni5VCrd29a5AAAAAFakqwSf2vVut6Iojkhy/NKHl5ZKJZ9iAwAAALCuzW3W7tmK/r2atdt0015RFIfl36Gn3yc5sVQqLWnep1Qq1Sf5TlEUPZJcmYaV0b+V5D1tmast+vbtm6Io1tXwlLnGsPGuu+7awZXAuuEab2c3/3uDET/zdc/1TWfnGqczc33TGqVSKXPnzl11xxXoKsGndrvbrSiKQUnGLX04KcllbZxvrfOBD6vizaad+Qdxu3J909m5xunMXN90dq5xWmNNPvShS2p+sfRuRf/mwadZbZzrzGbt898eenqbb6VhO7wtkmxdFMXupVLp0TbOBwAAALCcyo4uoJ20291uSX6QZJOl5x1XKpUWt/F8AAAAAFgd/2rW3rQV/Tdr1n6ltZMURVGdZOTSh3OS/GVl/Zd+PnZfs6d2ae1cAAAAACvTFYNP6+xut6IoPpXk0KUPzy+VSs+29lwAAAAAWEPPNGsPbUX/LZq1n2/DPJskqVranrl0S7tVaR6s2qANcwEAAAC0qKtsdbfO73YrimKjJP+z9OGcJN2Lojizhe79m53XvM+tpVLp762ZDwAAAADe5q9J6pNUJNm9Ff33bNZ+vA3zzG/WHlQURbdSqVS3inMGNGu/2Ya5AAAAAFrUVYJP7XG32wZJ+ixt90tyRSvP+0az9mNJBJ8AAAAAaLNSqfRmURR/TsM2dFsWRbFtqVR6ZkV9i6IYkGSPpQ/fSDKpDfPMLIritSQDk1Qn2T/LbmX39rkqlvZp9GRr5wIAAABYma6y1V3j3W7Jur3bDQAAAAA60q3N2l9ZSb8vpSG0lCQ3lUqlJW2c585m7UuKoljZ54zHJ3n30va0NNz8BwAAALDGusSKT+1xt1upVJqWhmXEV6koimlJtlx6XqvOAQAAAIBWuC7JGUk2T3JUURT/neSiUqnUeFNgiqL4VJIvLn34VpJvrsY8X01ybJIeafjM7daiKE4ulUqzm3cqiuJjSb7b7KkLmtcCAAAAsCa6RPBpqVvT8CFM0nC329Et9FvTu90AAAAAoEOUSqV5RVF8Jsmv0rDa+wVJPlwUxa+TLE7y/iR7NzvlC6VS6R9vH6coihvSsFJTkvyoVCqd8LZ5/lYUxSeT3Lj0qaOSfKAoijuSvJCkT5IDk+zW7LTrSqXST9boBQIAAAA001W2uksa7nb7+9L2UUVR/HdRFMustrSW7nYDAAAAgA5TKpXGp2E1pnlLn9o+yXlJLsq/Q0+Lk3yxVCqNW4N5fpzkI0lmLn2qf5Ljkvx3knPz79BTXZLLknxqdecCAAAAWJEus+JTe93tBgAAAAAdrVQq/bQoij8lOS3JIUm2TFKV5B9J/pDkW6VS6a9rYZ5fFkXx+ySfXDrPNkk2TjI/ybQkv09yTalUemFN5wLobO66667cfPPNefbZZ1NXV5chQ4Zk1KhROfnkk9O7d+9Wj1MURZvmLZVKyzz+3Oc+l7vvvnul5xxxxBG5/PLL2zQPAAC0hy4TfEoa7nYriuLYJNemYbnt7Zf+am5xkrPX5G43AAAAAOhopVLp70nOXvqrreeekOSEVvadlYaV062eDtBKV1xxRa6//vokSVVVVaqqqjJ16tSMHTs248ePz09+8pNssskmrRqrsV9tbW3TeG/3xhtvpL6+PhtvvPFyx5599tkkyYYbbpju3Vf8tVHfvn1bVQsAALS3LhV8StrvbjcAAAAAAIC3u/POO3P99densrIy5557bkaPHp3q6upMnDgx5557bqZNm5azzjorP/zhD1s13sMPP5wkmTRpUpJk1113Xeb4+PHjc8YZZ6Sqqipjx45d5tjcuXPzj380bH7x85//PFtsscWavjwAAGhXXS74lLTf3W4rGWPompwPAAAAAACUn7q6uqbw0ZgxY3L88cc3HRsxYkTGjRuXD3/4w5kwYUIeeeSRjBw5co3m+/vf/54vf/nLSRq2tHt7KOq5555LfX19+vbtm80333yN5gIAgI5Q2dEFAAAAAAAAdAUTJkzI9OnTU1FRkRNOOGG548OHD88BBxyQJPnVr361xvOdf/75mTt3brbffvuMGTNmueNTpkxJkmy99dapqKhY4/kAAKC9CT4BAAAAAAC0g4kTJyZJiqLIgAEDVtincZWnhx56aI3muu+++zJx4sRUVlbmkksuSWXl8l8JNQaf3vOe96zRXAAA0FG65FZ3AAAAAAAA7W3q1KlJkmHDhrXYZ+jQoUmS119/PTNmzMhGG23U5nlqa2vzjW98I0lyxBFHZJtttllhv+eeey5JsuWWW+aHP/xhfv/73+fll19Onz59ssMOO+S4447L1ltv3eb5AQCgvQg+AQAAAAAAtINXX301STJo0KAW+zQ/9tprr61W8OnXv/51pk2blm7duuXTn/70CvssXrw4L7zwQpLkG9/4RhYuXLjM8RdeeCG33357zj777Jx44oltrgEAANqDre4AAAAAAADawbx585IkvXv3brFPjx49mtpz585drXl+9KMfJUkOPvjgbL755ivs8+KLL2bRokVJkn79+uWrX/1qHnnkkTz11FO55ZZbstdee2XJkiW5/PLLc9ddd61WHQAAsK4JPgEAAAAAALSDxYsXJ0mqqqpa7FNdXd3Urqura/McEydObNrC7lOf+tRKa9l///2zww475JZbbslHPvKRbLzxxunRo0d23nnnXHfddXnve9+bJLniiitSW1vb5loAAGBds9UdAAAAAABAO+jZs2eSrDRE1LgKU7LygFRLbrvttiTJHnvskaIoWuy37bbb5pprrmnxeLdu3fLFL34xf/rTn/LKK6/kiSeeyO67797megAAYF2y4hMAAAAAAEA76NOnT5JkwYIFLfZpfqxv375tGr+uri4PPvhgkmTUqFGrUeGyttlmm6Zt+aZOnbrG4wEAwNom+AQAAAAAANAOBg8enCSpqalpsU/zYwMHDmzT+M8991xmzZqVbt26rZXgU0VFRVP4auHChWs8HgAArG2CTwAAAAAAAO1g+PDhSZJp06a12Gf69OlJGkJPG2ywQZvGf+KJJ5Iku+66awYMGLDSvg888EDGjRuXO+64o8U+ixcvzsyZM5Mkm2yySZtqAQCA9iD4BAAAAAAA0A5GjBiRJJkyZUpmzZq1wj4TJkxIkuyxxx5tHv/FF19Mkuyyyy6r7HvXXXflyiuvzJVXXtlin0cffTSLFi1Kkuy0005trgcAANY1wScAAAAAAIB2sNtuu2XQoEFZvHhxrrvuuuWOl0ql3H///UmS0aNHt2ns+vr6ptWitttuu1X233///ZMkr7766gpXfaqtrc3VV1+dJNl7770zZMiQNtUDAADtQfAJAAAAAACgHVRWVub0009Pklx77bW55pprsmDBgiTJxIkTc8opp6Suri4jR47M7rvv3nReTU1NRo0alVGjRuWmm25a4divvvpq3nrrrSTJO9/5zlXW8sEPfjDbbrttkuTiiy/Oz372s6Zapk6dmjFjxuSJJ55Ir169cv7556/+iwYAgHWoe0cXAAAAAAAA0FUcccQRmTx5cm699dZcddVVGTt2bKqrqzNv3rwkyVZbbdW00lKj2travPTSS0mSGTNmrHDc5lvn9e/ff5V1VFZW5rvf/W5OOumkvPjii7nwwgvz5S9/Ob17987cuXOTJP369cu3v/3tDBs2bHVeKgAArHOCTwAAAAAAAO3okksuyV577ZWbb745zz77bBYsWJChQ4fmoIMOyimnnJJ+/fq1ecw5c+Y0tVsTfEqSwYMH5xe/+EV+8pOf5Le//W3+9re/ZfHixRk6dGj222+/nHTSSRk0aFCbawEAgPYi+AQAAAAAANDOGreua40hQ4akVCqttM+uu+6am2++Obvuumub6ujVq1fGjBmTMWPGtOk8AABYH1R2dAEAAAAAAAAAAABtJfgEAAAAAAAAAACUHcEnAAAAAAAAAACg7Ag+AQAAAAAAAAAAZUfwCQAAAAAAAAAAKDuCTwAAAAAAAAAAQNkRfAIAAAAAAAAAAMqO4BMAAAAAAAAAAFB2BJ8AAAAAAAAAAICyI/gEAAAAAAAAAACUHcEnAAAAAAAAAACg7Ag+AQAAAAAAAAAAZUfwCQAAAAAAAAAAKDuCTwAAAAAAAAAAQNkRfAIAAAAAAAAAAMqO4BMAAAAAAAAAAFB2BJ8AAAAAAAAAAICy072jCwAAAAAAAGDNTJgyJw88PTuLbv5HR5cCAADtxopPAAAAAAAAZe6Bp2dn0eL6ji6jy+nVo1tHlwAA0KUJPgEAAAAAAJQ5oaf216tHt4z+wNYdXQYAQJdmqzsAAAAAAIBO5NdXfrijSwAAgHZhxScAAAAAAAAAAKDsCD4BAAAAAAAAAABlR/AJAAAAAAAAAAAoO4JPAAAAAAAAAABA2RF8AgAAAAAAAAAAyo7gEwAAAAAAAAAAUHYEnwAAAAAAAAAAgLIj+AQAAAAAAAAAAJQdwScAAAAAAAAAAKDsCD4BAAAAAAAAAABlR/AJAAAAAAAAAAAoO4JPAAAAAAAAAABA2RF8AgAAAAAAAAAAyo7gEwAAAAAAAAAAUHYEnwAAAAAAAAAAgLIj+AQAAAAAAAAAAJQdwScAAAAAAAAAAKDsCD4BAAAAAAAAAABlR/AJAAAAAAAAAAAoO4JPAAAAAAAAAABA2RF8AgAAAAAAAAAAyo7gEwAAAAAAAAAAUHYEnwAAAAAAAAAAgLIj+AQAAAAAAAAAAJQdwScAAAAAAAAAAKDsCD4BAAAAAAAAAABlR/AJAAAAAAAAAAAoO4JPAAAAAAAAAABA2RF8AgAAAAAAAAAAyo7gEwAAAAAAAAAAUHYEnwAAAAAAAAAAgLIj+AQAAAAAAAAAAJQdwScAAAAAAAAAAKDsCD4BAAAAAAAAAABlR/AJAAAAAAAAAAAoO4JPAAAAAAAAAABA2RF8AgAAAAAAAAAAyo7gEwAAAAAAAAAAUHYEnwAAAAAAAAAAgLIj+AQAAAAAwP9n786j9KrqfHF/KkMFQgAZYqKijGGjiOhliGhfBxR/cWovigpoNxFpaLzthGIL4kRLtzS2oEZldmIQxQGaxgGvqHQH0gqBlmkjCkGUSUYDJiShfn/Um/AmpJIa3qriVD3PWu+qfc75nr131TqLLLefdx8AAABoHMEnAAAAAAAAAACgcQSfAAAAAAAAAACAxhF8AgAAAAAAAAAAGkfwCQAAAAAAAAAAaBzBJwAAAAAAAAAAoHEEnwAAAAAAAAAAgMYRfAIAAAAAAAAAABpH8AkAAAAAAAAAAGgcwScAAAAAAAAAAKBxBJ8AAAAAAAAAAIDGEXwCAAAAAAAAAAAaR/AJAAAAAAAAAABoHMEnAAAAAAAAAACgcQSfAAAAAAAAAACAxhF8AgAAAAAAAAAAGkfwCQAAAAAAAAAAaBzBJwAAAAAAAAAAoHEEnwAAAAAAAAAAgMYRfAIAAAAAAAAAABpH8AkAAAAAAAAAAGgcwScAAAAAAAAAAKBxBJ8AAAAAAAAAAIDGEXwCAAAAAAAAAAAaR/AJAAAAAAAAAABoHMEnAAAAAAAAAACgcQSfAAAAAAAAAACAxhF8AgAAAAAAAAAAGkfwCQAAAAAAAAAAaBzBJwAAAAAAAAAAoHEEnwAAAAAAAAAAgMYRfAIAAAAAAAAAABpH8AkAAAAAAAAAAGgcwScAAAAAAAAAAKBxBJ8AAAAAAAAAAIDGEXwCAAAAAAAAAAAaR/AJAAAAAAAAAABoHMEnAAAAAAAAAACgcQSfAAAAAAAAAACAxhF8AgAAAAAAAAAAGkfwCQAAAAAAAAAAaBzBJwAAAAAAAAAAoHEEnwAAAAAAAAAAgMYRfAIAAAAAAAAAABpH8AkAAAAAAAAAAGgcwScAAAAAAAAAAKBxBJ8AAAAAAAAAAIDGEXwCAAAAAAAAAAAaR/AJAAAAAAAAAABoHMEnAAAAAAAAAACgcQSfAAAAAAAAAACAxhF8AgAAAAAAAAAAGkfwCQAAAAAAAAAAaBzBJwAAAAAAAAAAoHEEnwAAAAAAAAAAgMYRfAIAAAAAAAAAABpH8AkAAAAAAAAAAGgcwScAAAAAAAAAAKBxBJ8AAAAAAAAAAIDGEXwCAAAAAAAAAAAaR/AJAAAAAAAAAABoHMEnAAAAAAAAAACgcQSfAAAAAAAAAACAxhF8AgAAAAAAAAAAGkfwCQAAAAAAAAAAaBzBJwAAAAAAAAAAoHEEnwAAAAAAAAAAgMYRfAIAAAAAAAAAABpH8AkAAAAAAAAAAGgcwScAAAAAAAAAAKBxBJ8AAAAAAAAAAIDGEXwCAAAAAAAAAAAaR/AJAAAAAAAAAABoHMEnAAAAAAAAAACgcQSfAAAAAAAAAACAxhF8AgAAAAAAAAAAGkfwCQAAAAAAAAAAaBzBJwAAAAAAAAAAoHEEnwAAAAAAAAAAgMYRfAIAAAAAAAAAABpH8AkAAAAAAAAAAGgcwScAAAAAAAAAAKBxBJ8AAAAAAAAAAIDGEXwCAAAAAAAAAAAaR/AJAAAAAAAAAABoHMEnAAAAAAAAAACgcQSfAAAAAAAAAACAxhF8AgAAAAAAAAAAGkfwCQAAAAAAAAAAaBzBJwAAAAAAAAAAoHEEnwAAAAAAAAAAgMYRfAIAAAAAAAAAABpH8AkAAAAAAAAAAGgcwScAAAAAAAAAAKBxBJ8AAAAAAAAAAIDGmTTaEwAAAAAAOq+Usm2S9yR5VZJtkjyW5PYkP0pycq31xg6OtV2Sv0vy6iTPSrJRknuSLEhyZq31Pzo1FgAAAMBK4zL4NFKLPqWUGUkOT/KaJDsm2SDJHUkWJjknyXdrrY91YiwAAAAAWKmU8rYkpyaZusalnVqfw0spR9ZaP9+BsY5Mcmx6177aPSPJG5O8sZTy/SQH1lr/MtTxAAAAAFYad6+6ay36XJvkfUmek97Fn2npXfB5b5JrSinv6cA4+ya5McnHk+yRZNMkU9IbtNo3ybeT/GcpZfuhjgUAAAAAK5VSXpvk63k89LQgyadan/mtc91JPldKOWiIYx2b5F/zeOjpF0mOT/KJJD9uK/0/Sc4aylgAAAAAaxpXOz61LfqsDHwtSHJJq713khfl8UWfB2utXxvkOK9Ob7BpYuvUreld6PlDku3Tu9CzSZK9kvy4lDK71vqnwYwFAAAAACuVUqYlOT2Pr3+9v9Z6UlvJR0sphyY5OUlXknmllItrrfcMYqwXJzmmdfhIkrfWWi9ao+aVSf49vcGoN5ZS/r9a648GOhYAAADA2oybHZ/6WPR5Ya31o63Pi5MclqSndX1eKWX6IMbZIMkZeTz0dHKSZ9daD6u1HltrPShJSfLz1vXt0vttOwAAAAAYqkOTzGy1v7lG6ClJUms9NckJrcNpSY4c5Fjz0hueSpJ91ww9tcb6SZJ/aTs1d5BjAQAAADzBuAk+ZeQWfQ5I8rRWe0GSf6i1LlljnDuT7J/k0dapg1qBKQAAAAAYivZX1x2/jrrjkyxttQ8spXSto/YJSikvSPL81uE3a60/Xkf5mUl+k961sj8PZBwAAACAdRlPwacRWfRJ8qq29qm11hVrK2qFn/6ndbhBel+BBwAAAACDUkqZmeR5rcM7aq1X91Vba70vvUGkJHlGkj0GONz+be1/W1dhrfX2WuuOrd3XDx3gOAAAAAB9GhfBpxFe9Hlbkh2SvCHJ99ZT277L07IBjgMAAAAA7V7Q1l7QZ9Xaa2YPcKy9Wj8fSHLlAO8FAAAA6IhJoz2BETKYRZ+XtNqzk/x3fweqtT6W5LetT59KKc9JsnPr8J4kt/R3DAAAAABYi1lt7f6sNd3W1t5hgGPt0vp5Y621p5QyIckBSd6e3i8gbpHk7iQ/S/KFWusvB9g/AAAAwHqNix2fMrKLPutVSvnfSf49ycrX6P1LrdWOTwAAAAAMxdPa2rf3o/6Pbe0Z/R2klPLUJE9pHd5RSnlWksuSnJVkTpKnJ5mS5JlJ/ibJglLK8aWUrrV0BwAAADBo42XHpxFZ9OlLKWVKkg8k2Sq924A/v+3yF2qtJw51DAAAAADGvU3b2o/0o/4vbe1NBjDOU9ra3Ul+mOTZrf4uSHJdkmlJXpXendi7knwoyeQkRwxgHAAAAIB1Gi/Bp5Fa9OnL1kmOW8v5f0lyTAf6BwAAAIApbe0l/ahvXwOb0mfVE01ra7+29XNhkv9Ta23fSf3DpZR3JflCeneef38p5Qe11ksGMNaALF68OFdeeeVwdc8Y4RlhPPCcM1Z5thnrPOOMZZ5vhst4CT6N1KJPX57Vx/mjkvx1KeXttdarOzDOWlnwob88JyPP33zk+Fsz1nnGGcs834x1nnGgg1a0tXsGeO9A6qeucXxXkjm11rvXLKy1fqmU8owkR7dOHZNk2IJPAAAAwPgyXoJPI7Xo05frksxKclt6twLfJ8mxSbZLsnOSn5VSXlhrvbEDYwEAAAAwPi1ua2/Qj/oN29r9+bLgSkvXOP7s2kJPbf41yftb4/1VKWXzWut9Axiv36ZNm5ZSynB0zRiwMmy82267jfJMYJicc/uqpuecscZ/wxnrPOOMZZ5v+qPWmsWLF6+/cC3GS/BppBZ91qrWekfb4d1Jzi6lXJzksvQGnzZN75bf+wx1rLWx4MP6+MdmhFmAGFGeb8Y6zzhjmeebsc4zTn8MZdGHcan9YVlzV6a1aV8De3AA4/x5jeMfrau41vpgKeVXSf53el95t2uSSwcwHgAAAMBaTRjtCYyQkVr06bda6/1JDmk79cpSylbDMRYAAAAA40L7l++e3o/6Z7S17xzAOPeucfzHftzzh7b2FgMYCwAAAKBP4yX4NFKLPgNSa70iye/bTj1/uMYCAAAAYMy7rq29TT/qn9XWvqm/g9Ra70nyp7ZTT+nHbe07z6+5YxQAAADAoIyX4NOILPq0K6Vs1M/S29vamwxmLAAAAABIcm2SnlZ7j37Uv7CtfdUAx7qmrb1LP+q3bWv/vs8qAAAAgAEYL8GnEVn0KaVMKqUsKKXcl+SuUsrkfty2eVt7zW3CAQAAAKBfaq33Jbmidbh1KWXnvmpLKVsk2bN1eG+SKwc43EVt7f3XVVhKeVqSXVuHdyWpAxwLAAAAYK3GRfBppBZ9aq3L07u192ZJNkqyz7rqSylbJ9mxdfhYkoX9HQsAAAAA1uK8tvYn1lF3VJLuVvusWutjAxzn3CTLWu39SikvXkftJ/L4q+6+WWtdMcCxAAAAANZqXASfWkZq0ec77X2VUrrWUXtCkpXX/1+t9e4BjgUAAAAA7U7P46+S26+U8k9rrk+VUg5NckTr8C9JPjPQQWqtdyX519ZhV5Lvrxl+KqV0lVKOSnJo69RDgxkLAAAAoC+T1l8yZpye5ANJnpnWok+Sj9VaV74CryOLPkk+n+T/JtkkyV8l+WIp5b211pXfgEspZYMkn03y5tapZUk+PIixAAAAAGCVWuvDpZR3JbkgvV96PCbJG0op/55keZJXJGkPKL2v1nr7mv2UUr6a5KDW4ddqrXPXMtw/pXf966VJtkzyn6WUS9K78/rEJK/N46+4S5L3rG0sAAAAgMEaN8GnkVr0qbXeWUo5OMm3WuMcnuTVpZTvJ7k7vcGrNyR5euuWniSH11qv6sCvCQAAAMA4V2u9qJTy9iSnJdkoyS6tT7vlST5Uaz11COMsLaW8OsmpSd7eOr1P69NuaZKDa63nDHYsAAAAgLUZT6+6S631ovQuwjzcOrVLkqOTfCyPh56WJzliiIs+30nypiQPtE5tk+R9Sf45vUGolaGn+5K8sdZ6xmDHAgAAAIA11VrPTfLsJCckuS7J4vQGkH6b3kDUC2qtJ3ZgnL/UWv8mvWtrpye5OckjSZYkuSHJSUmeLfQEAAAADIdxs+PTSrXWc0sp/5nk3Ulek2TrJJOT3J7kp0k+X2u9tgPjfL+U8oskf5/kdUl2SjItyf1Jrk/yH0lOrbU+NNSxAAAAAGBNtdbfJ/lQ6zPQe+cmmTuA+vlJ5g90HAAAAIChGHfBp2TkFn1qrfeld5enfx7oOAAAAAAAAAAAQN/G1avuAAAAAAAAAACAsUHwCQAAAAAAAAAAaBzBJwAAAAAAAAAAoHEEnwAAAAAAAAAAgMYRfAIAAAAAAAAAABpH8AkAAAAAAAAAAGgcwScAAAAAAAAAAKBxBJ8AAAAAAAAAAIDGEXwCAAAAAAAAAAAaR/AJAAAAAAAAAABoHMEnAAAAAAAAAACgcQSfAAAAAAAAAACAxhF8AgAAAAAAAAAAGkfwCQAAAAAAAAAAaBzBJwAAAAAAAAAAoHEEnwAAAAAAAAAAgMYRfAIAAAAAAAAAABpH8AkAAAAAAAAAAGgcwScAAAAAAAAAAKBxBJ8AAAAAAAAAAIDGEXwCAAAAAAAAAAAaR/AJAAAAAAAAAABoHMEnAAAAAAAAAACgcQSfAAAAAAAAAACAxhF8AgAAAAAAAAAAGkfwCQAAAAAAAAAAaBzBJwAAAAAAAAAAoHEEnwAAAAAAAAAAgMaZNNoTAIB2F198cc4555xcf/31WbFiRbbaaqvMmTMn73znOzN16tQB93fnnXfmBz/4QY4++ujccccdmTBhQp75zGfmZS97Wd7xjndk8803X+t9xx9/fM4888x19r3nnnvmG9/4xoDnBAAAAAAAAMDQCT4B8KTRHjaaPHlyJk+enJtvvjnz5s3LRRddlLPPPjtbbrllv/v7yU9+kqOOOipLly5NkkybNi1LlizJTTfdlJtuuinf+973cvrpp2ennXZ6wr3XX399kmTjjTfOlClT1tr/pptuOtBfEQAAAAAAAIAOEXwC4EnhwgsvzJlnnpkJEybkwx/+cA444IB0d3dnwYIF+fCHP5xbb701Rx55ZL7yla/0q7/bbrstRxxxRJYuXZrnPve5Of7447PDDjvk0UcfzRVXXJFPfOIT+cMf/pC///u/zw9+8INsuOGGq91/4403Jkm+8IUvZK+99ur47wsAAAAAAADA0EwY7QkAwIoVKzJv3rwkySGHHJKDDjoo3d3dSZLZs2fn1FNPzcSJEzN//vxcfvnl/erz9NNPz9KlS7PFFlvkAx/4QHbYYYckSXd3d17ykpfktNNOy5QpU3LHHXfku9/97mr33nHHHXnggQeSJM9+9rM79FsCAAAAAAAA0EmCTwCMuvnz52fRokXp6urK3Llzn3B91qxZ2XvvvZMkF1xwQb/6/PnPf54kecUrXrHWV9Vtv/322X333ZMk//3f/73atRtuuCFJ8rSnPS1PecpT+vtrAAAAAAAAADCCBJ8AGHULFixIkpRSssUWW6y1ZuXr5i677LL19rdixYq87GUvy8tf/vLMmjWrz7rp06cnSRYvXrza+ZXBp5122mn9kwcAAAAAAABgVEwa7QkAwM0335ykdxemvmyzzTZJkj/96U+5//77s9lmm/VZO3HixHzyk59Mklx55ZVrrenp6cnChQuTJDNnzlzt2o033pikd6epb3/72/nBD36QW2+9Nd3d3dl5553z1re+NXvuuWf/fjkAAAAAAAAAhoXgEwCj7u67706SzJgxo8+a9mv33HPPOoNP/XHxxRdn0aJFSZKXvvSlq11buePT1772tSxdunS1a7fccksuuuiiHHTQQTnqqKPS1dU1pHkAAAAAAAAAMDhedQfAqHv44YeTJFOnTu2zZsqUKavaa76abqBuu+22HHvssUmSHXfcMa985StX6/v2229P0rtz1FFHHZVf/OIX+fWvf50LLrggr33ta5P0hqJOO+20Ic0DAAAAAAAAgMETfAJg1C1fvjxJMnny5D5ruru7V7VXrFgx6LHuuOOOzJ07Nw888ECmTJmSE044IRMmPP7P4UMPPZRXvvKV2XnnnfO1r30tc+fOzYwZM9Ld3Z2ddtopn/3sZ7PffvslSb785S/nvvvuG/RcAAAAAAAAABg8wScARt0GG2yQJFm2bFmfNY8++uiq9roCUutyyy235MADD8wf/vCHTJo0Kf/2b/+WnXbaabWapz/96Zk3b16++93v5nnPe95a+zniiCMyceLEPPLII/nFL34xqLkAAAAAAAAAMDSCTwCMuo022ihJsmTJkj5r2q9NmzZtwGNceeWV2X///fPHP/4xkydPzmc+85nss88+A59ski222CLbbbddkuTmm28eVB8AAAAAAAAADI3gEwCjbubMmUmSu+66q8+a9mvTp08fUP///d//nXe84x154IEHMnXq1HzpS1/Kq1/96sFNtmVl+GpdYS0AAAAAAAAAhs+k0Z4AAMyaNSs/+tGPcuutt/ZZs2jRoiS9oadNN920331fcskl+epXv5qenp5svvnmOeWUU/p8hV2S/PKXv8w111yT7u7u/O3f/m2fdffee++q+QAAAAAAAAAw8uz4BMComz17dpLkhhtuyIMPPrjWmvnz5ydJ9txzz373+/3vf39V6GmrrbbKueeeu87Q08pxTjjhhPzrv/5rHn744bXW/P73v89tt92WJHnBC17Q7/kAAAAAAAAA0DmCTwCMut133z0zZszI8uXLc/rppz/heq01l156aZLkgAMO6FefN954Y4455pj09PRk5syZOeecc7LNNtus976Xv/zlSZJly5blK1/5yhOu9/T05IQTTkiSbLvtttljjz36NR8AAAAAAAAAOkvwCYBRN2HChLz//e9Pkpx22mk5+eSTs2TJkiTJggULcthhh2XFihXZa6+9Vgsa3XXXXZkzZ07mzJmTs846a7U+P/7xj2fZsmWZMmVKPvCBD2TGjBn9msvznve8vPKVr0ySfPnLX84pp5ySxYsXJ0n+8Ic/5IgjjsiPfvSjTJw4MR//+MfT1dU15N8fAAAAAAAAgIGbNNoTAIAk2XfffbNw4cKcd955OfHEEzNv3rx0d3evet3ctttum5NOOmm1e5YtW5ZbbrklSXL//fevOn/11Vfn6quvTpI89thj+dSnPpXjjz++z7FnzpyZ73znO6uOjz/++Pzd3/1drrrqqnz2s5/NiSeemGnTpuXPf/5zkqS7uzuf+tSnstdee3XiVwcAAAAAAABgEASfAHjSOPbYY/OiF70o55xzTq6//vosWbIk22yzTfbZZ58cdthh2XjjjfvVz1VXXbWqvWzZsjz44IPrrJ8yZcpqx9OmTcs3vvGNnH/++bnwwgtTa83SpUvzjGc8Iy9+8Yvzjne8I9ttt93Af0EAAACABrr44otXrdesWLEiW221VebMmZN3vvOdmTp16oD6Wrx4cXbffff09PSss+7rX/96Zs+ePZRpAwAA44DgEwBPKitfXdcfW221VWqtTzh/8MEH5+CDD06SXHnllUmS3XbbbUDzmDRpUvbff//sv//+A7oPAAAAYCw5/vjjc+aZZyZJJk+enMmTJ+fmm2/OvHnzctFFF+Xss8/Olltu2e/+brzxxvT09GTixInZbLPN+qybPHnykOcOAACMfYJPAAAAAADAE1x44YU588wzM2HChHz4wx/OAQcckO7u7ixYsCAf/vCHc+utt+bII4/MV77ylX73ecMNNyRJnv/85+ecc84ZrqkDAADjxITRngAAAAAAAPDksmLFisybNy9Jcsghh+Sggw5Kd3d3kmT27Nk59dRTM3HixMyfPz+XX355v/tdGXx6znOe0/lJAwAA447gEwAAAAAAsJr58+dn0aJF6erqyty5c59wfdasWdl7772TJBdccEG/+73xxhuTJDvttFNH5gkAAIxvgk8AAAAAAMBqFixYkCQppWSLLbZYa81ee+2VJLnsssv61efy5cvzm9/8Jkny7Gc/uwOzBAAAxrtJoz0BAAAAAADgyeXmm29Okmy//fZ91myzzTZJkj/96U+5//77s9lmm62zz9/+9rd59NFHM3ny5HR1deWTn/xkfvWrX2Xx4sWZMWNGXvrSl+Zv/uZvMm3atI79HgAAwNg25OBTKeVvW81aa10w1P4AAAAA4MmmlPKSVvOPtdabR3UyACPg7rvvTpLMmDGjz5r2a/fcc896g0833HBDkqSnpyf77bdfVqxYseraH//4xyxcuDDnnXdeTjnllJRShjJ9AABgnOjEq+6+muQrSQ7qQF8AAAAA8GT0sySXJjlilOcBMCIefvjhJMnUqVP7rJkyZcqq9uLFi9fb54033pik95V3L3zhC3POOefk6quvzhVXXJFPf/rT2XLLLXPHHXfk0EMPzf333z/E3wAAABgPRvRVd6WU1yTZPUlqrceO5NgAAAAAMBJKKbOTlCSptX59lKcDMCjLly9PkkyePLnPmu7u7lXt9t2b+jJz5szMnj07W221VY477rh0dXUlSTbccMPsu+++2XXXXfOmN70pd955Z84444x88IMfHOJvAQAAjHWd2PFpIF6f5BNJPj7C4wIAAADASJmb3l3SzxzdaQAM3gYbbJAkWbZsWZ81jz766Kr2ugJSK82dOzdf//rX88///M+rQk/ttttuu7zpTW9KkvzgBz8Y6JQBAIBxaKSDTwAAAAAwXjzx/9UHaIiNNtooSbJkyZI+a9qvTZs2rSPj7r777kmS22+/PUuXLu1InwAAwNgl+AQAAAAAAKxm5syZSZK77rqrz5r2a9OnT+/IuBtvvPGq9rpCVwAAAIngEwAAAAAAsIZZs2YlSW699dY+axYtWpSkN/S06aabrrO/Rx55JGeffXbmzZuXm266qc+6P/3pT0mSKVOmrBaCAgAAWBvBJwAAAAAAYDWzZ89Oktxwww158MEH11ozf/78JMmee+653v4mTZqUf/mXf8kXvvCFXHTRRX3W/dd//VeSZNddd82ECf4vDAAAYN38rwYAAAAAAGA1u+++e2bMmJHly5fn9NNPf8L1WmsuvfTSJMkBBxyw3v66u7vzohe9KEly/vnn57777ntCzXXXXZeLL744SfKWt7xlKNMHAADGCcEnAAAAAABgNRMmTMj73//+JMlpp52Wk08+OUuWLEmSLFiwIIcddlhWrFiRvfbaK3vssceq++66667MmTMnc+bMyVlnnbVan+9+97szadKk3HvvvTnkkEPy61//Oj09PVm2bFkuvvjiHHzwwVm2bFle+MIX5nWve93I/bIAAEBjTRrtCQAAAAAAAE8+++67bxYuXJjzzjsvJ554YubNm5fu7u48/PDDSZJtt902J5100mr3LFu2LLfcckuS5P7771/t2i677JJPf/rTOfroo3Pddddlv/32y4YbbpgVK1bk0UcfTZK84AUvyLx589LV1TX8vyAAANB4gk8AAAAAAMBaHXvssXnRi16Uc845J9dff32WLFmSbbbZJvvss08OO+ywbLzxxgPq7/Wvf32e85zn5Mwzz8zll1+eu+++O1OnTs0uu+ySN7zhDdlvv/0yceLEYfptAACAsUbwCQAAAAAA6NPKV9f1x1ZbbZVa6zprtt9++xx33HGdmBoAADDOTRjtCQAAAAAAAAAAAAxUJ3d8KqWUv11fTVvx+mpXU2v9+qBmBQAAAACd8/RSykvWV7OyUUr530m6+tt5rfUXg50YAAAAwHjTyeDTy1qf/uhK8pUB9i/4BAAAAMBoe33r0x9dSX42gL570tn1OgAAAIAxbTQWUnoGWN81iHsAAAAAYLisbwennjy+ntWf3Z56+lkHAAAAQJtOBZ8szAAAAAAw1vV3DWyga2XW1gAAAAAGYcjBp1rrhE5MBAAAAACexLYd7QkAAAAAsLrReNUdAAAAADRKrXXRaM8BAAAAgNXZrQkAAAAAAAAAAGgcwScAAAAAAAAAAKBxBJ8AAAAAAAAAAIDGmTTUDkopL+nERNan1vqLkRgHAAAAAAailPLiJK9KskeS7ZLMSDI1yaNJHkhyX5L/SfLLJD+utd44OjMFAAAAGFuGHHxK8rMkPR3oZ1160pm5AgAAAMCQlVImJ/mHJO9N8sy2S11t7clJNkry9CTPTXJg695fJTmx1vrNkZktAAAAwNjUyVfdda3l08l+AQAAAGDUlVJ2TfLrJJ9J8qw8vnbV1xpW1xo1uyc5u5TyX6WUZw3nXAEAAADGsk7uorRy16f2BR6BJQBGzaI7H8oV9c9Zuqwnf3jkt9l11vRsPXOT0Z4WAADQYKWUlyf59yQbrnHpkSRXJ/ltknuTPJxkgySbJtk8ya5JdmjVrlwz2yvJL0spr661XjW8MwcAAAAYe4bj9XF/SPKtJN+stf5yGPoHgHW65qZ7cu4lNdf97t5V5y79n2uTJDtvt0UO2Kdk1x2nj9b0AACAhiqlPDPJ95NMTe+XALuS/DDJiUl+Vmtdtp77N0/y10n+PsmerT6mJ7mwlLJ7rfXO4Zs9AAAAwNjTiVfdfSzJ9Xl8y+6nJ3lfkitKKTeVUo4tpTynA+MAwHr9eMGifPTU+auFntpd97t789FT5+eSBYtGeGYAAMAYcGqSjdMbWPpzkjfWWl9Ta71kfaGnJKm13ldr/Wqt9YVJ3pbkoVZfT0ty/DDOGwAAAGBMGnLwqdb6qVrrLkl2SfLP6d3Oe2UIaockH0ny61LK/5RSji6lbDfUMQFgba656Z7M+/bV6elZd11PT/KFb1+da266Z2QmBgAANF7ri33/X3qDSo8keXmt9fuD7a/Wem6SlydZkt51tLeVUrbqwFQBAAAAxo1O7PiUJKm1XldrPabWumOS3ZN8JslteTwEtXOSf0rym1LKFaWU95ZSntap8QHg3EvqekNPK/X0JN/8SR3eCQEAAGPJ29raH6m1Lhxqh7XWq5P8a+uwK8l+Q+0TAAAAYDyZNByd1lqvSnJVkg+VUvZKsn+SNyeZ2SrZo/X5TCnlP5Ocm+T8Wut9wzEfAMa+RXc+1Ofr7fpy7W/vzaI7H8rWMzcZplkBAABjyF+1fi5J7yvvOuWLST6a3uDTi5Oc1MG+AUbN9352c8798Y35y9IVoz0VAABgDOvYjk99qbVeXmt9b5JnJHlFeheG7kvvYs7EJC9J8uUkd5RS/qOU8vZSyrThnhcAY8s1vxnca+sGex8AADDubJ3e19z9uta6pFOd1lr/lOS69K6VPadT/QKMNqGn0bPhlImjPQUAABgxw7Lj09rUWnuSXJrk0lLK/02yT3p3gvo/STZJMjnJnNZnSSnl4iTfTHJRrXXpSM0TgGb6y5LlI3ofAAAw7mze+vn7Yej75iS7JHnqMPQNMCqEnkZH96SuHPCqnUZ7GgAAMGJGLPjUrta6IskPk/ywlNKd5NVJ3prk9Uk2SrJhkje2PotLKd+vtR40GnMFoBk23GBw/6QN9j4AAGDc2bD188Fh6Pv+1s+Nh6FvgFH37//2htGewrhw5ZVXJkl2222HUZ4JAACMnGF/1d361FofrbVeUGs9MMn0JPslOTfJ8vRu8b1xkreP4hQBaIBdZ00f0fsAAIBxZ+V7gx4dhr6XtX5OHoa+AQAAAMasUQ8+rWHXJC9Msmd6d6PqGd3pANAUW8/cJDtvt8WA7nnu9ltk65mbDNOMAAAAAAAAABhOo/5+n1LKXknekuRNSZ7Rdqmrrf2rEZ0UAI10wD4lHz11fnr6EZvt6kr2f2UZ/kkBAAAAAAAAMCxGJfjUz7DTNUnOS/KtWuvvRnB6ADTUrjtOzz+8+fmZ9+2r1xl+6upK3v3m52fXHb3mDgAAAAAAAKCpRiz41M+w03XpDTudV2v9zUjNDYCx41Wzt86Mzabmmz+pufa39z7h+nO33yL7v7IIPQEAAAAAAAA03LAGn/oZdqp5fGen64dzPgCMD7vuOD277jg9i+58KP9wwqWrzs878uXZeuYmozgzAABgDNi4lPKsTvfZ4f4AAAAAxoWOB5/6GXb6bR4PO/1Pp+cAAEmeEHISegIAADrgwNYHAAAAgFHWkeBTP8NOtyb5dnpfY3dVJ8YFAAAAgFHQtf6SAenpcH8AAAAA48KQg0+llNvyeNhpzUWf2/N42Om/hzoWAAAAAIyiTgeehrtfAAAAgDGtEzs+bZXeb6V1tX7ekeT89IadLu9A/wAAAAAw2l4+2hMAAAAAYHUdedXdGpYn+eskf11K6VSfPbXW7TvVGQAAAAAMRK3156M9BwAAAABW18ngU0/r5zPbznWt5fpArdxJCgAAAAAAAAAAIEkyoUP9dPXx6U/N+j4AAAAA0HillGeXUv5qtOcBAAAAMFZ0Ysend3SgDwAAAABojFJKV5KDk7wryadqrd/rx20HJzmilHJbkn9OcmatdcUwThMAAABgTBty8KnW+rVOTAQAAAAAmqCUMivJt5Ps0jr14iT9CT69NL07nG+d5OQkh5ZS3lJrvWVYJgoAAAAwxnXqVXcAAAAAMOaVUnZPckV6Q09drdPrfX1dKWXDJM9vHfa07t0tyYJSyk6dnykAAADA2NeJV909QSllRpJnJ5mR5M9JfltrrcMxFgAAAACMhFLKzCQXJtksveGlJPltkm+u795a619KKU9L8n+SvCe9wameJFsm+WEpZdda64PDMW8AAACAsaqjwadSyt5JPpbeb7l1rXHtD0k+l2RerXVpJ8cFAAAAgBFwQpKZ6Q0sPZrkH5N8sda6oj8311rvTXJGKeXMJO9Pcnx6d2R/ZpJPJzl8OCYNAAAAMFZ17FV3pZSTklyS5H+3+l0ZfOpqfbZK8q/p3b57206NCwAAAADDrZSyTZID83jo6bW11s/3N/TUrtbaU2v9bJK/yeNrZwe3dpQCAAAAoJ86EnwqpXwkvVt0d61xaW3Hz0vyH6WUjTsxNgAAAACMgLfn8bWuT9dafzrUDmut30zy1dbhpPQGoQAAAADopyEHn1rfRDs6vd92S5IHk/xbklcleXaSFyQ5KMnP2m9LcuRQxwYAAACAEfJXrZ9Lk3yug/1+Ko+vq72kg/0CAAAAjHmTOtDHW5NsmN4Fml+nd5vv29eouSbJN0opH07yz+n9dtxhpZRP1Fof68AcAAAAAGA4PSe961+/qrU+0KlOa62/K6Vcn2TnJLt0ql8AAACA8aATr7p7RevnY0kOWEvoaZVa66eTXNI63DIWcwAAAABohs1bP28Zhr6va/3cYhj6BgAAABizOhF8Wvltt8trrdf3o/70tvZuHRgfAAAAAIbbyp3Tlw1D339u/ewehr4BAAAAxqxOBJ+2bP28rZ/1v2xrP70D4wMAAADAcHug9XPzdRUN0lNaP/+8riIAAAAAVteJ4NPU1s+H+1l/Z1t70w6MDwAAAADD7eYkXUmeNwx979r6eccw9A0AAAAwZnUi+LRym+8V/SmutS5pO5zaZyEAAAAAPHn8qvVz21LKzp3qtNXXDkl6klzbqX4BAAAAxoNOBJ+GomuUxwcAAACA/riwrf2hDvb7j23t/9fBfgEAAADGvNEOPgEAAABAE1yax1939/ZSyhuG2mEp5fVJ3t46XJrke0PtEwAAAGA8EXwCAAAAgPWotfYkOa512JXknFLKmwbbXyll3yTfbB32JDm51nrv0GYJAAAAML4IPgEAAABAP9Rav5bkp63DDZN8q5RyXillt/72UUrZo5RyXpLzW330pHcnqY91er4AAAAAY92k0Z4AAAAAADTIm5NcnmTH9O78tF+S/Uopf0zy8yS/THJXkj8l2SDJFkm2TLJbkr2TTG/109X6eWeS19daF4/ULwAAAAAwVnQy+LRxKeVZw3VPrfW2QcwJAAAAADqm1np/KeXFSb6X5K9ap7uSPCPJAa1PX7rWOF6Q5IBa662dnicAAADAeNDJ4NOBrU9/dQ3gnp7YnQoAAACAJ4Fa672llJcl+b9JPpreHZ3WtDLk1LPGcZLcluSfk5xRa10xXPMEAAAAGOs6HSZa81trfelpa/f3HgAAAAB4Uqi1PpbkC6WUU5Psn+QNSf53el9t164rvWthv0nys/TuFPXj1v0AAAAADEGngk8DDS8JOwEAAADQeLXWpUm+1vqklDI9ydOTbJRkRZIHk9xaa10yapMEAAAAGKM6EXx6eQf6AAAAAIDGq7Xek+Se0Z4HAAAAwHgw5OBTrfXnnZgIAAAAAAAAAABAf00Y7QkAAAAAAAAAAAAMlOATAAAAAAAAAADQOIJPAAAAAAAAAABA4wg+AQAAAAAAAAAAjSP4BAAAAAAAAAAANI7gEwAAAAAAAAAA0DiCTwAAAAAAAAAAQOMIPgEAAAAAAAAAAI0j+AQAAAAAAAAAADSO4BMAAAAAAAAAANA4gk8AAAAAAAAAAEDjCD4BAAAAAAAAAACNI/gEAAAAAAAAAAA0juATAAAAAAAAAADQOIJPAAAAAAAAAABA4wg+AQAAAAAAAAAAjSP4BAAAAAAAAAAANI7gEwAAAAAAAAAA0DiCTwAAAAAAAAAAQOMIPgEAAAAAAAAAAI0j+AQAAAAAAAAAADSO4BMAAAAAAAAAANA4gk8AAAAAAAAAAEDjCD4BAAAAAAAAAACNI/gEAAAAAAAAAAA0juATAAAAAAAAAADQOIJPAAAAAAAAAABA4wg+AQAAAAAAAAAAjSP4BAAAAAAAAAAANI7gEwAAAAAAAAAA0DiCTwAAAAAAAAAAQOMIPgEAAAAAAAAAAI0j+AQAAAAAAAAAADSO4BMAAAAAAAAAANA4gk8AAAAAAAAAAEDjCD4BAAAAAAAAAACNI/gEAAAAAAAAAAA0juATAAAAAAAAAADQOIJPAAAAAAAAAABA4wg+AQAAAAAAAAAAjSP4BAAAAAAAAAAANI7gEwAAAAAAAAAA0DiCTwAAAAAAAAAAQOMIPgEAAAAAAAAAAI0j+AQAAAAAAAAAADSO4BMAAAAAAAAAANA4k0Z7AgAAAABA55VStk3yniSvSrJNkseS3J7kR0lOrrXeOMzjfz/JG5Kk1to1nGMBAAAA49O4DD6N1KJPKWXTJO9M8pokz02yeZJHWmP9rDXWtZ0YCwAAAABWKqW8LcmpSaaucWmn1ufwUsqRtdbPD9P470wr9AQAAAAwXMbdq+5aiz7XJnlfkuekd/FnWnoXfN6b5JpSyns6MM6rk9yc5N+SvCLJjCSTk2yaZOck/zfJ/5RS/q2UMnGo4wEAAABAkpRSXpvk63k89LQgyadan/mtc91JPldKOWgYxt82yYmd7hcAAABgTeNqx6e2RZ+Vga8FSS5ptfdO8qI8vujzYK31a4Mc55VJLkhv0ClJ/pDk35P8Pskm6Q1C7Z6kK8kR6Q1eHTaYsQAAAABgpVLKtCSn5/H1r/fXWk9qK/loKeXQJCend21qXinl4lrrPR0af0J619827kR/AAAAAOsyboJPI7XoU0rZMMmZeTz0dEqS99Zal65R97YkX2nVHVpK+W6t9UcD/LUAAAAAoN2hSWa22t9cY/0rSVJrPbWUsn2SD6X3C3lHttqdcGSSv2q1l+XxNTIAAACAjhtPr7rr16JPkhNahysXfQbqLUme2Wr/PMnha4aeWmOdneSYtlNHDGIsAAAAAGjX/uq649dRd3ySlWtWB5ZSuoY6cCll1yTHtg5PTfLHofYJAAAAsC7jKfg0Uos+f93WPqnW2rOO2i8nWd5qv7S1FTgAAAAADFgpZWaS57UO76i1Xt1Xba31viQLWofPSLLHEMeekuQbSbqT3JLkA0PpDwAAAKA/xkXQZoQXfZ7X1v7VugprrX9OsvJVelOSbD7AsQAAAABgpRe0tRf0WbX2mtlDHPu4JLskeSzJ3Frr4iH2BwAAALBe4yL4lJFd9Nk9yXOTvCrJnesqbH0Trj3sZEEIAAAAgMGa1da+pR/1t7W1dxjsoKWUlyZ5f+vwxFrrLwbbFwAAAMBATBrtCYyQEVv0qbU+mOTBJNf1o/w16d3pKUluqbUuGchYAAAAANDmaW3t2/tR/8e29ozBDFhK2STJ19L7BcvrkxwzmH4AAAAABmO87Pg04os+61NKmZzkk22nvjcc4wAAAAAwbmza1n6kH/V/aWtvMsgxP59k6yTLk/ytL/YBAAAAI2m87Pg0Gos+6/PpJLu02o8k+cwwjQMAAADA+DClrd2fAFL7GtiUPqv6UErZN8lBrcNP1VqvHGgfnbZ48eJceeWoT4MnOc/IyPM3H1n+3oxlnm/GOs84Y5nnm+EyXoJPI7rosz6llHcnOaLt1IdrrXd0epyVLPjQX56TkedvPrL8vRnLPN+MZZ5vxjrPONBBK9raPQO8d0D1pZQZSU5tHV6Z5LgBjgcAAAAwZOMl+DRiiz7rU0r5hySfazt1bq31C50cAwAAAIBxaXFbe4N+1G/Y1h7oK+rOSLJl676/rbUuH+D9w2LatGkppYz2NHiSWhk23m233UZ5JuPEObevavqbjwzPOGOZ55uxzjPOWOb5pj9qrVm8ePH6C9divASfRnLRp0+llI8l+WTbqR8mmdup/vtiwYf18Y/NCLPoM7L8vRnj/DecsczzzVjnGac/hrLow7jU/rBM7Ud9+xrYg/0dpJRyaJLXtg4/Umu9vr/3AgAAAHTSeAw+DduiT19KKZOTnJLkHW2nL0qyX6310aH2DwAAAABJ7mhrP70f9c9oa9/ZnwFKKZsl+Wzr8M9JJpVSPthH+SZt97XXnFdr/X1/xgMAAABYl/ESfBr2RZ++lFKekuQ7SfZuO31Wknc8WbYABwAAAGBMuK6tvU0/6p/V1r6pn2NsmmSjVnvjJMf3874T2tq/SiL4BAAAAAzZhNGewAgZiUWfJyilbJVkflYPPZ2Q5G+FngAAAADosGuT9LTae/Sj/oVt7as6Px0AAACA4TVednxauejTlRFa9CmlbJPkZ0m2bp16LMl7a63zBtMfAAAAAKxLrfW+UsoVSfZKsnUpZeda63Vrqy2lbJFkz9bhvUmu7OcYt6Z3jW29Sim3prU2Vmvt1z0AAAAAAzEudnyqtd6X5IrW4dallJ37qh3sos8afTw1yf/L46GnpUn2E3oCAAAAYJid19b+xDrqjkrS3WqfVWt9bNhmBAAAADBMxkXwqWVEFn1KKV1JvpFku9apR5K8ptb6vYH0AwAAAACDcHqS37fa+5VS/qm1XrVKKeXQJEe0Dv+S5DMjOD8AAACAjhkvr7pLehd9PpDkmWkt+iT5WK21Z2VBhxZ9Dk3yqla7J8nbaq0/HfSsAQAAAKCfaq0Pl1LeleSC9H7p8Zgkbyil/HuS5UlekeTFbbe8r9Z6+5r9lFK+muSg1uHXaq1zh3PeAAAAAIMxboJPI7HoU0qZnOQjbeU3J9mhlPLBfk7z1FrrQ/2sBQAAAIAnqLVeVEp5e5LTkmyUZJfWp93yJB+qtZ460vMDAAAA6JRxE3xKRmTRZ+/07ii10qwkJwzg/vOTCD4BAAAAMCS11nNLKf+Z5N1JXpNk6ySTk9ye5KdJPl9rvXYUpwgAAAAwZOMq+JQM+6LPmiEqAAAAABgVtdbfJ/lQ6zPQe+cmmTvE8bcZyv0AAAAA6zPugk/J8C361Fo/k+QzQ5kbAAAAAAAAAACwfhNGewIAAAAAAAAAAAADJfgEAAAAAAAAAAA0juATAAAAAAAAAADQOIJPAAAAAAAAAABA4wg+AQAAAAAAAAAAjSP4BAAAAAAAAAAANI7gEwAAAAAAAAAA0DiCTwAAAAAAAAAAQOMIPgEAAAAAAAAAAI0j+AQAAAAAAAAAADSO4BMAAAAAAAAAANA4gk8AAAAAAAAAAEDjCD4BAAAAAAAAAACNI/gEAAAAAAAAAAA0juATAAAAAAAAAADQOIJPAAAAAAAAAABA4wg+AQAAAAAAAAAAjSP4BAAAAAAAAAAANI7gEwAAAAAAAAAA0DiCTwAAAAAAAAAAQOMIPgEAAAAAAAAAAI0j+AQAAAAAAAAAADSO4BMAAAAAAAAAANA4gk8AAAAAAAAAAEDjCD4BAAAAAAAAAACNI/gEAAAAAAAAAAA0juATAAAAAAAAAADQOIJPAAAAAAAAAABA4wg+AQAAAAAAAAAAjSP4BAAAAAAAAAAANI7gEwAAAAAAAAAA0DiCTwAAAAAAAAAAQOMIPgEAAAAAAAAAAI0j+AQAAAAAAAAAADSO4BMAAAAAAAAAANA4gk8AAAAAAAAAAEDjCD4BAAAAAAAAAACNI/gEAAAAAAAAAAA0juATAAAAAAAAAADQOIJPAAAAAAAAAABA4wg+AQAAAAAAAAAAjSP4BAAAAAAAAAAANI7gEwAAAAAAAAAA0DiCTwAAAAAAAAAAQOMIPgEAAAAAAAAAAI0j+AQAAAAAAAAAADSO4BMAAAAAAAAAANA4gk8AAAAAAAAAAEDjCD4BAAAAAAAAAACNI/gEAAAAAAAAAAA0juATAAAAAAAAAADQOIJPAAAAAAAAAABA4wg+AQAAAAAAAAAAjSP4BAAAAAAAAAAANI7gEwAAAAAAAAAA0DiCTwAAAAAAAAAAQOMIPgEAAAAAAAAAAI0j+AQAAAAAAAAAADSO4BMAAAAAAAAAANA4gk8AAAAAAAAAAEDjCD4BAAAAAAAAAACNI/gEAAAAAAAAAAA0juATAAAAAAAAAADQOIJPAAAAAAAAAABA4wg+AQAAAAAAAAAAjSP4BAAAAAAAAAAANI7gEwAAAAAAAAAA0DiCTwAAAAAAAAAAQOMIPgEAAAAAAAAAAI0j+AQAAAAAAAAAADSO4BMAAAAAAAAAANA4gk8AAAAAAAAAAEDjCD4BAAAAAAAAAACNI/gEAAAAAAAAAAA0juATAAAAAAAAAADQOIJPAAAAAAAAAABA4wg+AQAAAAAAAAAAjSP4BADj2MUXX5y3v/3t+V//639l1113zWtf+9p84QtfyCOPPNKR/i+44IKUUnLqqaeus+6xxx7Ld7/73cydOzezZ8/Oc5/73LzoRS/K3//93+dnP/tZR+YCAAAAAAAAjC2TRnsCAMDoOP7443PmmWcmSSZPnpzJkyfn5ptvzrx583LRRRfl7LPPzpZbbjno/n/zm9/kuOOOW2/dX/7ylxx++OG5/PLLkySTJk3KBhtskHvvvTeXXnppLr300hx44IH5+Mc/Pui5AAAAAAAAAGOPHZ8AYBy68MILc+aZZ2bChAk5+uijc9VVV2XhwoX5+te/nqc//em59dZbc+SRRw66/xtvvDHveMc78uCDD6639rjjjsvll1+eDTbYIMcee2yuvPLKXHnllbnsssty4IEHJknOOeecfOMb3xj0fAAAAAAAAICxR/AJAMaZFStWZN68eUmSQw45JAcddFC6u7uTJLNnz86pp56aiRMnZv78+at2YRqI888/P29961tzzz33rLf2rrvuyne+850kyQc/+MG89a1vzQYbbJAkeepTn5qPf/zjeeMb35gkOfnkk/PYY48NeD4AAAAAAADA2CT4BADjzPz587No0aJ0dXVl7ty5T7g+a9as7L333kmSCy64oN/9/va3v83++++fj3zkI1myZEle/vKXZ/r06eu85xe/+EUee+yxTJkyZdXuTmt685vfnCT505/+lN/97nf9ng8AAAAAAAAwtgk+AcA4s2DBgiRJKSVbbLHFWmv22muvJMlll13W734vu+yyLFy4MFOnTs3RRx+dL3/5y6t2kurL9OnT87rXvS6vfe1rM3HixD5rVlq8eHG/5wMAAAAAAACMbZNGewIAwMi6+eabkyTbb799nzXbbLNNkt5dlu6///5sttlm6+136tSpOfDAA3P44YfnqU99ar/m8rKXvSwve9nL1llz1VVXrWrPnDmzX/0CAAAAAAAAY5/gEwCMM3fffXeSZMaMGX3WtF+75557+hV8estb3jL0ya1h+fLlOf3005MkO+64o+ATAAAAAAAAsIpX3QHAOPPwww8n6d2hqS9TpkxZ1R7N18t9+tOfzk033ZQkede73jVq8wAAAAAAAACefASfAGCcWb58eZJk8uTJfdZ0d3evaq9YsWLY57Q2X/rSl/KNb3wjSfK6170ur371q0dlHgAAAAAAAMCTk1fdAcA4s8EGGyRJli1b1mfNo48+uqq9roDUcPnsZz+bU045JUmy22675bjjjhvxOQAAAAAAAABPboJPADDObLTRRkmSJUuW9FnTfm3atGnDPqeVHn300RxzzDG54IILkiS77757TjnllFVhLQAAAAAAAICVvOoOAMaZmTNnJknuuuuuPmvar02fPn3Y55Qkixcvzt/93d+tCj29/OUvzxlnnDGiwSsAAAAAAACgOQSfAGCcmTVrVpLk1ltv7bNm0aJFSXpDT5tuuumwz+m+++7LgQcemCuuuCJJst9+++WLX/yinZ4AAAAAAACAPgk+AcA4M3v27CTJDTfckAcffHCtNfPnz0+S7LnnnsM+n8WLF+ed73xnaq1JksMPPzzHHXdcJk6cOOxjAwAAAAAAAM0l+AQA48zuu++eGTNmZPny5Tn99NOfcL3WmksvvTRJcsABBwz7fI455phcf/31SZIjjzwy73vf+4Z9TAAAAAAAAKD5BJ8AYJyZMGFC3v/+9ydJTjvttJx88slZsmRJkmTBggU57LDDsmLFiuy1117ZY489Vt131113Zc6cOZkzZ07OOuusjszlsssuyw9+8IMkyRvf+MYccsghHekXAAAAAAAAGPsmjfYEAICRt++++2bhwoU577zzcuKJJ2bevHnp7u7Oww8/nCTZdtttc9JJJ612z7Jly3LLLbckSe6///6OzOOrX/3qqvZPf/rTvPjFL15n/Uc+8pG85jWv6cjYAAAAAAAAQLMJPgHAOHXsscfmRS96Uc4555xcf/31WbJkSbbZZpvss88+Oeyww7LxxhsP+xyuuuqqVe0HHnhgvfUrd6YCAAAAAAAAEHwCgHFs5avr+mOrrbZKrXVA/f/0pz9d5/WFCxcOqD8AAAAAAACAlSaM9gQAAAAAAAAAAAAGSvAJAAAAAAAAAABoHMEnAAAAAAAAAACgcQSfAAAAAAAAAACAxhF8AgAAAAAAAAAAGkfwCQAAAAAAAAAAaBzBJwAAAAAAAAAAoHEEnwAAAAAAAAAAgMYRfAIAAAAAAAAAABpH8AkAAAAAAAAAAGgcwScAAAAAAAAAAKBxBJ8AAAAAAAAAAIDGEXwCAAAAAAAAAAAaR/AJAAAAAAAAAABoHMEnAAAAAAAAAACgcQSfAAAAAAAAAACAxhF8AgAAAAAAAAAAGkfwCQAAAAAAAAAAaBzBJwAAAAAAAAAAoHEEnwAAAAAAAAAAgMYRfAIAAAAAAAAAABpH8AkAAAAAAAAAAGgcwScAAAAAAAAAAKBxBJ8AAAAAAAAAAIDGEXwCAAAAAAAAAAAaR/AJAAAAAAAAAABoHMEnAAAAAAAAAACgcQSfAAAAAAAAAACAxhF8AgAAAAAAAAAAGkfwCQAAAAAAAAAAaBzBJwAAAAAAAAAAoHEmjfYEAICxYdGdD+Wa39yTvyxZng03mJRdZ03P1jM3Ge1pAQAAAAAAAGOU4BMAMCTX3HRPzr2k5rrf3fuEaztvt0UO2Kdk1x2nj8LMAAAAAAAAgLHMq+4AgEH78YJF+eip89caekqS6353bz566vxcsmDRCM8MAAAAAAAAGOsEnwCAQbnmpnsy79tXp6dn3XU9PckXvn11rrnpnpGZGAAAAAAAADAuCD4BAINy7iV1vaGnlXp6km/+pA7vhAAAAAAAAIBxRfAJABiwRXc+1Ofr7fpy7W/vzaI7HxqmGQEAAAAAAADjjeATADBg1/xmcK+tG+x9AAAAAAAAAGsSfAIABuwvS5aP6H0AAAAAAAAAaxJ8AgAGbMMNJo3ofQAAAAAAAABrEnwCAAZs11nTR/Q+AAAAAAAAgDUJPgEAA7b1zE2y83ZbDOie526/RbaeuckwzQgAAAAAAAAYbwSfAIBBOWCfkq6u/tV2dSX7v7IM74QAAAAAAACAcUXwCQAYlF13nJ5/ePPz1xt+6upK3v3m52fXHb3mDgAAAAAAAOicSaM9AQCguV41e+vM2GxqvvmTmmt/e+8Trj93+y2y/yuL0BMAAAAAAADQcYJPAMCQ7Lrj9Oy64/QsuvOh/MMJl646P+/Il2frmZuM4swAAAAAAACAscyr7gCAjlgz5CT0BAAAAAAAAAwnwScAAAAAAAAAAKBxBJ8AAAAAAAAAAIDGEXwCAAAAAAAAAAAaR/AJAAAAAAAAAABoHMEnAAAAAAAAAACgcQSfAAAAAAAAAACAxhF8AgAAAAAAAAAAGkfwCQAAAAAAAAAAaBzBJwAAAAAAAAAAoHEEnwAAAAAAAAAAgMYRfAIAAAAAAAAAABpH8AkAAAAAAAAAAGgcwScAAAAAAAAAAKBxBJ8AAAAAAAAAAIDGEXwCAAAAAAAAAAAaR/AJAAAAAAAAAABoHMEnAAAAAAAAAACgcQSfAAAAAAAAAACAxhF8AgAAAAAAAAAAGkfwCQAAAAAAAAAAaBzBJwAAAAAAAAAAoHEEnwAAAAAAAAAAgMYRfAIAAAAAAAAAABpH8AkAAAAAAAAAAGgcwScAAAAAAAAAAKBxBJ8AAAAAAAAAAIDGEXwCAAAAAAAAAAAaR/AJAAAAAAAAAABonEmjPQEAAAAAoPNKKdsmeU+SVyXZJsljSW5P8qMkJ9dab+zQOJsmeWeS1yR5bpLNkzzSGutnrbGu7cRYAAAAAO3GZfBppBZ9+hj70CSnJPl5rfVlwzUOAAAAAONXKeVtSU5NMnWNSzu1PoeXUo6stX5+iOO8OsnXk2y5xqVNW5+dk7yrlHJikg/VWlcMZTwAAACAduMu+DRSiz59jF2SfKbT/QIAAADASqWU16Y3jDShdWpBkkta7b2TvChJd5LPlVIerLV+bZDjvDLJBUkmt079Icm/J/l9kk2SvCLJ7km6khyRZFqSwwYzFgAAAMDajKvg00gt+vQx9rOS/DDJxp3qEwAAAADalVKmJTk9j69/vb/WelJbyUdbO5KfnN5A0rxSysW11nsGOM6GSc7M46GnU5K8t9a6dI26tyX5Sqvu0FLKd2utPxrgrwUAAACwVhPWXzI29LHo88Ja60dbnxen9xtnPa3r80op0zs09h5J/jO9r9UDAAAAgOFyaJKZrfY31wg9JUlqracmOaF1OC3JkYMY5y1Jntlq/zzJ4WuGnlpjnZ3kmLZTRwxiLAAAAIC1GjfBp4zcos8qpZSuUsq7klyWxxeCAAAAAGC4HNTWPn4ddccnWRlUOrCU0jXAcf66rX1SrbWnz8rky0mWt9ovLaWMpzVJAAAAYBiNp0WGkVr0SZKUUl6a5FdJvphkSuv0fwymLwAAAABYn1LKzCTPax3eUWu9uq/aWut9SRa0Dp+RZI8BDve8tvav1lVYa/1zkpWv0puSZPMBjgUAAACwVuMi+DTCiz4rXZDkf7XaDyd5V5J/GGRfAAAAALA+L2hrL+izau01swc41u5JnpvkVUnuXFdhKWXNsNPiAY4FAAAAsFaTRnsCI2Qwiz4vabVnJ/nvIYz9nSQfrLXeWkrZZgj9AAAAAMC6zGpr39KP+tva2jsMZKBa64NJHkxyXT/KX5PHd0S/pda6ZCBjAQAAAPRlvASfRmzRp815SU6vtf5ykPcDAAAAwEA8ra19ez/q/9jWntHhuSRJSimTk3yy7dT3hmMcAAAAYHwaL8GnEV/0qbUeNpj7AAAAAGCQNm1rP9KP+r+0tTfp8FxW+nSSXVrtR5J8ZpjGAQAAAMah8RJ8ejIu+gAAAABAJ01pa/fndXLta2BT+qwapFLKu5Mc0Xbqw7XWOzo9TrvFixfnyiuvHM4hGAM8IyPP33xk+Xszlnm+Ges844xlnm+Gy3gJPj2pFn1GmgUf+stzMvL8zUeWv/fI8vceWf7ejGWeb8Y6zzjQQSva2j0DvHeg9etUSvmHJJ9rO3VurfULnRwDAAAAYLwEn540iz4AAAAAMEwWt7U36Ef9hm3t/nxZsF9KKR9L8sm2Uz9MMrdT/a/LtGnTUkoZiaFooJVh4912222UZzJOnHP7qqa/+cjwjDOWeb4Z6zzjjGWeb/qj1prFixevv3Atxkvw6Umx6DNaLPiwPv6xGWEWfUaWv/fI8vcecf4bzljm+Was84zTH0NZ9GFcan9Ypvajvn0N7MGhDl5KmZzklCTvaDt9UZL9aq2PDrV/AAAAgDWNx+DTiC/6AAAAAMAIuKOt/fR+1D+jrX3nUAYupTwlyXeS7N12+qwk76i1Lh9K3wAAAAB9mTDaExgho7boAwAAAAAj5Lq29jb9qH9WW/umwQ5aStkqyfysHno6IcnfCj0BAAAAw2m87Pg0Kos+AAAAADCCrk3Sk6QryR79qH9hW/uqwQxYStkmyc+SbN069ViS99Za5w2mPwAAAICBGC87Pq1c9ElGaNEHAAAAAEZSrfW+JFe0DrcupezcV20pZYske7YO701y5UDHK6U8Ncn/y+Ohp6VJ9hN6AgAAAEbKuAg+jfSiDwAAAACMkvPa2p9YR91RSbpb7bNqrY8NZJBSSleSbyTZrnXqkSSvqbV+byD9AAAAAAzFuAg+tYzIog8AAAAAjKLTk/y+1d6vlPJPrZDSKqWUQ5Mc0Tr8S5LPDGKcQ5O8qtXuSfK2WutPB9EPAAAAwKBNGu0JjKDTk3wgyTPTWvRJ8rFa68pX4HVq0QcAAAAARkWt9eFSyruSXJDeLz0ek+QNpZR/T7I8ySuSvLjtlvfVWm9fs59SyleTHNQ6/FqtdW7btclJPtJWfnOSHUopH+znNE+ttT7Uz1oAAACAPo2b4NNILPoAAAAAwGirtV5USnl7ktOSbJRkl9an3fIkH6q1njqIIfZO75cLV5qV5IQB3H9+EsEnAAAAYMjG06vuUmu9KMnbkzzcOrVLkqOTfCyPh56WJzlikIs+AAAAADDqaq3nJnl2egNJ1yVZnGRpkt+mNxD1glrriYPsfs0QFQAAAMCoGDc7Pq1Uaz23lPKfSd6d5DVJtk4yOcntSX6a5PO11mtHcYoAAAAAMGS11t8n+VDrM9B75yaZ28e1zyT5zFDmBgAAANAJ4y74lAzfok8/7r01Sddg7gUAAAAAAAAAAB43rl51BwAAAAAAAAAAjA2CTwAAAAAAAAAAQOOMy1fdAQCMhosvvjjnnHNOrr/++qxYsSJbbbVV5syZk3e+852ZOnXqgPt79NFHc+GFF+a//uu/cvfdd6e7uzs77LBD3vzmN+eNb3xjurr6fsPuAw88kDPOOCM//elP84c//CFdXV3Zbrvt8td//dc58MADM3ny5KH8qgAAAAAAADDsBJ8AAEbA8ccfnzPPPDNJMnny5EyePDk333xz5s2bl4suuihnn312ttxyy373t3Tp0hx88MH51a9+lSSZOnVqli5dmoULF2bhwoX52c9+ls997nOZMOGJG3xef/31OeSQQ3LvvfeuunfJkiW59tprc+211+aHP/xhzjjjjEGFsQAAAAAAAGCkeNUdAMAwu/DCC3PmmWdmwoQJOfroo3PVVVdl4cKF+frXv56nP/3pufXWW3PkkUcOqM9jjz02v/rVr7LJJpvkH//xH3PVVVflqquuyqc+9al0d3fnxz/+cU4++eQn3PfAAw+sCj0973nPywUXXJCFCxfmyiuvzFFHHZXJkyfnqquuykknndSh3x4AAAAAAACGh+ATAMAwWrFiRebNm5ckOeSQQ3LQQQelu7s7STJ79uyceuqpmThxYubPn5/LL7+8X33+/ve/z/e+970kyeGHH55dd901XV1dmTx5ct785jfn6KOPTpKcfvrpeeihh1a79/Of/3zuvffezJo1K1/96lez0047Jend9Wnu3Lk59NBDkyTnn39+li9fPvQ/AAAAAAAAAAwTwScAgGE0f/78LFq0KF1dXZk7d+4Trs+aNSt77713kuSCCy7oV5/f+ta3smLFisyaNSu77rrrE66/+c1vzuabb56HH344P/nJT1adf/TRR3PhhRcmST7ykY9ko402esK9+++/fz70oQ/lIx/5SJYtW9av+QAAAAAAAMBoEHwCABhGCxYsSJKUUrLFFlustWavvfZKklx22WUD6nPlfWuaNGlS9txzzyf0uWDBgvz5z3/O9OnT+7z3qU99at75znfmTW96UzbccMN+zQcAAAAAAABGw6TRngAAwFh28803J0m23377Pmu22WabJMmf/vSn3H///dlss8061ufK2iS58cYbk2TV6+2uuuqqnHvuubnuuuuybNmylFLytre9rc9QFAAAAAAAADyZCD4BAAyju+++O0kyY8aMPmvar91zzz3rDD49/PDDefjhh5MkM2fO7LPuqU996mrjJ8nvfve7JMn06dPz+c9/Pl/60pfS09Oz6vptt92WSy65JIcddliOOOKIdf1aAAAAAAAAMOq86g4AYBitDClNnTq1z5opU6asai9evHid/bVfX9er6DbYYIPVxk+SP//5z0l6X3/3xS9+MXvuuWe+853v5Ne//nV++MMf5vWvf32S5JRTTsn555+/znkAAAAAAADAaBN8AgAYRsuXL0+STJ48uc+a7u7uVe0VK1ass7/26/3pc+X4SfLII48k6d1V6gUveEHOOOOMPPe5z013d3e23XbbfOYzn8mcOXOSJCeddFIeffTRdc4FAAAAAAAARpPgEwDAMFq589KyZcv6rGkPGK0rzNTeX3/77Ku/973vfWu99p73vCdJbzjqyiuvXOdcAAAAAAAAYDQJPgEADKONNtooSbJkyZI+a9qvTZs2rV/99bfP9v5W3jtx4sTstttua71v++23z1Oe8pQkyW9+85t1zgUAAAAAAABGk+ATAMAwmjlzZpLkrrvu6rOm/dr06dPX2d+UKVOy2WabJUnuvvvu9fb51Kc+ddW5LbbYIknvLlDr2llqk002SbLuYBUAAAAAAACMNsEnAIBhNGvWrCTJrbfe2mfNokWLkvSGnjbddNN+93nLLbf0WbNyvB122GHVuR133DFJb6Dp/vvv7/PeBx98MEmy5ZZbrncuAAAAAAAAMFoEnwAAhtHs2bOTJDfccMOqQNGa5s+fnyTZc889B9TnFVdcsdbry5cvzy9/+cskyR577PGE+5LksssuW+u9N99886p5Puc5z+nXfAAAAAAAAGA0CD4BAAyj3XffPTNmzMjy5ctz+umnP+F6rTWXXnppkuSAAw7oV5+vfvWr09XVleuuuy7XXHPNE66fd955ue+++7Lxxhvnda973arz22+/fZ73vOclSb70pS+t9VV2X/7yl5P07hS100479Ws+AAAAAAAAMBoEnwAAhtGECRPy/ve/P0ly2mmn5eSTT14VOFqwYEEOO+ywrFixInvttddquzPdddddmTNnTubMmZOzzjprtT6333777LvvvkmSefPm5Ze//GV6enqyfPnyfOtb38qnP/3pJMnBBx+cadOmrXbvMccck4kTJ+aWW27JwQcfnJtuuilJ8tBDD+VTn/pULrrooiTJUUcdNQx/DQAAAAAAAOicSaM9AQCAsW7ffffNwoUL8/+3d/9xWpXnnfg/M8LwQ/AHBKHGLRjAk60kZBOFYqLfxI0pVm2LKa1ks9UYiWtqsnWNbco2NaVmo2kTtZnsUiA2MWoCNl+jsTYRvzUpXZSIEK1oDsHI1KYRUakICsOM8/1jZvABZoYZYGZ4Zt7v12teuZ9zrnOf6zk+Uebieu572bJlufHGG1NfX5+6urrs2LEjSXLyySfnpptu2uua3bt355lnnkmSbN26db85FyxYkI0bN+bxxx/PjTfemEWLFqW5uTmNjY1JWleFuuKKK/a7bvr06fnLv/zL/NEf/VEeffTRXHDBBTn66KOzc+fONDc3p6amJn/4h3+Y97znPYf5KQAAAAAAAMDhpfEJAKAPLFy4MGeccUbuuOOOPPnkk9m5c2cmTZqUc845J5dffnlGjx7do/lGjx6d22+/Pf/rf/2vrFq1Ks8//3xqa2szbdq0fPCDH8xFF12UmpqaDq/99V//9Zx66qn56le/mn/6p3/Kli1bMnbs2EyfPj0f+chH8q53vetwvGUAAAAAAADoVRqfAAD6SPvWdd1x0kknpSzLLmPq6upywQUX5IILLuhxs9LEiROzcOHCHl0DAAAAAAAAR5La/k4AAAAAAAAAAACgpzQ+AQAAAAAAAAAAVUfjEwAAAAAAAAAAUHU0PgEAAAAAAAAAAFVH4xMAAAAAAAAAAFB1ND4BAAAAAAAAAABVR+MTAAAAAAAAAABQdTQ+AQAAAAAAAAAAVUfjEwAAAAAAAAAAUHU0PgEAAAAAAAAAAFVH4xMAAAAAAAAAAFB1ND4BAAAAAAAAAABVR+MTAAAAAAAAAABQdTQ+AQAAAAAAAAAAVUfjEwAAAAAAAAAAUHU0PgEAAAAAAAAAAFVH4xMAAAAAAAAAAFB1ND4BAAAAAAAAAABVR+MTAAAAAAAAAABQdTQ+AQAAAAAAAAAAVUfjEwAAAAAAAAAAUHU0PgEAAAAAAAAAAFVH4xMAAAAAAAAAAFB1ND4BAAAAAAAAAABVR+MTAAAAAAAAAABQdTQ+AQAAAAAAAAAAVUfjEwAAAAAAAAAAUHU0PgEAAAAAAAAAAFVH4xMAAAAAAAAAAFB1ND4BAAAAAAAAAABVR+MTAAAAAAAAAABQdTQ+AQAAAAAAAAAAVWdIfycAAMDBaXhuWx4uX8mu3S35+atPZ/rUcZk44Zj+TgsAAAAAAAD6hMYnAIAq89iGLfnmijLrf/binmMPPv5EkuTUt4zNvHOKTD9lXH+lBwAAAAAAAH3CVncAAFXk/tUN+cziVXs1PVVa/7MX85nFq7JidUMfZwYAAAAAAAB9S+MTAECVeGzDltTf+eO0tHQd19KSfPnOH+exDVv6JjEAAAAAAADoBxqfAACqxDdXlAdsemrX0pJ864GydxMCAAAAAACAfqTxCQCgCjQ8t63T7e0688TTL6bhuW29lBEAAAAAAAD0L41PAABV4LGfHty2dQd7HQAAAAAAABzpND4BAFSB13Y29el1AAAAAAAAcKTT+AQAUAVGDB/Sp9cBAAAAAADAkU7jEwBAFZg+dVyfXgcAAAAAAABHOksAAABUgYkTjsmpbxmb9T97sdvXTJs8NhMnHNOLWR357rvvvtxxxx158skn09zcnJNOOimzZ8/ORz/60YwcObLH8zU2NuZrX/tavvvd76ahoSF1dXWZMmVK5s6dmwsvvDA1NTUdXvf666/n29/+dr797W9nw4YNef311/Mf/sN/yK/92q/l937v93LMMYP7nxMAAAAAAMDB0PgEAFAl5p1T5DOLV6Wl5cCxNTXJRe8vej+pI9gNN9yQW265JUkydOjQDB06NBs3bkx9fX3uvffe3H777XnTm97U7fl27dqVSy+9NGvWrEmSjBw5Mrt27cq6deuybt26/OAHP8jNN9+c2tq9F1VtbGzMlVdemR/+8IdJktra2gwbNiwbNmzIhg0bcuedd2bJkiU55ZRTDtM7BwAAAAAAGBxsdQcAUCWmnzIuV859RzpZVGiPmprkE3PfkemnDN5t7u65557ccsstqa2tzYIFC7J27dqsW7cut956a0488cRs2rQp11xzTY/mXLhwYdasWZMxY8ZkyZIlWbt2bdauXZvrrrsudXV1uf/++7No0aL9rvviF7+YH/7whxk6dOheudx5552ZOnVqnnvuufz+7/9+du/efbjePgAAAAAAwKCg8QkAoIp8YObE/PnHzsi0yWM7PD9t8tj8+cfOyDkzJ/ZxZkeO5ubm1NfXJ0kuu+yyXHzxxamrq0uSzJw5M4sXL85RRx2VVatW5aGHHurWnM8++2zuuuuuJMkXvvCFnHXWWampqcnQoUMzd+7cLFiwIEmydOnSbNu2bc91L730Uu64444kye///u/n4osvzogRI1JTU5O3v/3t+cpXvpKhQ4fmX/7lX7JixYrD9gwAAAAAAAAGA41PAABVZvop4/L5j78n9de8b6/j9de8L5//+HsG9UpPSbJq1ao0NDSkpqYml1xyyX7np06dmrPPPjtJcvfdd3drzuXLl6e5uTlTp07NmWeeud/5uXPnZsyYMdmxY0ceeOCBPcfXrFmTxsbG1NbW5qKLLtrvuokTJ+Ytb3lLkmT9+vXdygUAAAAAAIBWGp8AAKrUxAnHdPl6sFq9enWSpCiKjB3b8cpYs2bNSpKsXLmyR3O2X7evIUOGZMaMGfvN+YEPfCBr1qzJnXfemeOPP77Da5ubm5MkQ4cO7VYuAAAAAAAAtNL4BADAgLJx48YkyeTJkzuNmTRpUpLkhRdeyNatWw/rnO2x7UaPHp1p06Z1eM2aNWv2xL/73e8+YB4AAAAAAAC8YUh/JwAAAIfT888/nyQZP358pzGV57Zs2dLpakxJsmPHjuzYsSNJMmHChE7jTjjhhL3u35nGxsb827/9W+69997ccsstSZILLrggp59+epfXAQAAAAAAsDeNTwAADCjtTUojR47sNGbYsGF7xtu3b+9yvsrzI0aM6DRu+PDhe92/Iy0tLTnttNOya9euPcc+8pGP5Oqrr+4yBwAAAAAAAPZnqzsAAAaUpqamJMnQoUM7jamrq9szbm5u7nK+yvPdmbP9/h154YUX0tTUlNGjR+85dscdd+T666/v8joAAAAAAAD2p/EJAIABpX3lpd27d3ca09jYuGfcVTNT5XzdnbOr+Y477risW7cua9asyUMPPZT/9t/+W5qbm3PbbbflM5/5TJd5AAAAAAAAsDeNTwAADChHH310kmTnzp2dxlSeGzVqVLfm6+6cXc03dOjQPdvsjRkzJldddVWuueaaJMl3vvOdPPPMM13mAgAAAAAAwBs0PgEAMKBMmDAhSbJ58+ZOYyrPjRs3rsv5hg0bluOPPz5J8vzzzx9wzhNOOKHbuSbJhz70odTV1eX111/PP//zP/foWgAAAAAAgMFM4xMAAAPK1KlTkySbNm3qNKahoSFJa9PTscce2+05u1qRqf1+U6ZM2XPs+eefz0MPPZRHHnmk0+vq6ur25LB169YD5gIAAAAAAEArjU8AAAwoM2fOTJI89dRTefnllzuMWbVqVZJkxowZPZrz4Ycf7vB8U1PTnuam008/fc/xpUuX5pJLLskf//Efp6WlpcNrt27dmpdeeilJ8uY3v7lb+QAAAAAAAKDxCQCAAea0007L+PHj09TUlKVLl+53vizLPPjgg0mSefPmdWvOc889NzU1NVm/fn1Wrly53/lly5blpZdeyujRo3P++efvOX7WWWclSZ599tl873vf63Du+vr6NDc3Z/To0fnVX/3VbuUDAAAAAACAxicAAAaY2traXHXVVUmSJUuWZNGiRdm5c2eSZPXq1bn88svT3NycWbNm7bU60+bNmzN79uzMnj07t912215zTp48OXPmzEmSXH311VmxYkVaWlrS1NSU5cuX5/rrr0+SXHrppRk1atSe69797nfvWVVqwYIF+da3vrUnl82bN+dP//RP99zr6quv3utaAAAAAAAAujakvxMAAIDDbc6cOVm3bl2WLVuWG2+8MfX19amrq8uOHTuSJCeffHJuuummva7ZvXt3nnnmmSSt28/ta8GCBdm4cWMef/zxXHnllRkxYkSam5vT2NiYpHVVqCuuuGKva2pqanLzzTfnsssuy/r163Pttdfmz/7szzJq1Khs27YtSWuj1ic+8Ylurz4FAAAAAABAK41PAAAMSAsXLswZZ5yRO+64I08++WR27tyZSZMm5Zxzzsnll1+e0aNH92i+0aNH5/bbb8/Xv/713HvvvWloaEhtbW2mTZuWD37wg7noootSU1Oz33VjxozJt771rSxfvjz33ntvNmzYkNdeey0nnnhiZsyYkd/7vd/LqaeeerjeNgAAAAAAwKCh8QkAgAGrfeu67jjppJNSlmWXMXV1dZk/f37mz5/fozzq6ury4Q9/OB/+8Id7dB0AAAAAAACdq+3vBAAAAAAAAAAAAHpK4xMAAAAAAAAAAFB1ND4BAAAAAAAAAABVR+MTAAAAAAAAAABQdTQ+AQAAAAAAAAAAVUfjEwAAAAAAAAAAUHU0PgEAAAAAAAAAAFVH4xMAAAAAAAAAAFB1ND4BAAAAAAAAAABVR+MTAAAAAAAAAABQdTQ+AQAAAAAAAAAAVWdIfycAAAAMDPfdd1/uuOOOPPnkk2lubs5JJ52U2bNn56Mf/WhGjhzZ4/l2796dv//7v89nP/vZNDQ0pK6uLlOmTMncuXNz4YUXpqampsPrXn/99XznO9/JPffck6eeeio7duzIMccck7e//e256KKL8t73vvcQ3ykAAAAAAHAk0PgEAAAcshtuuCG33HJLkmTo0KEZOnRoNm7cmPr6+tx77725/fbb86Y3vanb8+3atSuf//zn85Of/CRJMnLkyOzatSvr1q3LunXr8oMf/CA333xzamv3XsT2tddeyxVXXJGHHnooSTJkyJAMHz48L774Yh588ME8+OCD+dCHPpRrr732ML1zAAAAAACgv9jqDgAAOCT33HNPbrnlltTW1mbBggVZu3Zt1q1bl1tvvTUnnnhiNm3alGuuuaZHcy5cuDA/+clPcswxx2TJkiVZu3Zt1q5dm+uuuy51dXW5//77s2jRov2u+9znPpeHHnoow4cPz8KFC/Poo4/m0UcfzcqVK/OhD30oSXLHHXfkG9/4xmF57wAAAAAAQP/R+AQAABy05ubm1NfXJ0kuu+yyXHzxxamrq0uSzJw5M4sXL85RRx2VVatW7VmF6UCeffbZ3HXXXUmSK664ImeddVZqamoydOjQzJ07NwsWLEiSLF26NNu2bdtz3ebNm/Ptb387SfKpT30qv/u7v5vhw4cnSU444YRce+21ufDCC5MkixYtyuuvv34YngAAAAAAANBfND4BAAAHbdWqVWloaEhNTU0uueSS/c5PnTo1Z599dpLk7rvv7tacy5cvT3Nzc0466aRMnz59v/Nz587NmDFjsmPHjjzwwAN7jv/jP/5jXn/99QwbNmzP6k4dXZskL7zwQn72s591Kx8AAAAAAODIpPEJAAA4aKtXr06SFEWRsWPHdhgza9asJMnKlSt7NOe0adM6PD9kyJDMmDFjvznHjRuX888/P+edd16OOuqoDq8dN27cnvH27du7lQ8AAAAAAHBkGtLfCQAAANVr48aNSZLJkyd3GjNp0qQkrassbd26Nccff3y35nzzm998wDnbY5Pkve99b9773vd2OffatWv3jCdMmNBlLAAAAAAAcGSz4hMAAHDQnn/++STJ+PHjO42pPLdly5Yu59uxY0d27NiRJBkzZkyncSeccMJe9++OpqamLF26NElyyimnaHwCAAAAAIAqp/EJAAA4aO1NSiNHjuw0ZtiwYXvGB9pervJ85XX7Gj58+F73747rr78+GzZsSJJ8/OMf7/Z1AAAAAADAkUnjEwAAcNCampqSJEOHDu00pq6ubs+4ubm5y/kqzw8Z0vnO3O1ztt//QP73//7f+cY3vpEkOf/883Puued26zoAAAAAAODI1fnfJAAAABxA+8pLu3fv7jSmsbFxz7irBqnK+ZKum5ra5zzQfEnypS99KX/913+dJHnXu96Vz33ucwe8BgAAAAAAOPJpfAIAAA7a0UcfnSTZuXNnpzGV50aNGtWt+ZK9G6Y6m7Or+RobG/Mnf/Inufvuu5Mkp512Wv76r/96r+YqAAAAAACgetnqDgAAOGgTJkxIkmzevLnTmMpz48aN63K+YcOG5fjjj0+SbN269YBznnDCCR2e3759e+bPn7+n6el973tfvvrVrx6w8QoAAAAAAKgeGp8AAICDNnXq1CTJpk2bOo1paGhI0tr0dOyxx3Z7zl/84hedxrTfb8qUKfude+mll/KhD30oDz/8cJLkt3/7t/OVr3zFSk8AAAAAADDAaHwCAAAO2syZM5MkTz31VF5++eUOY1atWpUkmTFjRo/mfOKJJzo839TUlEceeSRJcvrpp+91bvv27fnoRz+asiyTJFdccUU+97nP5aijjurWvQEAAAAAgOqh8QkAADhop512WsaPH5+mpqYsXbp0v/NlWebBBx9MksybN69bc5577rmpqanJpk2b8thjj+13ftmyZXnppZcyevTonH/++Xud+5M/+ZM8+eSTSZJrrrkmf/AHf9DDd1Q97rvvvnz4wx/OO9/5zkyfPj3nnXdevvzlL+fVV189qPkaGxuzePHiXHDBBXn729+e0047LRdddFG+/e1vp6WlpUfznHfeeXnb2952UHkAAAAAAEB3aXwCAAAOWm1tba666qokyZIlS7Jo0aLs3LkzSbJ69epcfvnlaW5uzqxZs/ZanWnz5s2ZPXt2Zs+endtuu22vOSdPnpw5c+YkSerr67NixYq0tLSkqakpy5cvz/XXX58kufTSSzNq1Kg9161cuTJ///d/nyS58MILc9lll/XeG+9nN9xwQ6666qo88sgjaWxsTG1tbTZu3Jj6+vrMmTMnL7zwQo/m27VrVz7ykY/ki1/8YjZs2JCjjjoqu3btyrp167JgwYJ88pOfzOuvv96tua677rps3LjxYN4WAAAAAAD0yJD+TgAAAKhuc+bMybp167Js2bLceOONqa+vT11dXXbs2JEkOfnkk3PTTTftdc3u3bvzzDPPJEm2bt2635wLFizIY489lqeffjpXXnllRowYkebm5jQ2NiZpXRXqiiuu2Ouar33ta3vG//AP/5B3v/vdXeb9P//n/8yv//qv9/Tt9rt77rknt9xyS2pra/PpT3868+bNS11dXVavXp1Pf/rT2bRpU6655pr8zd/8TbfnXLhwYdasWZMxY8bkhhtuyJlnnpmmpqZ85zvfycKFC3P//fdn0aJF+fjHP97pHM3Nzfn85z+fZcuWHY63CQAAAAAAB2TFJwAA4JAtXLgwN998c2bOnJnhw4ensbExkyZNyvz583PnnXfmuOOO69F8o0ePzp/+6Z9m3rx5eetb35qkdXWpadOm5dprr82XvvSl1NTU7HXN2rVr94z//d//PS+88EKXP+0rU1WT5ubm1NfXJ0kuu+yyXHzxxamrq0uSzJw5M4sXL85RRx2VVatW5aGHHurWnM8++2zuuuuuJMkXvvCFnHXWWampqcnQoUMzd+7cLFiwIEmydOnSbNu2rcM5Nm/enI985CP5xje+cahvEQAAAAAAus2KTwAAwGHRvnVdd5x00kkpy7LLmKFDh+aCCy7IZz/72W7NuW7dum7FVbNVq1aloaEhNTU1ueSSS/Y7P3Xq1Jx99tlZsWJF7r777syaNeuAcy5fvjzNzc2ZOnVqzjzzzP3Oz507N3/1V3+Vl156KQ888EAuvPDCvc7/n//zf7J48eK8+uqrGTlyZN73vvfl7/7u7w76PQIAAAAAQHdZ8QkAALqh4bltuWfl01m2osw9K59Ow3Mdr3wDvWn16tVJkqIoMnbs2A5j2pudVq5c2aM5O2uSGjJkSGbMmNHpnF/96lfz6quvZsaMGbn77rvznve8p1v3BQAAAACAQ2XFJwAA6MJjG7bkmyvKrP/Zi/udO/UtYzPvnCLTTxnXD5kxGG3cuDFJMnny5E5jJk2alCR54YUXsnXr1hx//PGHbc722Eq/8iu/kg996EN7Vvtas2ZNl/cDAAAAAIDDReMTAAB04v7VDam/88dpaen4/PqfvZjPLF6VT8x9R86ZObFvk2NQev7555Mk48eP7zSm8tyWLVu6bHzasWNHduzYkSSZMGFCp3EnnHDCXvevdOutt3adNAAAAAAA9BKNTwAA0IHHNmzpsumpXUtL8uU7f5wTjh9p5Sd6XXuT0siRIzuNGTZs2J7x9u3bu5yv8vyIESM6jRs+fPhe92d/9913X+644448+eSTaW5uzkknnZTZs2fnox/9aJf/vDrT2NiYr33ta/nud7+bhoaG1NXVZcqUKZk7d24uvPDC1NTU9MK7AAAAAACoLhqfAACgA99cUR6w6aldS0vyrQdKjU/0uqampiTJ0KFDO42pq6vbM25ubu5yvsrz3Zmz/f7s7YYbbsgtt9ySpPU5Dh06NBs3bkx9fX3uvffe3H777XnTm97U7fl27dqVSy+9dM+2gSNHjsyuXbuybt26rFu3Lj/4wQ9y8803p7a2tlfeDwAAAABAtVAlBQCAfTQ8ty3rf/Zij6554ukX0/Dctl7KCFq1r7y0e/fuTmMaGxv3jLtqZqqcr7tzHmi+weiee+7JLbfcktra2ixYsCBr167NunXrcuutt+bEE0/Mpk2bcs011/RozoULF2bNmjUZM2ZMlixZkrVr12bt2rW57rrrUldXl/vvvz+LFi3qpXcEAAAAAFA9ND4BAMA+Hvvplj69Drrr6KOPTpLs3Lmz05jKc6NGjerWfN2d80DzDTbNzc2pr69Pklx22WW5+OKL96yONXPmzCxevDhHHXVUVq1alYceeqhbcz777LO56667kiRf+MIXctZZZ6WmpiZDhw7N3Llzs2DBgiTJ0qVLs22bZksAAAAAYHDT+AQAAPt4befBbed1sNdBd02YMCFJsnnz5k5jKs+NG9f19ovDhg3L8ccfnyR5/vnnDzjnCSec0O1cB4NVq1aloaEhNTU1ueSSS/Y7P3Xq1Jx99tlJkrvvvrtbcy5fvjzNzc2ZOnVqzjzzzP3Oz507N2PGjMmOHTvywAMPHFL+1ey+++7Lhz/84bzzne/M9OnTc9555+XLX/5yXn311YOar7GxMYsXL84FF1yQt7/97TnttNNy0UUX5dvf/nZaurvvKQAAAADQ5zQ+AQDAPkYMH9Kn10F3TZ06NUmyadOmTmMaGhqStDY9HXvssd2e85lnnuk0pv1+U6ZM6Wamg8Pq1auTJEVRZOzYsR3GzJo1K0mycuXKHs3Zft2+hgwZkhkzZvRozoHmhhtuyFVXXZVHHnkkjY2Nqa2tzcaNG1NfX585c+bkhRde6NF8u3btykc+8pF88YtfzIYNG3LUUUdl165dWbduXRYsWJBPfvKTef3113vp3QAAAAAAh0LjEwAA7GP61K5XyTnc10F3zZw5M0ny1FNP5eWXX+4wZtWqVUmypzmmu3M+/PDDHZ5vamrKI488kiQ5/fTTe5TvQLdx48YkyeTJkzuNmTRpUpLkhRdeyNatWw/rnO2xg8k999yTW265JbW1tVmwYEHWrl2bdevW5dZbb82JJ56YTZs25ZprrunRnAsXLsyaNWsyZsyYLFmyJGvXrs3atWtz3XXXpa6uLvfff38WLVrUS+8IAAAAADgUGp8AAGAfEycck1Pf0vHqLZ2ZNnlsJk44ppcyglannXZaxo8fn6ampixdunS/82VZ5sEHH0ySzJs3r1tznnvuuampqcn69es7XEFo2bJleemllzJ69Oicf/75h/YGBpj27QHHjx/faUzluS1btnQ5344dO7Jjx44kb2xr2JH2LQe72p5wIGpubk59fX2S5LLLLsvFF1+curq6JK0NfIsXL85RRx2VVatW5aGHHurWnM8++2zuuuuuJMkXvvCFnHXWWampqcnQoUMzd+7cLFiwIEmydOnSbNu2rRfeFQAAAABwKDQ+0evuu+++fPjDH8473/nOTJ8+Peedd16+/OUv59VXXz2o+RobG7N48eJccMEFefvb357TTjstF110Ub797W+npaXlMGdffTxvADg85p1TpKame7E1NclF7y96NyFIUltbm6uuuipJsmTJkixatCg7d+5M0rpF2uWXX57m5ubMmjVrr9WZNm/enNmzZ2f27Nm57bbb9ppz8uTJmTNnTpLk6quvzooVK9LS0pKmpqYsX748119/fZLk0ksvzahRo/ribVaN9ialkSNHdhozbNiwPePt27d3OV/l+REjRnQaN3z48L3uP1isWrUqDQ0NqampySWXXLLf+alTp+bss89Oktx9993dmnP58uVpbm7O1KlTc+aZZ+53fu7cuRkzZkx27NiRBx544JDyBwAAAAAOvyH9nQAD2w033JBbbrklSTJ06NAMHTo0GzduTH19fe69997cfvvtedOb3tTt+Xbt2pVLL700a9asSdL6Fwy7du3KunXrsm7duvzgBz/IzTffnNrawdnT53kDwOEz/ZRxuXLuO1J/54/TVa9vTU3yibnvyPRTbHNH35gzZ07WrVuXZcuW5cYbb0x9fX3q6ur2NMGcfPLJuemmm/a6Zvfu3XnmmWeSpMPt1hYsWJCNGzfm8ccfz5VXXpkRI0akubk5jY2NSVpXhbriiit6941VoaampiStf/buTPuKREnrikVdqTzfnTnb7z9YrF69OklSFEXGju14Vb5Zs2ZlxYoVHa5e1tWcs2bN6vD8kCFDMmPGjHzve9/LypUrc+GFFx5E5gAAAABAb9GtQK+55557csstt6S2tjYLFizI2rVrs27dutx666058cQTs2nTplxzzTU9mnPhwoVZs2ZNxowZkyVLlmTt2rVZu3ZtrrvuutTV1eX+++/PokWLeukdHdk8bwA4/D4wc2L+/GNnZNrkjv+Cfdrksfnzj52Rc2ZO7OPMGOwWLlyYm2++OTNnzszw4cPT2NiYSZMmZf78+bnzzjtz3HHH9Wi+0aNH5/bbb8+nPvWpvPWtb03SurrUtGnTcu211+ZLX/pSarq7BNog0r7y0u7duzuNaW8eS7puZqqcr7tzHmi+gWbjxo1JWlcp68ykSZOSJC+88EKHTX6HMmd7LAAAAABw5LDiE72iubk59fX1SZLLLrssF1988Z5zM2fOzOLFi/Obv/mbWbVqVR566KFOv11b6dlnn81dd92VJPnCF76wZxuCoUOHZu7cuWlqaspnP/vZLF26NB/+8IdzzDHH9MI7OzJ53gDQe6afMi7TTxmXhue25cq/eHDP8fpr3peJE/z3j/7TvnVdd5x00kkpy7LLmLq6usyfPz/z588/pLwuvPDCQbMqztFHH50ke7Yb7EjluQNtFdg+X3fnHGxbDz7//PNJkvHjx3caU3luy5YtOf744zuN3bFjx56V0iZMmNBp3AknnLDX/QEAAACAI4cVn+gVq1atSkNDQ2pqanLJJZfsd37q1Kk5++yzkyR33313t+Zcvnx5mpubM3Xq1D1NOJXmzp2bMWPGZMeOHXnggQcOKf9q43kDQO/bt8lJ0xPQ3iyzefPmTmMqz40b1/WWmMOGDdvTqNNVk037nO0NOYNFe5PSyJEjO40ZNmzYnvH27du7nK/y/IgRIzqNa1+Jq/3+AAAAAMCRQ+MTvWL16tVJkqIoMnZsx1vDtK86tHLlyh7N2dlqRUOGDMmMGTN6NOdA4XkDAEDfmzp1apJk06ZNncY0NDQkaW16OvbYY7s95zPPPNNpTPv9pkyZ0s1MB4ampqYkXW/xV1dXt2fc3Nzc5XyV57szZ/v9AQAAAIAjh8YnesXGjRuTJJMnT+40ZtKkSUmSF154IVu3bj2sc7bHDhaeNwAA9L2ZM2cmSZ566qm8/PLLHcasWrUqSfZ8aaC7cz788MMdnm9qasojjzySJDn99NN7lG+1a195affu3Z3GNDY27hl31cxUOV935zzQfAAAAABA39P4RK9o35Zh/PjxncZUntuyZUuX8+3YsWPPtgLt20l0pH2rh662hRiIPG8AAOh7p512WsaPH5+mpqYsXbp0v/NlWebBBx9MksybN69bc5577rmpqanJ+vXrO1xZddmyZXnppZcyevTonH/++Yf2BqrM0UcfnSTZuXNnpzGV50aNGtWt+bo754HmAwAAAAD6nsYnekV708zIkSM7jRk2bNie8fbt27ucr/L8iBEjOo1r/8Zu+/0HC88bAAD6Xm1tba666qokyZIlS7Jo0aI9TTKrV6/O5Zdfnubm5syaNWuv1Zk2b96c2bNn5+qrr873v//9veacPHly5syZkyS5+uqrs2LFirS0tKSpqSnLly/P9ddfnyS59NJLB10jTvuXMjZv3txpTOW5cePGdTnfsGHDcvzxxyfp+ssc7XO2f/EDAAAAADhyDOnvBBiYmpqaknS9FUBdXd2ecXNzc5fzVZ7vzpzt9x8sPG8AAOgfc+bMybp167Js2bLceOONqa+vT11d3Z4vB5x88sm56aab9rpm9+7deeaZZ5Ikr7zyyn5zLliwIBs3bszjjz+eK6+8MiNGjEhzc/OeLdfOPffcXHHFFb37xo5AU6dOzfe///1s2rSp05iGhoYkrU1Pxx57bLfm/NGPfrTnn0dH2u83ZcqUHuULAAAAAPQ+Kz7RK9pXAtq9e3enMe1F+6Tr5prK+bo754HmG2g8bwAA6D8LFy7MzTffnJkzZ2b48OFpbGzMpEmTMn/+/Nx555057rjjejTf6NGjc/vtt+dTn/pU3vrWtyZpXV1q2rRpufbaa/OlL30pNTU1vfBOjmwzZ85Mkjz11FN5+eWXO4xZtWpVkmTGjBk9mvPhhx/u8HxTU1MeeeSRJNlr1S4AAAAA4MhgxSd6xdFHH50ke7Z56EjluQNt0dA+X3fnHGxbPnjeAADQv2bPnp3Zs2d3K/akk05KWZZ59NFHO42pq6vL/PnzM3/+/MOVYtU77bTTMn78+GzevDlLly7N1Vdfvdf5sizz4IMPJknmzZvXrTnPPffc1NfXZ/369Vm5cmXOPPPMvc4vW7YsL730UkaPHp3zzz//8LwRAAAAAOCwseITvWLChAlJks2bN3caU3lu3LhxXc43bNiwHH/88UmS559//oBznnDCCd3OdSDwvAEAgIGutrY2V111VZJkyZIlWbRo0Z4vY6xevTqXX355mpubM2vWrL1WZ9q8efOexrTbbrttrzknT56cOXPmJEmuvvrqrFixIi0tLWlqasry5ctz/fXXJ0kuvfRSX/gAAAAAgCOQFZ/oFVOnTs33v//9bNq0qdOYhoaGJK1NOMcee2y35vzRj36UZ555ptOY9vtNmTKlR/lWO88bAAAYDObMmZN169Zl2bJlufHGG1NfX5+6urrs2LEjSXLyySfnpptu2uua3bt37/m9ZuvWrfvNuWDBgmzcuDGPP/54rrzyyowYMSLNzc17tvY+99xzc8UVV/TuGwMAAAAADooVn+gVM2fOTJI89dRTefnllzuMWbVqVZJkxowZPZrz4Ycf7vB8U1NTHnnkkSTZ69u9g4HnDQAADBYLFy7MzTffnJkzZ2b48OFpbGzMpEmTMn/+/Nx555057rjjejTf6NGjc/vtt+dTn/pU3vrWtyZpXV1q2rRpufbaa/OlL30pNTU1vfBOAAAAAIBDZcUnesVpp52W8ePHZ/PmzVm6dGmuvvrqvc6XZZkHH3wwSTJv3rxuzXnuueemvr4+69evz8qVK3PmmWfudX7ZsmV56aWXMnr06Jx//vmH541UCc8bAAAYTNq3ruuOk046KWVZdhlTV1eX+fPnZ/78+YcjPQAAAACgj1jxiV5RW1ubq666KkmyZMmSLFq0KDt37kySrF69Opdffnmam5sza9asvVYL2rx5854C9m233bbXnJMnT86cOXOSJFdffXVWrFiRlpaWNDU1Zfny5bn++uuTJJdeemlGjRrVF2/ziHGoz/vqq6/O97///b3m9LwBAAAAAAAAgCOZFZ/oNXPmzMm6deuybNmy3Hjjjamvr09dXV127NiRJDn55JNz00037XXN7t2788wzzyRJtm7dut+cCxYsyMaNG/P444/nyiuvzIgRI9Lc3JzGxsYkrasUXXHFFb37xo5Qh/q8X3nllf3m9LwBAAAAAAAAgCOVxid61cKFC3PGGWfkjjvuyJNPPpmdO3dm0qRJOeecc3L55Zdn9OjRPZpv9OjRuf322/P1r3899957bxoaGlJbW5tp06blgx/8YC666KLU1NT00rs58nneAAAAAAAAAMBgofGJXte+dV13nHTSSSnLssuYurq6zJ8/P/Pnzz8c6Q04B/O8H3300U5jPG8AAACAA7vvvvv2fBmtubk5J510UmbPnp2PfvSjGTlyZI/na2xszNe+9rV897vfTUNDQ+rq6jJlypTMnTs3F1544aD/MprnDQAAQKLxCQAAOAI1PLctD5evZNfulvz81aczfeq4TJxwTH+nBQDQoRtuuCG33HJLkmTo0KEZOnRoNm7cmPr6+tx77725/fbb86Y3vanb8+3atSuXXnpp1qxZkyQZOXJkdu3alXXr1mXdunX5wQ9+kJtvvjm1tbW98n6OdJ43AAAA7fymBgAAHDEe27Aln/7KP+XKv3gw33v05Tz4+LYs+c4TufIvHsynv/JPeWzDlv5OEQBgL/fcc09uueWW1NbWZsGCBVm7dm3WrVuXW2+9NSeeeGI2bdqUa665pkdzLly4MGvWrMmYMWOyZMmSrF27NmvXrs11112Xurq63H///Vm0aFEvvaMjm+cNAABAJY1PAADAEeH+1Q35zOJVWf+zFzs8v/5nL+Yzi1dlxeqGPs4MAKBjzc3Nqa+vT5Jcdtllufjii1NXV5ckmTlzZhYvXpyjjjoqq1atykMPPdStOZ999tncddddSZIvfOELOeuss1JTU5OhQ4dm7ty5WbBgQZJk6dKl2bZtWy+8qyOX5w0AAMC+ND4BAAD97rENW1J/54/T0tJ1XEtL8uU7f2zlJwDgiLBq1ao0NDSkpqYml1xyyX7np06dmrPPPjtJcvfdd3drzuXLl6e5uTlTp07NmWeeud/5uXPnZsyYMdmxY0ceeOCBQ8q/2njeAAAA7EvjEwAA0O++uaI8YNNTu5aW5FsPlL2bEABAN6xevTpJUhRFxo4d22HMrFmzkiQrV67s0Zzt1+1ryJAhmTFjRo/mHCg8bwAAAPal8QkAAOhXDc9t63R7u8488fSLaXjOViMAQP/auHFjkmTy5MmdxkyaNClJ8sILL2Tr1q2Hdc722MHC8wYAAGBfGp8AAIB+9dhPD27buoO9DgDgcHn++eeTJOPHj+80pvLcli1d//llx44d2bFjR5JkwoQJncadcMIJe91/sPC8AQAA2JfGJwAAoF+9trOpT68DADhc2ptmRo4c2WnMsGHD9oy3b9/e5XyV50eMGNFp3PDhw/e6/2DheQMAALAvjU8AAEC/GjF8SJ9eBwBwuDQ1tTZiDx06tNOYurq6PePm5uYu56s835052+8/WHjeAAAA7EvjEwAA0K+mTx3Xp9cBABwu7SsB7d69u9OYxsbGPeOummsq5+vunAeab6DxvAEAANiXxicAAKBfTZxwTE59y9geXTNt8thMnHBML2UEANA9Rx99dJJk586dncZUnhs1alS35uvunAeab6DxvAEAANiXxicAAKDfzTunSE1N92JrapKL3l/0bkIAAN0wYcKEJMnmzZs7jak8N25c1ytWDhs2LMcff3yS5Pnnnz/gnCeccEK3cx0IPG8AAAD2pfEJAADod9NPGZcr577jgM1PNTXJJ+a+I9NPsc0dAND/pk6dmiTZtGlTpzENDQ1JWptwjj322G7P+cwzz3Qa036/KVOmdDPTgcHzBgAAYF8anwAAgCPCB2ZOzJ9/7IxMm9zxtnfTJo/Nn3/sjJwzc2IfZwYA0LGZM2cmSZ566qm8/PLLHcasWrUqSTJjxowezfnwww93eL6pqSmPPPJIkuT000/vUb7VzvMGAABgXxqfAACAI8b0U8bl8x9/T+qved9ex+uveV8+//H3WOkJADiinHbaaRk/fnyampqydOnS/c6XZZkHH3wwSTJv3rxuzXnuueempqYm69evz8qVK/c7v2zZsrz00ksZPXp0zj///EN7A1XG8wYAAGBfGp8AAIAjzsQJx3T5GgDgSFBbW5urrroqSbJkyZIsWrQoO3fuTJKsXr06l19+eZqbmzNr1qy9VgvavHlzZs+endmzZ+e2227ba87Jkydnzpw5SZKrr746K1asSEtLS5qamrJ8+fJcf/31SZJLL700o0aN6ou3ecQ41Od99dVX5/vf//5ec3reAAAA1W1IfycAAABA/2p4blse++mWvLazKSOGD8n0qeM0mwFAN82ZMyfr1q3LsmXLcuONN6a+vj51dXXZsWNHkuTkk0/OTTfdtNc1u3fvzjPPPJMk2bp1635zLliwIBs3bszjjz+eK6+8MiNGjEhzc3MaGxuTtK5SdMUVV/TuGztCHerzfuWVV/ab0/MGAACoXhqfAAAABqnHNmzJN1eUWf+zF/c7d+pbxmbeOYXtBQGgGxYuXJgzzjgjd9xxR5588sns3LkzkyZNyjnnnJPLL788o0eP7tF8o0ePzu23356vf/3ruffee9PQ0JDa2tpMmzYtH/zgB3PRRRelpqaml97Nkc/zBgAAoJ3GJwAAgEHo/tUNqb/zx2lp6fj8+p+9mM8sXpVPzH1Hzpk5sW+TA4Aq1L51XXecdNJJKcuyy5i6urrMnz8/8+fPPxzpDTgH87wfffTRTmM8bwAAgOpU298JAAAA0Lce27Cly6andi0tyZfv/HEe27ClbxIDAAAAAIAe0PgEAAAwyHxzRXnApqd2LS3Jtx7oekUKAAAAAADoDxqfAAAABpGG57Zl/c9e7NE1Tzz9Yhqe29ZLGQEAAAAAwMHR+AQAADCIPPbTg9u27mCvAwAAAACA3jKkvxMAAACg77y2s6lPr6NjDc9ty8PlK9m1uyU/f/XpTJ86LhMnHNPfaQEAAAAAVBWNTwAAAIPIiOEH92vgwV7H3h7bsCXfXFHutd3gg48/kSQ59S1jM++cItNPGddf6QEAAAAAVBVb3QEAAAwi06ceXFPNwV7HG+5f3ZDPLF61V9NTpfU/ezGfWbwqK1Y39HFmAAAAAADVaVB+ZbcoipOTfDLJB5JMSvJ6kn9N8v0ki8qy/Mlhuk9tkouS/F6SdyY5LsmWJE8luS3JbWVZ2i8CAADoMxMnHJNT3zK20+abjkybPNY2bIfosQ1bUn/nj9PS0nVcS0vy5Tt/nBOOH2nlJ+CQqYEBAAAAA92gW/GpKIr/kuSJJH+Q5FeSjEwyKslbk/z3JI8VRfHJw3Cf45L8Q5Lbk/xaknFJhiY5Mcl/TvI3Sf5vURT/4VDvBQAA0BPzzilSU9O92Jqa5KL3F72b0CDwzRXlAZue2rW0JN96oOzdhAaZhue25Z6VT2fZijL3rHw6Dc9t6++UoNepgQEAAACDwaBa8akoivOS3Jo3Gr5WJ1nRNj47yRlJ6pLcXBTFy2VZfv0g7zMkyb1J3t126OUkf5vkmbR+u25ukmOTzEjyd0VRnFGW5faDuRcAAEBPTT9lXK6c+44DrkBUU5N8Yu47rDx0iBqe29ajFbaS5ImnX0zDc9ustHWIHtuwJd9cUXb4/E99y9jMO6fw+WZAUgMDAAAABotB0/hUFMWoJEvzRsHnqrIsb6oI+UxRFB9LsihJTZL6oijuK8tyy0Hc7g/yRsFnfZJfK8vy5xW5fCbJd5OcluRtST6T5I8O4j4AAAAH5QMzJ2b88SPzrQfKPPH0/k0h0yaPzUXv1xRyODz204P5tbL1Oo1PB+/+1Q1dNvet/9mL+cziVfnE3HfknJkT+zY56EVqYAAAAMBgMpi2uvtYkglt42/tU/BJkpRluTjJX7S9HJXkmp7epCiKurxRwHk9ye9UFnza7vNckvOTtK+tf2VRFG/q6b0AAAAOxfRTxuXzH39P6q95317H6695Xz7/8fdoejpMXtvZ1KfX0brS04FWNEtatxX88p0/zmMbDq45DY5QamAAAADAoDGYGp8urhjf0EXcDUl2tY0/VBRFTQ/vc16S9gLOd8uyfLKjoLIsNydZ3PZyZJILe3ifAavhuW25Z+XTWbaizD0rn07Dc9sOfBEHreG5bXm4fCU/fGKb5w0AMEjtu6qQVYYOrxHDD26x5YO9juSbK8oDNj21a2lJvvVA2bsJQd9SAwMAAAAGjUFRRS2KYkKSt7e9/EVZlj/uLLYsy5eKolid5Kwkb05yepIf9eB2H6gY//0BYu9L8qm28W/ljSLQoPTYhi355ooy63+2/zYbp75lbOadY5uNw6mj5/3g408k8bwBAOBwmj714P5cfbDXDXYNz23r8PfKrjzx9ItpeG6bpj+qnhoYAAAAMNgMlhWf/lPFeHU34itjZvbwXu+sGD98gNjKYlJP7zOg3L+6IZ9ZvKrT4vT6n72YzyxelRWrG/o4s4HJ8wYAgL4zccIxOfUtY3t0zbTJYzXhHKTHfnpw29Yd7HVwhFEDAwAAAAaVwdL4NLVi/Ew34v+lYjylt+5VluWOJO2dJ2OKoji+h/caEB7bsCX1d/74gNsQtLQkX77zx3lsg2L0ofC8AQCg7807p0hNNzeRqqlJLnp/0bsJDWCv7Wzq0+vgCKMGBgAAAAwqg6Xx6Zcqxv/ajfh/qxiP7+5NiqIYlqS9cPNKWZbbeuteA8k3V5QHbMJp19KSfOuBsncTGuA8bwAA6HvTTxmXK+e+44DNTzU1ySfmvsO204dgxPAhfXodHGHUwAAAAIBBZbBU9Y6tGL/ajfjXKsY92Vugp/c5lHsNCA3Pbet0u7XOPPH0i2l4bpttHw6C5w0AAP3nAzMnZvzxI/OtB8o88fT+fy6fNnlsLnp/oenpEE2fenDP72CvgyOMGhgAAAAwqAyWxqdhFeOd3YivLMQM6zTq0O9zKPfqtu3bt+fRRx/tjakP2cPlKx0en7F1fd790mMZ1tLxVgP/evmt3fraIvv79EFc43kfXpX/DP7vb97ab3kMFp533/K8+55n3rc8777lefctz7vvnN/2s5+NyfbvJ/+3j/MZiDr7vWdXzZD83zHT86PjT93r+MQT6vLCz3+aF37e+7lBLxvUNbDkyK6DdWTVU6/kB/+8LY1N3Vyem8PjDpWuvlZN/78cCDxvBjKfbwY6n3EGMp9vestg2equuWLc0ypCT+IP5T4He01V27W747d8+r8/2WnTEwAAAByMYS1NOf3fn9zrWE2S/2eaxWcYMNTAqsyqn7yi6YkBr27IAfb6BQAAOASDZcWn7RXj4d2IH1Ex7u631g7mPodyr24bNWpUiqLojakP2c9ffToPPv7EfscfOe5XulzxCQAAAHpqV82QPHLcr+x5XVOTfGLuO3LOzIn9mFXXyrLM9u3bDxwIrQZ1DSw5sutgHfmdV47NN+//SV7b1XzgYKhCI4YdlXkfeGve9a4p/Z3KoNC+isK73vWufs4EDj+fbwY6n3EGMp9vuuNQamCDsfFpZDfiKwsxL/fifQ7lXgPC9KnjOjz+o+NP3W/rgUr117wvEyf4Rm5PNTy3LVf+xYM9vs7zppr5wxQDnc84A5nPNwOdz3jve2zDlnzrgTJPPP3ifuemTR6bi95fZPopHf9eClVKDazKzHnvlMx5r4aQvuK/vQAAAAPPYGl8+kXF+MRuxL+5Yvxcd29SluXrRVE8n+SEJMcURXF0WZY7euNeA8XECcfk1LeMzfqf7V+E7sy0yWM14RwkzxsAABhMpp8yLtNPGZeG57blsZ9uyWs7mzJi+JBMnzrO7zkMVGpgAAAAwKBS298J9JH1FeNJ3Yj/5Yrxht66V1EUo5KMaXv5XFmWr/TwXgPCvHOK1HRzm/eamuSi91fPcuVHIs8bAAAYbCZOOCa/cebk/O45RX7jzMmanhjI1MAAAACAQWWwND49kaSlbXx6N+J/tWK8tof3+ueK8YwDxM48hPsMGNNPGZcr577jgM04NTXJJ+a+wzYEh8jzBgAAgAFLDQwAAAAYVAZF41NZli8lebjt5cSiKE7tLLYoirF5o1jzYpJHe3i7v6sY//oBYivP39/D+wwoH5g5MX/+sTMybfLYDs9Pmzw2f/6xM3LOzIl9nNnA5HkDAADAwKMGBgAAAAw2Q/o7gT60LMmstvFnk8ztJO6Pk9S1jW8ry/L1Ht7nH5JsSTIuyYVFUby9LMvH9w0qiuKXknys7eXuJN/s4X0GnOmnjMv0U8al4blteeynW/LazqaMGD4k06eOsw1BL6h83vf+w9rs2t2SKW/5Zc8bAAAAqpsaGAAAADBoDIoVn9osTfJs2/i3i6L486Io9trsqyiKjyX5H20vX0vylz29SVmWTUmua3tZm+Q7RVGcss99JiT5bpJRbYcWlWX5fE/vNVBNnHBMfuPMyfndc4r8xpmTNeH0sokTjsmvFqPz/0w7xvMGAACA6qcGBgAAAAwag2bFp7IsdxRF8fEkd6e1GPMnSX6zKIrvJmlK8p+TvLvikj8oy/Jf952nKIqvJbm47eXXy7K8pIPbfSXJ7yY5I8nJSX5cFMXfJimT/HKS30lyXHtqSf7nobw3AAAAAEjUwAAAAIDBZdA0PiVJWZb3FkXx4SRLkhyd5G1tP5WakvxhWZaLD+E+zUVR/HqSu5K8L8mIJP+1g9DHkpxfluUrB3svAAAAAKikBgYAAAAMFoNpq7skSVmW30zyH5P8RZL1SbYn2ZXk6bQWg/5TWZY3Hob7vJzWb9BdlOTvkjyXZHeSrUl+mOSKJDM6+kYdAAAAABwKNTAAAABgMBhUKz61K8vy2SR/2PbT02svSXJJN2Nbkixr+wEAAACAPqMGBgAAAAx0g27FJwAAAAAAAAAAoPppfAIAAAAAAAAAAKqOxicAAAAAAAAAAKDqaHwCAAAAAAAAAACqjsYnAAAAAAAAAACg6mh8AgAAAAAAAAAAqo7GJwAAAAAAAAAAoOpofAIAAAAAAAAAAKqOxicAAAAAAAAAAKDqaHwCAAAAAAAAAACqjsYnAAAAAAAAAACg6mh8AgAAAAAAAAAAqo7GJwAAAAAAAAAAoOpofAIAAAAAAAAAAKqOxicAAAAAAAAAAKDqaHwCAAAAAAAAAACqjsYnAAAAAAAAAACg6mh8AgAAAAAAAAAAqo7GJwAAAAAAAAAAoOpofAIAAAAAAAAAAKqOxicAAAAAAAAAAKDqaHwCAAAAAAAAAACqjsYnAAAAAAAAAACg6mh8AgAAAAAAAAAAqo7GJwAAAAAAAAAAoOpofAIAAAAAAAAAAKqOxicAAAAAAAAAAKDqaHwCAAAAAAAAAACqjsYnAAAAAAAAAACg6mh8AgAAAAAAAAAAqo7GJwAAAAAAAAAAoOpofAIAAAAAAAAAAKqOxicAAAAAAAAAAKDqaHwCAAAAAAAAAACqjsYnAAAAAAAAAACg6mh8AgAAAAAAAAAAqs6Q/k6AXjUlSV599dWUZdnfuVAFfE4YyHy+Geh8xhnIfL4Z6HzG6cqrr77aPpzSn3lAFVAHo9t8RhjofMYZyHy+Geh8xhnIfL7pyqHUwDQ+DWyjkuT111/P9u3b+zsXqoDPCQOZzzcDnc84A5nPNwOdzzjdNKq/E4AjnDoY3eYzwkDnM85A5vPNQOczzkDm80039bgGpvFpYHsmyclJtifZ2M+5AAAAAD03Ja0Fn2f6OxE4wqmDAQAAQPU66BpYTUtLy+FPBwAAAAAAAAAAoBfV9ncCAAAAAAAAAAAAPaXxCQAAAAAAAAAAqDoanwAAAAAAAAAAgKqj8QkAAAAAAAAAAKg6Gp8AAAAAAAAAAICqo/EJAAAAAAAAAACoOhqfAAAAAAAAAACAqqPxCQAAAAAAAAAAqDoanwAAAAAAAAAAgKqj8QkAAAAAAAAAAKg6Gp8AAAAAAAAAAICqo/EJAAAAAAAAAACoOhqfAAAAAAAAAACAqqPxCQAAAAAAAAAAqDoanwAAAAAAAAAAgKqj8QkAAAAAAAAAAKg6Q/o7AaB/FEVxcpJPJvlAkklJXk/yr0m+n2RRWZY/6b/s4NAURfHuJB9J8u4kb04yLMlLSdYl+U6Sr5dluavfEoReUBTF6UlWpfXPd39WluVn+zcjODhFUdQm+d22n3cmOSHJriQ/TXJfkq+UZbm5/zKEQ1MUxfQkH0/y3rT+OWVIks1JfpTkG0m+W5ZlS78lCAADjBoYA5kaGIORGhgDiToYA5kaGH2ppqXFZwkGm6Io/kuSxUlGdhLSmOSasiz/qu+ygkNXFMWoJEuSXHSA0GeSfLAsy3W9nxX0vqIoRiZZm6RoO6ToQ1UqiuItSZYlOa2LsK1J/ktZln/fN1nB4VEURU2S/5Xkj5LUdBH6QJJ5ZVm+0CeJAcAApgbGQKUGxmClBsZAog7GQKUGRn/Q+ASDTFEU5yW5J29sdbk6yYq28dlJzqgIv6Qsy6/3YXpw0IqiGJLk75O8v+1QS1o/26vT+g2JU5LMSTK67fy/J5nlm50MBEVRmWLvAgAAEOJJREFU1Cf5/YpDij5UnaIoJib5pyQntR3amuTbSTYl+aUkF7b9b9L67/X3lGW5po/ThINWFMXnkiyoOPRQ289rSaYnOS9vFIMeTXJGWZaNfZokAAwgamAMVGpgDGZqYAwU6mAMZGpg9Adb3cEg0vZNoKV5o+BzVVmWN1WEfKYoio8lWZTW/+DUF0VxX1mWW/o2Uzgol+eNgs/mJL9ZluXqyoCiKD6V5G+TnJXkuCS3ZO9CJ1Sdoig+kNblYqHaLc4bxZ6/S+u3fV5pP1kUxR8m+WaS30jr9g1fTjKrr5OEg1EUxX9M67fcktaC5YfLsvzbfWJOS+tfzv5Skncl+e9J/qIv8wSAgUINjAFODYxBSQ2MAUYdjAFJDYz+UnvgEGAA+ViSCW3jb+1T8EmSlGW5OG/8x2VUkmv6JjU4ZFdXjD+0b8EnSdoKmL+R5Lm2Q7OKovDLAlWrKIrjk/xNWgv1vhFB1SqK4jeTfKDt5T8m+a3KYk+SlGX5apKL0/oNuCT51aIoikB1+C9Jjmob/+W+BZ8kafvm5hUVhz7UF4kBwAClBsZApgbGoKMGxkCiDsYApwZGv9D4BIPLxRXjG7qIuyGtXbhJ8qG2vVjhiFUUxduSnNz28rGyLP+hs9iyLF9OUrl8/dm9mRv0sv+T5MQkr8Y3Iqhul7b9b1OS3y/LsqmjoLIs/z3JV5M8nuTBJOP7JDs4dKdWjP+xi7j7K8aTeykXABgM1MAYkNTAGMTUwBhI1MEYyNTA6Be2uoNBoiiKCUne3vbyF2VZ/riz2LIsXyqKYnVal0J+c5LTk/yo15OEg/f2inF39rn+WcX4lzqNgiNYURQfSvK7bS+vSWvhB6pOURTHJpnd9vL7ZVk+0VV8WZbXxLfxqT7NFeM3dxE3tmL8Qi/lAgADmhoYA5waGIOOGhgDiToYg4AaGP3Cik8wePynivF+yx93oDJm5mHOBQ63ZUl+Oa17XN/YjfgTK8bbeyUj6EVFUZyU5CttL1ek9VtvUK3elaSubfz/9Wci0IuerBj/96IoRnQS98cV4+/3Yj4AMJCpgTGQqYExqKiBMQCpgzHQqYHRL6z4BIPH1IrxM92I/5eK8ZTDnAscVm1LwT7b9tMdcyrGT3YaBUegtq0X/ibJcUleTnJpWZYttninir2tYvxkkhRFMSXJx5Kcl2Rikt1JyiR3JvnfZVm+1tdJwiFakuSP0lrcnJ7kkaIo/iTJw0l2pHUZ8D9K8ltt8Q1JFvZ9mgAwIKiBMWCpgTGYqIExQKmDMdCpgdEvrPgEg0flUsb/2o34f6sY2zeYAaMoit/NG8uCNya5rx/TgYPxySTvbxt/oizL7vw7HY5klRXLXxRFcWWSf07rMt6/kuTotBY5Zyb5yyTri6I4dd9J4EhWluWzSf5rkqa2Q6cmuSvJL5JsS/JQWgs+LUn+NskZZVn+ou8zBYABQQ0MogbGgKAGxkCkDsaApgZGf9H4BIPHsRXj7uyBXdlBfsxhzgX6RVEUJ+eNpZGT1m9L2DuYqlEUxX9Mcn3by7vKsvxGf+YDh8lxFeP/muTLSYYneSKtBZ4/SXJbWr8RlCQnJ/nHtn+nQ9Uoy3J5Wpe0f7CLsH9L61L3m/skKQAYmNTAGPTUwKh2amAMYMdVjNXBGJDUwOgPtrqDwWNYxXhnN+Iriz7DOo2CKlEUxQlp/Wbb2LZDP0vyZ/2XEfRMURRDk3wjrb8Ib0lyef9mBIfNqIrxp5K8nuSqJF8uy7Kl/URRFG9Ocndaf2kek9b/P7ynD/OEQ9L2Gf503vjc/kOS/5vWJeynJbkgyZuT/J8kv1cUxW/4yykAOChqYAxqamBUOzUwBjh1MAY8NTD6g8YnGDyaK8YtnUZ1rKfxcEQpimJCkvuTvLXt0I4kv12W5b/3W1LQc3+a1l90k+RjZVlu6c9k4DAauc/rPyvL8q/2DSrL8udFUZyfZH1aCz7vLorifWVZdvXNITgiFEUxNcnKtG6f82Ja/xzyg31ifjmtS3yfnmRWkm8XRfHeysInANAtamAMWmpgDBBqYAxk6mAMaGpg9Bdb3cHgsb1iPLwb8SMqxt35dhwckYqieEuSf0rytrZDO5PMKctyXf9lBT1TFMWvJvnjtpe3lmX5nX5MBw63XRXjl5L8RWeBZVk+l+SvKw79Zm8lBYdLURQ1Sb6Z1oJPknxw34JPkpRl+S9Jfi3Jv7QdOivJ7/ZFjgAwwKiBMSipgTEQqIExCKiDMWCpgdGfND7B4FFZ9Nm3o7wjlUWflw9zLtAniqKYleThJJPbDr2a5DfKslzRf1lBzxRFcXRalzI+Ksm/Jvlk/2YEh90rFeN/LMvytU4jWz1QMf5PvZAPHG7vzRvfVv5eWZY/7CywLMutSa6rOPRfezEvABio1MAYdNTAGAjUwBgk1MEYyN4bNTD6ia3uYPD4RcX4xG7Ev7li/NxhzgV6XVEUv5Pk63nj251bk5xfluWq/ssKDsqCJFPaxo8kmV8URUdxp1WMzyiK4lNt42fLslzWi/nBoXqxYvxv3Yj/ecV47GHOBXrDeyvGD3QWVOF7FeN3Ht5UAGBQUANjUFEDYwBRA2MwUAdjIHtvxVgNjD6l8QkGj/UV40ndiP/livGGw5sK9K62X3a/kKSm7dC/JDm3LMsn+y8rOGiVRfg5bT8Hck7bT5L8MImiD0eyyn83H9eN+MrfYV7pNAqOHL9UMd7ajfjKv3A99jDnAgCDgRoYg4YaGAOMGhiDgToYA5kaGP3GVncweDyRpKVtfHo34n+1Yrz28KcDvaMoij9L677Y7QWfHyf5VQUfgCPWYxXjt3Uj/uSK8bOHORfoDa9WjLuz6kTlNzhfOsy5AMBgoAbGoKAGBlCV1MEYyNTA6DdWfIJBoizLl4qieDjJrCQTi6I4tSzL9R3FFkUxNsmMtpcvJnm0j9KEQ1IUxdVJ/rTi0P+XZE5Zlr4JQdUqy/KSJJccKK4oikuS/E3byz8ry/KzvZYUHF6rk7yQ5E1J3tbVn1HanFsx/sdezQwOj8qVI2Ynue4A8f+5YvxYp1EAQIfUwBgM1MAYiNTAGCTUwRjI1MDoN1Z8gsGlcpnXz3YR98dJ6trGt5Vl+XqvZQSHSVEUZyW5oeLQPUnOU/ABOLKVZbk7yTcrDn2xs9iiKKbkjSJoUyxhT3X4uyTNbeN3F0VxbmeBRVGMTPI/Kw79bW8mBgADmBoYA5YaGED1UgdjgFMDo99ofILBZWneWArzt4ui+POiKGoqA4qi+FiS/9H28rUkf9mH+cFBKYpiWJJbkxzVdujhJL9TluWu/ssKgB64Lm8sZ/xrRVHcUhTF8MqAoihOTnJvkpFth/6qLMstfZgjHJSyLBvyxreRk+SOoih+fd+4oijelOQ7Sf5j26GfJPlGrycIAAOTGhgDkhoYwICgDsaApAZGf6ppaWk5cBQwYBRFcX6Su/NG4+M/J/luWrvF/3OSd1eEX16W5eK+zRB6riiKy5Msqjj0lSSbunn5E2VZfu+wJwV9zDLfVLuiKC5I6zd72r9xvznJ/5vk50mKJB/MG8WeJ5OcVpbla32dJxyMoihGJVmZ5B0Vh3+U5IdJXk5ySpLfSnJM27mXk5xRluWTfZclAAwsamAMRGpgoAbGwKAOxkClBkZ/0fgEg1BRFPOSLElydCchTUn+sCzLG/suKzh4RVE8lORXD/Lyr7ftHw9VTdGHgaAoig+k9XN8YhdhP0jywbIsX+oiBo44RVEcl+RrSX7zAKE/SetnXMEHAA6RGhgDjRoYqIExcKiDMVCpgdEfbHUHg1BZlt9M6/KBf5FkfZLtSXYleTqtxaD/pOBDlXlbfycAwKEry/L+tH6r7X8k+cckz6f1L6NeSPK9JB9O8p8Ve6hGZVn+e1mWv5XkrCRfTVKm9c/hjWn9Ruc9SS5O8jYFHwA4PNTAGIDUwAAGCHUwBio1MPqDFZ8AAAAAAAAAAICqY8UnAAAAAAAAAACg6mh8AgAAAAAAAAAAqo7GJwAAAAAAAAAAoOpofAIAAAAAAAAAAKqOxicAAAAAAAAAAKDqaHwCAAAAAAAAAACqjsYnAAAAAAAAAACg6mh8AgAAAAAAAAAAqo7GJwAAAAAAAAAAoOpofAIAAAAAAAAAAKqOxicAAAAAAAAAAKDqaHwCAAAAAAAAAACqjsYnAAAAAAAAAACg6mh8AgAAAAAAAAAAqo7GJwAAAAAAAAAAoOpofAIAAAAAAAAAAKqOxicAAAAAAAAAAKDqaHwCAAAAAAAAAACqjsYnAAAAAAAAAACg6mh8AgAAAAAAAAAAqo7GJwAAAAAAAAAAoOoM6e8EAADoXFEUw5OsS/LWtkPbkvxKWZY/7yR+ZJK1SYq2Q2WSd5VluaO3cwUAAACAg6EGBgAcLCs+AQAcwcqy3JnkvyZpajt0TJL/3cUlX8wbBZ/GJPMUfAAAAAA4kqmBAQAHS+MTAMARrizLNUmuqzj0G0VR/M6+cUVRnJfkv1Uc+uOyLNf1dn4AAAAAcKjUwACAg6HxCQCgOnwuySMVr/+qKIox7S+KohiX5KsV57+f5MY+yg0AAAAADgc1MACgRzQ+AQBUgbIsm9K63PdrbYfGJ/nLipCvth1LkueTXFyWZUvfZQgAAAAAh0YNDADoqZqWFn8WAACoFkVRfCLJX1Ucem+SKUmWtr1uSXJeWZZ/38epAQAAAMBhoQYGAHSXxicAgCpSFEVNkvuTvL/tUJnkl5Ic0/b65rIs/6AfUgMAAACAw0INDADoLo1PAABVpiiKk5L8c5Lj9jn1WJKZZVnu6vOkAAAAAOAwUgMDALqjtr8TAACgZ8qy/NckV+5z+LUk8xR8AAAAABgI1MAAgO7Q+AQAUJ1+kuT1itdDkgzvp1wAAAAAoDeogQEAXbLVHQBAlSmKYniStUn+4z6n1id5l2+8AQAAAFDt1MAAgO6w4hMAQPW5Pm8UfF5o+0mSU5P8r37JCAAAAAAOLzUwAOCArPgEAFBFiqI4O8kDSWraDs1LMjTJrW2vW5KcXZblD/o+OwAAAAA4dGpgAEB3aXwCAKgSRVEcm+TxJL/cdujusix/q+3c95L8WtvxhiRvL8tyW58nCQAAAACHQA0MAOgJW90BAFSPv8obBZ9/T3JFxbnLk2xvG09siwUAAACAaqMGBgB0m8YnAIAqUBTFhUl+r+LQ/yjL8hftL8qybEjy6YrzFxdF8Vt9lB4AAAAAHDI1MACgp2x1BwBwhCuKYnySJ5K8qe3Q/WVZ/loHcTVJ/jHJe9oObUkyrSzL5/skUQAAAAA4SGpgAMDBsOITAMCRb0neKPhsT/KxjoLKsmxJ8tEkO9sOjWu7FgAAAACOdGpgAECPaXwCADiCFUVxWZILKg59um1J7w6VZbkhyWcrDv1GURQf7aX0AAAAAOCQqYEBAAfLVncAAAAAAAAAAEDVseITAAAAAAAAAABQdTQ+AQAAAAAAAAAAVUfjEwAAAAAAAAAAUHU0PgEAAAAAAAAAAFVH4xMAAAAAAAAAAFB1ND4BAAAAAAAAAABVR+MTAAAAAAAAAABQdTQ+AQAAAAAAAAAAVUfjEwAAAAAAAAAAUHU0PgEAAAAAAAAAAFVH4xMAAAAAAAAAAFB1ND4BAAAAAAAAAABVR+MTAAAAAAAAAABQdTQ+AQAAAAAAAAAAVUfjEwAAAAAAAAAAUHU0PgEAAAAAAAAAAFVH4xMAAAAAAAAAAFB1ND4BAAAAAAAAAABVR+MTAAAAAAAAAABQdTQ+AQAAAAAAAAAAVef/BxR5jdV/Nb/ZAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 608, + "width": 1183 + }, + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "my_geometric = sts.geom(p=0.5)\n", + "x = np.arange(-1, 10)\n", + "y = my_geometric.pmf(x)\n", + "\n", + "fig, ax = plt.subplots(1,2)\n", + "ax[0].stem(x, y, label=\"PMF\")\n", + "for xx, yy in zip(x, y):\n", + " ax[0].text(xx, yy + 0.02, str(round(yy, 2)), horizontalalignment=\"center\")\n", + "ax[0].set_xlabel(\"x\")\n", + "ax[0].set_ylabel(\"PMF\")\n", + "ax[0].legend();\n", + "\n", + "y = my_geometric.cdf(x)\n", + "\n", + "ax[1].step(x, y, where=\"post\", label=\"CDF\")\n", + "for xx, yy in zip(x, y):\n", + " ax[1].text(xx, yy + 0.02, str(round(yy, 2)), horizontalalignment=\"center\")\n", + "ax[1].set_xlabel(\"x\")\n", + "ax[1].set_ylabel(\"CDF\")\n", + "ax[1].legend();" + ] + }, + { + "cell_type": "markdown", + "id": "359da406", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Independence of random variables\n", + "\n", + "Reminder: events $A$ and $B$ were called independent if\n", + "$$\n", + "\\mathbb{P}(A \\cap B) = \\mathbb{P}(A) \\mathbb{P}(B)\n", + "$$\n", + "\n", + "Random variables $X$ and $Y$ are called **independent** if\n", + "$$\n", + "\\mathbb{P}(X \\leqslant x, Y \\leqslant y) = \\mathbb{P}(X \\leqslant x) \\mathbb{P}(Y \\leqslant y)\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "9c976bee", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Example 3\n", + "\n", + "You roll two dice. $X$ is the random result of first die, $Y$ is the random result of second die, $Z = X+Y$.\n", + "\n", + "How do we find the distribution of $Z$?" + ] + }, + { + "cell_type": "markdown", + "id": "5b250e0b", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "fragment" + }, + "tags": [] + }, + "source": [ + "$$\n", + "\\mathbb{P}(Z = k) = \\sum_{m} \\mathbb{P}(X = m) \\mathbb{P}(Y = k - m)\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "415a87a2", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "fragment" + }, + "tags": [] + }, + "source": [ + "- Are $X$ and $Y$ independent?" + ] + }, + { + "cell_type": "markdown", + "id": "f82175fd", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "fragment" + }, + "tags": [] + }, + "source": [ + "Yes" + ] + }, + { + "cell_type": "markdown", + "id": "53e161bd", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "fragment" + }, + "tags": [] + }, + "source": [ + "- Are $X$ and $Z$ independent?" + ] + }, + { + "cell_type": "markdown", + "id": "488e4780", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "fragment" + }, + "tags": [] + }, + "source": [ + "No" + ] + }, + { + "cell_type": "markdown", + "id": "0d174ff5", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Transformations of random variables\n", + "\n", + "Random variables transform like functions, i.e. if $Y=\\varphi(X)$, then\n", + "$$\n", + "Y(\\omega) = \\varphi(X(\\omega))\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "0f5cc655-1bf4-4a62-9cb3-ef10122e59d6", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "fragment" + }, + "tags": [] + }, + "source": [ + "Examples of transformations\n", + "\n", + "- Linear transformations of random variables and vectors $Y = aX + b$\n", + "- Non-linear invertible transformations of random variables $Y = g(X)$\n", + "- Sums $Y = X_1 + X_2$" + ] + }, + { + "cell_type": "markdown", + "id": "c3392b7d-42eb-44f4-8c1a-7c1645f9c437", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "fragment" + }, + "tags": [] + }, + "source": [ + "If $g(\\cdot)$ is one-to-one, it simplifies to:\n", + "$$\n", + "\\mathbb{P}(Y = g(x)) = \\mathbb{P}(X = x)\n", + "$$\n", + "\n", + "The general formula:\n", + "$$\n", + "\\mathbb{P}(g(X) = y) = \\sum\\limits_{x \\text{ such that } g(x) = y} \\mathbb{P}(X = x)\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "identical-amazon", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Example 4\n", + "\n", + "Let $X$ be a random variable with CDF $F_X$. Find CDF of $Y = a X + b$." + ] + }, + { + "cell_type": "markdown", + "id": "detailed-bible", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Solution 4\n", + "\n", + "If $a > 0$:\n", + "$$\n", + "F_Y(y) = \\mathbb{P}(Y \\leqslant y) = \\mathbb{P}(a X + b \\leqslant y) = \\mathbb{P}\\left(X \\leqslant \\frac{y - b}{a}\\right)\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "48d74361-5da8-4bef-8a3e-1133d25a2dc7", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Example 5\n", + "\n", + "Let $X \\sim Bin(n, p)$. Find the PDF of $Y = \\exp(X)$." + ] + }, + { + "cell_type": "markdown", + "id": "e42953fc-be7f-4546-bee2-32c113b67fdc", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Solution 5\n", + "\n", + "So $g(x) = \\exp(x)$, it's one-to-one and the inverse is $g^{-1}(x) = \\log x$.\n", + "$$\n", + "\\mathbb{P}(Y = y) = \\mathbb{P}(X = g^{-1}(y)) = \\mathbb{P}(X = \\log y)\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "9ad4c729", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Example 6\n", + "\n", + "Let $X \\sim Be(p)$. Find CDF of $Y = 2X$." + ] + }, + { + "cell_type": "markdown", + "id": "10efc841", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Solution 6\n", + "\n", + "$$\n", + "F_Y = \\mathbb{P}(Y \\leqslant y) = \\mathbb{P}(2 X \\leqslant y) = \\mathbb{P}\\left(X \\leqslant \\tfrac{y}{2}\\right) = F_X\\left(\\tfrac{y}{2}\\right)\n", + "$$" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "6ee29ea3", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACT4AAAS3CAYAAADFfPfCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAABYlAAAWJQFJUiTwAACmfklEQVR4nOzdeXxfVZ0//ldC0tK9lKWAgkqByyYKURBxWBT5gqAiv2FQRgHFAUUWQQsVEEUFkcURBtBhcx+pCy7DKAqOKEUFLEW04hVElDJQltIlTffm90fTkELTJu2n/Xxu83w+Hnlwzv2ce877k6a9pXnlnKbOzs4AAAAAAAAAAABUSXO9CwAAAAAAAAAAAOgvwScAAAAAAAAAAKByBJ8AAAAAAAAAAIDKEXwCAAAAAAAAAAAqR/AJAAAAAAAAAACoHMEnAAAAAAAAAACgcgSfAAAAAAAAAACAyhF8AgAAAAAAAAAAKkfwCQAAAAAAAAAAqBzBJwAAAAAAAAAAoHIEnwAAAAAAAAAAgMoRfAIAAAAAAAAAACqnpd4FsO5Mnjx5SpJXJGlP8nCdywEAAAAAAAAAgBfaPsnwJH9ra2vboz83Cj5t2F6RZFTXx0vqXAsAAAAAAAAAAPTmFf29QfBpw9aeZFRzc3OGDh1a71ro0t7eniQZPnx4nSsBYEPguQJArXimAFBLnisA1JLnCgC15LnSeDo6OrJ06dJkWc6lXwSfNmwPJ3nJ0KFDUxRFvWuhy+TJk5PErwkANeG5AkCteKYAUEueKwDUkucKALXkudJ4yrJcHkh7uL/3Nte+HAAAAAAAAAAAgHVL8AkAAAAAAAAAAKgcwScAAAAAAAAAAKByBJ8AAAAAAAAAAIDKEXwCAAAAAAAAAAAqR/AJAAAAAAAAAACoHMEnAAAAAAAAAACgcgSfAAAAAAAAAACAyhF8AgAAAACgzx599NG86lWvygknnLDGcyxcuDDXXntt3vrWt2b33XfPa17zmrzzne/M9773vXR2dtawWgAa3V133ZWiKLL33nuv8Rzt7e15//vfn1e+8pUpiiJFUWTPPffMOeeck6VLl9awWgAanefKwNNS7wIAAAAAAKiG9vb2nHnmmZk/f/4az7FgwYK8733vy+9+97skydChQ7NgwYJMmTIlU6ZMyR133JErrrgizc1+bhdgQzd9+vScfPLJazXH7Nmzc+CBB6a9vX2F63Pnzs33vve93HnnnfnFL36RlhbfFgXY0HmuDEz+zxEAAAAAgNWaOXNmTjzxxEydOnWt5vnUpz6V3/3udxkzZkyuu+663Hfffbnvvvvymc98JoMGDcrPfvazfOlLX6pR1QA0qr///e95y1veslZh2iQ56qij0t7enqamppx++ul58MEHM2XKlBxxxBFJkqeeeirvf//7a1AxAI3Mc2XgEnwCAAAAAGCVpkyZkiOPPDKTJ09eq3kee+yxfP/730+SXHLJJdlvv/3S1NSU1tbWHHXUUTnnnHOSJNdff31mz5691nUD0JgmTpyYQw899EW7afTX3XffnUcffTRJcvrpp+fkk09Oc3Nzhg4dms997nM57LDDkiS/+c1v8vjjj69t2QA0KM+VgU3wCQAAAACAlWpvb8/48ePzrne9K48//nhe/vKX57Wvfe0az/ftb387S5YsyQ477JB/+qd/etHrRx11VMaMGZO5c+fm9ttvX5vSAWhATz75ZN70pjfl/PPPz5IlS9LS0pIRI0as8Xyf//znkySDBg3KBz/4wRe9ftFFF6WpqSlJcs0116zxOgA0Js8VksShg/RJZ2dnOjo6Mnv27LS3t2fJkiXp7Oysd1mV9uCDD9a7BCqqqakpzc3NGTJkSIYNG5bhw4dn0KBB9S4LAAAA2AA99thj+dGPfpSmpqYcffTROeuss/KZz3wm99577xrNd/fddydJ9tlnn5W+3tLSkr322iu33npr7rzzzhx55JFrXDsAjWfy5MmZNm1akmTcuHH58pe/nHe/+92ZM2fOGs33l7/8pXuuldl4440zduzYPPnkk7nrrrvWrGgAGpbnCongE32wdOnSPP7442u9LRzLbLzxxvUugYrr7OzMkiVL0t7envb29kyfPj1jx47NmDFj6l0aAAAAsIFpamrKgQcemFNPPTW77rrrWs/38MMPJ+n9GwlJ8vKXv3yFsQBsODbaaKNsuummmTBhQt72tret9XwdHR1JVv1c2WqrrfLkk0/m2WefXev1AGgsniskgk+sRmdnZ3foaaONNsomm2ySESNGZNCgQWludlLimpg7d26SZNiwYXWuhKpaunRplixZkrlz56a9vT1z5szJ9OnTs2jRoowdO7be5QEAAAAbkJ122ilf+tKXajLX3Llzu/9tbMstt+x13BZbbJEkeeqpp2qyLgCN45BDDskhhxxSk7mefvrp7vby0OzKLH/mLFq0qCbrAtA4PFdIBJ9YjY6Oju7Q07bbbmu3ImgAzc3NaW5uzujRozN69OjMmjUrTzzxRGbMmJHRo0dn8ODB9S4RAAAA4EV67ig/ZMiQXsct/zfI5SEpAFiZngHZESNG9Dpu6NChSZb9sD8A9MZzpbps2cMqzZ49O0myySabCD1Bgxo1alRGjRqVJJk1a1adqwEAAABYuSVLlnS3W1tbex03aNCgJMnixYvXeU0AVNfChQu726v6HpYfFgagLzxXqkvwiVVa/lNYq0o0AvW3PPi0PKwIAAAA0Gh6fvNgVcdCLP+Gw6rCUQAwcuTI7vb8+fN7HbdgwYL1UQ4AFee5Ul2CT6zS8p/CWv5TVkBjWv4Ph34SEgAAAGhUw4YN626v6hsJy18bPnz4Oq8JgOrafPPNu9s9j1N9oY6OjiRJU1PTOq8JgOryXKkuwSdWafm5lM3NvlSgkS1/sDpLFgAAAGhUgwcPziabbJIkeeqpp3odN3369CTJFltssV7qAqCaRo4c2f1v44899liv45544okkfsgfgFXzXKkuaRaADYBEMQAAAFAFO+ywQ5Lkb3/7W69jHn300STJ9ttvvz5KAqDClu8O+Ne//rXXMcu/Qb3pppuul5oAqC7PlWoSfAIAAAAAYL3Ye++9kyS//e1vV/r64sWLc++99yZJXvva1663ugCopp133jlJ8tBDD6309fnz53fvMrjnnnuut7oAqCbPlWoSfAIAAAAAYL049NBD09TUlKlTp+bOO+980esTJ07MjBkzMmLEiBx++OF1qBCAKjnhhBOSLPtG9Be/+MUXvT5hwoR0dnYmScaPH79eawOgejxXqknwCQAAAACAmpk+fXo+8pGP5CMf+Ui+8Y1vrPDauHHj8o53vCNJ8pGPfCS33XZbOjs7s3jx4nz729/OxRdfnCR53/ve133MBAAD2x//+Me85z3vyXve856cfvrpK7x2wAEHZNttt02SXHHFFbnsssuydOnSzJ8/P2eddVZ+8pOfJEn22WefbLnlluu9dgAaj+fKhqel3gUAAAAAALDhWLRoUZ544okkyXPPPfei188555w8/PDDeeCBB3LKKadkyJAhWbJkSRYuXJhk2a5QH/zgB9drzQA0rvnz52fJkiVJkmefffZFr3/ta1/LoYcemnnz5uW6667Lddddt8LrW265ZW688cb1UisAjc9zZcNjxycAAAAAANabESNG5Jvf/GY++tGPZqeddkqSNDc3Z7fddssnPvGJfP7zn09TU1OdqwSgKrbaaqtMmjQp++23XwYPHtx9fciQIXnLW96Sn//852lu9i1RAPrGc6V6mpafP8iGZ/LkyXck2X/48OEpimKN5njwwQeTJDvvvHPtChvg5s6dmyQZNmzYeltz8uTJue2223L//ffn0UcfTXt7e1pbW7PJJptkl112yf77759DDz10tduHT5gwId///vdXOaa1tTVDhgzJpptumnHjxuWggw7Km9/85j5tTd6X+Vfl6quvzkEHHdTn8V/72tdy4YUXdve/+MUv5o1vfGOf7z/33HPz3e9+N0myxx575Bvf+EZaWuq3kZ7frzAwTZ48OUnS1tZW50oAqDrPFABqyXMFgFryXAGgljxXGk9Zlmlvb0+SX7a1tR3Qn3vF0GADdvfdd+fII4/MMcccky9/+cuZMmVKnnvuuSxatCgdHR15/PHHc9ttt+W8887Lm970pkycOHGt11y0aFFmz56dv/3tb7n99tszYcKEHHDAAbn55ptr8I5q6z3veU/23Xff7v55552XGTNm9OneH/3oR92hp5EjR+byyy+va+gJAAAAAAAAAAYa36WHDVBnZ2cuv/zyFc4bbW1tzV577ZWiKDJ69OgsWLAgjzzySCZNmpQ5c+Zk5syZOf/88/PAAw/kM5/5zGq3E993331XCA0tX3fRokWZOXNmHn300dxzzz3p6OjInDlz8rGPfSwPPfRQzj777D69h5XNvzo77LBDv8Y3NTXls5/9bN72trdl5syZefbZZ3PeeeflmmuuWeV9jzzySD7xiU909y+88MK85CUv6dfaAAAAAAAAAMDaEXyCDdCFF16Yr3/960mWhXve/e535+STT86YMWNeNHbevHm56qqrcv311ydJvvvd72azzTbLGWecsco19thjj5xwwgmrHDNnzpxcdtlluemmm5IkN954Y7bccsscd9xxq30PfZm/FsaOHZsLLrggp59+epLk5z//eb7zne/kqKOOWun4BQsW5MMf/nA6OjqSJO9617ty8MEHr/M6AQAAAAAAAIAVOeoONjC33HJLd+ipubk5l19+ec4777yVhp6SZMiQIRk/fnzGjx/ffe3aa6/Ngw8+uNa1jBgxIhdccEFOOumk7muXXnppHn/88bWeu5YOOeSQHHHEEd39z372s3nsscdWOvbCCy9MWZZJkh133DEf+9jH1keJAAAAAAAAAMALCD7BBmTevHn57Gc/293/0Ic+lMMOO6xP977//e9PW1tbkmTp0qW56qqralbXhz/84bzqVa9KkixatGi1R8nVw8c//vHu4+rmzp2bs846K0uXLl1hzP/8z/9k4sSJSZYFxr7whS9k8ODB671WAAAAAAAAAEDwCTYoP/jBD/LMM88kSTbbbLOceOKJ/br/Ax/4QJJlO0U99dRTWbRoUU3qam5uzmmnndbd/+EPf5j29vaazF0rw4cPzyWXXJLm5mV/LN5333254YYbul//+9//no9//OPd/XPPPTfjxo1b73UCAAAAAAAAAMsIPsEG5JZbbuluH3744Rk0aFC/7n/DG96Q6667Lvfee2++853vpLW1tWa17bvvvtl0002TLNv16Xe/+13N5q6V17zmNfm3f/u37v6VV16Zhx56KIsXL85HPvKRzJ07N0ly2GGH5aijjqpXmQAAAAAAAABAkpZ6F9AIiqLYOMmfkrwiyYFlWd5Ro3kHJTkhydFJdk8yLMn0JPcn+UpZljfXYh1Ilh1zd//993f39957737P0dzcnP3226+GVT2vqakpr3nNa/LTn/40SfLb3/42BxxwwDpZa22ceuqpmTRpUqZOnZqFCxfm/PPPz/77758//OEPSZJtttkmn/rUp+pcJQAAAAAAAAAg+LTMFVkWeqqZoii2TXJLkle+4KVtuj7eWhTFT5IcU5blzFquzcD0yCOPZPHixd39V7/61fUrpheveMXzv83+/ve/17GS3rW2tubSSy/NkUcemfnz5+e+++7LlClTul/7/Oc/n+HDh9e5SgAAAAAAAABgwAefiqL4eJITazznyCS3J9mh69L0JN9N8mSSnZIcmWRIkkOTfKcoikPLsly8srmgr5544onudmtra8aMGVPHalZu+VF3STJz5sxVjp0yZUpuuOGGPs2766675nWve93alLaCcePGZfz48fn0pz+dJOns7EySnHHGGdl9991rtg4AAAAAAAAAsOYGbPCpKIrWJJcnOXUdTH9Rng893ZHkHT13dSqKYsckP0myXZKDkvxbki+ugzoYQDo6Orrbo0ePrl8hqzBkyJDu9nPPPbfKsXfddVfuuuuuPs177LHH1jT4lCTHHHNMrrvuujz55JNJkkGDBuWII46o6RoAAAAAAAAAwJobkMGnoiheluS/krx+Hcw9Ns/vINWe5KgXHmVXluVfiqJ4e5L7k2yU5LyiKK7bUHZ9+v4dD+dbP/tz5i1YUu9S6m7I4I3yroN3yjsO2H6dr7XRRht1txctWrTO11sTCxcu7G43NzfXsZLV+8pXvtIdekqW1f7xj38811xzTR2rAgAAAAAAAACWG1DBp6IoRiQ5J8mHk2zcdXl6kseSvKZGyxyTpLWrfUNZls+sbFBZln8siuL7Sf45ydZJ3pjkZzWqoa5+8MuHhZ66zFuwJD/45cPrJfg0YsSI7vbs2bOzZMmSFcJQjWDOnDnd7ZEjR65y7CmnnJJTT10XG7Kt3h/+8Id8/vOfT7IsULZkybKv55///OeZOHFijj766LrUBQAAAAAAAAA8r7G3XKm9E5JMyPOhp18k2SvJ1BqucXCP9k9WM/bHPdpH1LCGujpi/+0zZHBjBW7qZcjgjXLE/us+9JQk2267bXd76dKlmTFjxnpZtz961rTJJpvUsZLetbe358wzz+zeNeu4447LkUce2f36xRdfnEcffbRO1QEAAAAAAAAAyw2oHZ96eCLJx5PcWJZlZ1EUtZx7zx7tu1cztufre9eyiHp6xwHbr5cdjljRtttum5EjR2b27NlJkilTpuTggw9ezV0vNmnSpGyyySbZeeeda34c3dSpz2cMd91115rOXSuf+MQn8o9//CNJ8tKXvjSnnnpqFi1alDvvvDNPP/10Ojo6Mn78+HzrW99KS8tA/SMUAAAAAAAAAOpvoO34NC3JGUl2KMvyhrIsO2s5eVEUI5Ns0dV9rizLmau55R892pJCrJXm5ubsvffz+bm77rprjeb5xCc+kSOPPDKve93rcvvtt9eqvCxcuDB/+tOfuvuvfOUrazZ3rdx888255ZZbkiw74u6SSy7J0KFDM2rUqFx00UXd4x544IFcddVV9SoTAAAAAAAAAMgACz6VZfndsiy/UJbl3HW0xFY92tP6UE97kjld3ZFFUWy8qvGwOocffnh3+7bbbsv8+fP7df8999yTadOWfenOmjUrtdwN7dZbb01HR0eSZNSoUdlnn31qNnct/O1vf8unP/3p7v5JJ52Utra27v5+++2XY445prt/7bXX5r777luvNQIAAAAAAAAAzxtQwaf1YFSPdkcf75nXoz2yhrUwAL3pTW/KS17ykiTJs88+m+uvv77P93Z2duYLX/hCd/8Nb3hDttlmm5rUtWTJknzlK1/p7r/1rW/NoEGDajJ3LSxcuDBnnHFGdzDrVa96VT70oQ+9aNxZZ52Vl7/85UmWvaezzjor7e3t67NUAAAAAAAAAKBLS70L2MAM7tHu61Y7PYNPg3sdtRba29szefLkNb5/4403zty562qTrIFrXX1OP/ShD+Wcc85JklxzzTV56Utfmje/+c2rve8LX/hC99dJc3NzTjrppBfVuHjx4u72woUL+/werr766kydOjVJMnTo0Bx77LErvXdN519bl1xySR588MHu+i644IIsWLAgCxYseNHYT3/603nve9+bxYsX57HHHssnP/nJXHDBBeulztVZunRp5s+fv1a/34Hq8nsfgFrxTAGgFn794Jzc8YfZWfhfq90YHwBW68CNp+aQIb/PI7cu7nXMpbMOy7Qlm65w7YoxX+vzGh9/7p8zu3Nod39kU0c+vcl3+3z/6TOOXaH/0o2ezfhR/9One2ctHZLzZx61wrVdWx/LiSN+0af7H1s8JpfNPnyFa/sM/kveOey3fbr/jwtfmuva37jCtUOG3J9DhzzQp/t/PX+HTOxY8aSPo4f+Jq/f+KE+3f+Tebvn1nmvXuHavw3/3+w2qG9/j7hp7uvymwU7rnDtoyNvyTYtM/p0/7VzDszURStuBvCp0d/JqOZ5vdyxIl97vvZ68rVXja+9xxe+NF+d/6Yc8OCcvH7nEX26h8Zlx6faWtKj3bkG96/JPbCCQw45JG95y1uSLNuVaMKECfnc5z6XGTNW/oCdPn16zj777Hzta88/BE866aTsuuuua13Ls88+mwsvvDA33HBD97Uzzjgjm2222VrPXSu//OUvc9NNN3X3P/rRj2bbbbftdfyuu+6aE044obv/3//93/n5z3++TmsEAAAAqJo7/jA7Cxf7504AauOQIb/Pxk29h54AoL8WLu7Mr/88p95lUAN2fKqtnmdebdzHe4b0aPd1l6h+GT58eIqiWKN7l++CM2zYsFqWNKAt38VoXX5OL7nkkixevDg/+9nP0tnZmYkTJ+bmm2/O3nvvnV122SUjRozInDlzMnXq1Nxzzz1ZtGhR973vfe97c/rpp6epqelF87a0PP9HxtSpU1cIDCXLjsvr6OjI7Nmz8+CDD+aBBx7IwoULu1//4Ac/mGOPXTH529v8gwYNWudfd9OnT19ht6aDDz44//qv/7ra+0477bT85je/yQMPLEubX3jhhdl7770zduzYdVZrXzQ3N2fo0KHZeeed61oHsH4t35Wjra2tzpUAUHWeKQDUkp2eAKgloScAam1QS1P+5aCd09a2fb1LIUlZlmlvb1/9wJVo6uz0UzdFUXwlyXFd3QPLsrxjDefZLslfu7oPlGX5qj7cMzvJ8r3TBpdluXBV4/tj8uTJdyTZvxbBJ0GK2lkfwadkWQjp61//eq6++urMnDlzteM333zznHPOOd27Ra3MhAkT8v3vf7/ftYwdOzZnn312DjvssFWO6zn/KaecklNPPbXfa/XV0qVLc9xxx+Wee+7prvFHP/pRRo8e3af7H3300RxxxBGZN2/ZVpOvf/3rc+ONN640MLa++P0KA5NvUgNQK54pANTSWz/yw+72f1/+9jpWAsCG4JEL/7/u9nbnfq+OlQCwIfDvYI2nR/Dpl21tbQf05147PtXWk1l2XF1Tkq1XN7goihF5PvQ0o5ahJ2hqasqxxx6bI488MrfffnvuvPPO/PnPf8706dPT0dGRwYMHZ7PNNstuu+2WAw44IIceemgGDRq01usu36lp6623zk477ZT9998/BxxwQAYPHlyDd1U711xzTXfoqampKRdffHGfQ09J8vKXvzxnnXVW945Rv/71r/PVr341xx9//DqoFgAAAAAABq6lg4cnSVpbW+tcCQDQaASfaqgsy46iKB5N8ookmxVFMawsy7mruGXbHu2/rNPiGLCGDx+eI444IkccccRaz3XxxRfn4osvXvui6jR/T6ecckpOOeWUtZrjmGOOyTHHHFOjigAAAAAAgJWZdeBpSezMAQC8WHO9C9gA/aFHe6/VjH1dj/Z966AWAAAAAAAAAADYIAk+1d7/9Gi/ZTVje77+s3VQCwAAAAAAAAAAbJAEn2rv5iSLutonFUWx1coGFUWxe5IjurpPJ/nJui8NAAAAAAAAAAA2DIJPNVaW5TNJrurqjkjy3y8MPxVFsWOSH+T5z//FZVkuXG9FAgAAAAAAQEW0PvVQWp96KHP/cm+9SwEAGkxLvQuomqIo7kiyf1f3grIsP7mSYZ9I8tYk2ydpS/Knoii+neQfSYok/5xkSNfYXyW5ch2WDAAAAAAAAJU1/L7vJEmm35dsd+736lwNANBIBJ/WgbIs5xRFcWCS/0mye5LRSU5cydD/TXJkWZaL12N5AAAAAAAAAABQeY66W0fKspyWZbs9nZRlAaenkyxO8kySnyY5JslBZVnOqluRAAAAAAAAAABQUXZ8SlKW5fFJju/j2AP6Me/iJNd2fQAAAAAAAAAAADVixycAAAAAAAAAAKByBJ8AAAAAAAAAAIDKEXwCAAAAAAAAAAAqR/AJAAAAAAAAAACoHMEnAAAAAAAAAACgcgSfAAAAAAAAAACAymmpdwEAAAAAAAAAvVk8csskydChQ+tcCQDQaASfAAAAAAAAgIY15/XvS5Ls2NZW50oAgEbjqDsAAAAAAAAAAKByBJ8AAAAAAAAAAIDKEXwCAAAAAAAAAAAqp6XeBQAAAAAAAAD0ZtBjU5Iks5uezcg9D65zNQBAIxF8AgAAAAAAABrWsKk/SZI8MzWCTwDAChx1BwAAAAAAAAAAVI7gEwAAAAAAAAAAUDmOuoMBYPLkybntttty//3359FHH017e3taW1uzySabZJdddsn++++fQw89NMOHD1/lPBMmTMj3v//9VY5pbW3NkCFDsummm2bcuHE56KCD8uY3v3m1c/d1/lW5+uqrc9BBB63x/ZMnT87NN9+c++67L9OnT8/ChQszevTo7LzzzjnooIPyjne8I4MGDXrRff/3f/+Xt73tbZkzZ06S5P/9v/+XK6+8ss/r3nPPPTn++OOzZMmSDBo0KBMnTswuu+yyxu8DAAAAAAAAAAYCOz7BBuzuu+/OkUcemWOOOSZf/vKXM2XKlDz33HNZtGhROjo68vjjj+e2227Leeedlze96U2ZOHHiWq+5aNGizJ49O3/7299y++23Z8KECTnggANy88031+AdrRtz587NmWeemWOOOSbf/e5388gjj2Tu3LlZtGhRnn766fzqV7/K+eefn0MPPTR/+tOfXnT/1ltvnfPPP7+7/9Of/rTPAa4ZM2bkIx/5SJYsWZIkGT9+vNATAAAAAAAAAPSBHZ9gA9TZ2ZnLL7881113Xfe11tbW7LXXXimKIqNHj86CBQvyyCOPZNKkSZkzZ05mzpyZ888/Pw888EA+85nPpKmpaZVr7Lvvvtl3331ftO6iRYsyc+bMPProo7nnnnvS0dGROXPm5GMf+1geeuihnH322X16Dyubf3V22GGHfo1PksWLF+eUU07Jr3/96yRJU1NT9t133+y+++4ZNGhQHn300dx2222ZO3dupk2bluOOOy433XRTxo0bt8I8b3vb2/KLX/wiP/7xj5Mkn/nMZ7LXXnvlJS95Sa9rd3Z2Zvz48XnqqaeSJG984xtz7LHH9vs9AAAAAAAAAMBAJPgEG6ALL7wwX//615MsC/K8+93vzsknn5wxY8a8aOy8efNy1VVX5frrr0+SfPe7381mm22WM844Y5Vr7LHHHjnhhBNWOWbOnDm57LLLctNNNyVJbrzxxmy55ZY57rjjVvse+jJ/LUycOLE79LTZZpvlmmuuyate9aoVxpx99tk57bTTcu+992b27Nk599xzu99TT5/85Cdz33335cknn0x7e3smTJiQr371q2luXvnmev/5n/+ZSZMmJUm23HLLfPazn63xuwMAAAAAAACADZej7mADc8stt3SHnpqbm3P55ZfnvPPOW2noKUmGDBmS8ePHZ/z48d3Xrr322jz44INrXcuIESNywQUX5KSTTuq+dumll+bxxx9f67lr5cYbb+xuX3bZZS8KPSXJmDFj8sUvfjGbb755kmTKlCmZMmXKi8aNGjUqF198cfduWffcc88K8/f0u9/9LldeeWWSZKONNspll12W0aNHr+3bAQAAAAAAAIABQ/AJNiDz5s1bYdegD33oQznssMP6dO/73//+tLW1JUmWLl2aq666qmZ1ffjDH+4OFC1atCjXXHNNzeZeG2VZZtq0aUmSnXbaKfvss0+vY0eMGJEjjjiiu//b3/52peP22WefHH/88d39K664In/+859XGDNjxoyceeaZWbJkSZLk5JNPzmtf+9o1fBcAAAAAAAAAMDAJPsEG5Ac/+EGeeeaZJMuObTvxxBP7df8HPvCBJMt2inrqqaeyaNGimtTV3Nyc0047rbv/wx/+MO3t7TWZe22UZdnd3m233VY7fptttuluP/30072OO/PMM7PjjjsmSRYuXJizzjqr+3PZ2dmZCRMmZPr06UmSvfbaKyeffPIa1Q8AAAAAAAAAA5ngE2xAbrnllu724YcfnkGDBvXr/je84Q257rrrcu+99+Y73/lOWltba1bbvvvum0033TTJsl2ffve739Vs7jX1lre8JXfccUcmTpy4wi5NvXnqqae620OHDu113KBBg3LppZd2f/7LsszVV1+dJPna176WX/7yl0mSTTbZJJdddlmam/1RDAAAAAAAvVm4+fZZuPn2Gbp9W71LAQAajO+2wwZi3rx5uf/++7v7e++9d7/naG5uzn777Zfhw4fXsLJlmpqa8prXvKa739tRcetTS0tLttpqq7z61a/ODjvssNrxt912W3d7++23X+XYnXbaKWeccUZ3//rrr8///u//5vOf/3z3tc9+9rMZO3bsGlQOAAAAAAADx9y2f8nctn/JlkefU+9SAIAGI/gEG4hHHnkkixcv7u6/+tWvrl8xvXjFK17R3f773/9ex0r678c//nH30Xitra3Zb7/9VnvPe9/73rzuda9LsmyXq5NPPjnz589Pkhx77LE58MAD113BAAAAAAAAALCBa6l3AUBtPPHEE93t1tbWjBkzpo7VrNzyo+6SZObMmascO2XKlNxwww19mnfXXXftDhitC4899lguuOCC7v4xxxzTp89vU1NTLr744rztbW/L7Nmz09nZ2V3v+PHj11m9AAAAAAAAADAQCD6xTsz41cTMvPPbfRo74tUHZfPDPrjCtaf/54uZc//tfbp/9D/9S8bsd/QK156ceFE6Hp7cp/s3O/SkjNzz4BWuTbthfBY++Uif7h971IQM2/G1K1z7+xXvz5L251Za27rS0dHR3R49evR6WbO/hgwZ0t1+7rnnVjn2rrvuyl133dWneY899th1Fnx69tlnc+KJJ3YHtbbZZpuccsopfb5/q622yrve9a7853/+Z/e1t7/97Rk0aFCtSwUAAAAAAACAAcVRd7CB2GijjbrbixYtqmMlvVu4cGF3u7m58f/4efrpp3P88cfnkUeWheCGDh2aK6+8MiNHjuzzHI899li++c1vrnDtyiuvzLRp02paKwAAAAAAbKg2fuhX2fihX2XGrybWuxQAoMHY8Qk2ECNGjOhuz549O0uWLFkhDNUI5syZ091eXXjolFNOyamnnrquS+rVY489lve97335xz/+kSQZPHhwrrrqquyyyy59nmPRokU588wz097eniRpaWnJ4sWL097enrPOOivf+MY3KhEAAwAAAACAehry10lJkpl/zXo7aQMAqAbBJ9aJMfsdvVZ/8dz8sA++6Pi7/tjy6HPW+N4keekJl67V/S87/fq1un9NbLvttt3tpUuXZsaMGdl8883Xex2rMmPGjO72JptsUsdKVm3KlCk5+eSTu+sdMmRIrr766uy77779muff//3f88ADDyRJtt5663zyk5/MSSedlM7OzkyePDnXXnttPvCBD9S8fgAAAAAAAAAYCGw1AhuIbbfddoVdlKZMmbJG80yaNClTp07N0qVLa1Vat6lTp3a3d91115rPXws//vGPc9xxx3WHnkaNGpUbb7yx36GnSZMm5cYbb+zuf/KTn8z++++fo49+PhB41VVX5Y9//GNtCgcAAAAAAACAAUbwCTYQzc3N2Xvvvbv7d9111xrN84lPfCJHHnlkXve61+X222+vVXlZuHBh/vSnP3X3X/nKV9Zs7lq54YYbcuaZZ2bBggVJlu3S9F//9V/Zc889+zXPM888k7PPPjudnZ1Jkne+853Zf//9kyRnn312XvaylyVZdhTeRz/60cybN6+G7wIAAAAAAAAABgbBJ9iAHH744d3t2267LfPnz+/X/ffcc0+mTZuWJJk1a1aKoqhZbbfeems6OjqSLNtFaZ999qnZ3LVw5ZVX5pJLLukOK+28886ZOHFitt9++37N09nZmbPPPjvPPPNMkuQVr3hFJkyY0P360KFDc8kll2SjjTZKkvztb3/LxRdfXKN3AQAAAAAAAAADh+ATbEDe9KY35SUveUmS5Nlnn83111/f53s7OzvzhS98obv/hje8Idtss01N6lqyZEm+8pWvdPff+ta3ZtCgQTWZuxZuvPHGXH311d39ffbZJ9/4xjeyxRZb9Huu66+/PpMmTUqStLa25rLLLsuQIUNWGPPqV786J554Ynf/pptuyh133LFmxQMAAAAAAADAACX4BBuQ1tbWnHnmmd39a665Jj/5yU/6dO+ll16ayZMnJ1l2bN7pp59es7quvPLKTJ06NcmyHY8+8IEP1GzutXXvvffmsssu6+6/8Y1vzLXXXpvhw4f3e67f//73ueKKK7r7p512WnbbbbeVjv3Qhz6UXXfdtbt/zjnn5Nlnn+33mgAAAAAAAAAwUAk+wQbm8MMPz9ve9rYky3ZaOuOMM/LpT3+611DNk08+mdNPPz033HBD97VTTjklu++++1rX8swzz+T888/Pl770pe5rEyZMyOabb77Wc9fCwoULc/bZZ2fJkiVJlu3EdMUVV6zRblTt7e0588wzs2jRoiTJXnvtlfe///29jm9tbc2ll16ajTfeOMmyHbrOPffcNXgXAAAAAAAAADAwtdS7AKD2LrroosyfPz8/+9nP0tnZmW984xuZOHFi9t577+yyyy4ZMWJE5syZk6lTp+aee+7pDuskyXvf+96cfPLJq11jypQpK4SlkmXH5XV0dGT27Nl58MEH88ADD2ThwoXdr3/wgx/M0UcfXbs3upZuvvnmPP744939XXfdNV//+tf7dO8OO+yQ/fbbr7v/8Y9/PNOmTUuSjBw5Mpdcckmam1edLR03blw++tGP5jOf+UyS5Be/+EW+9a1v5V3veld/3woAAAAAAAAADDiCT7ABam1tzZVXXpmvf/3rufrqqzNz5swsWrQokyZNyqRJk1Z6z+abb55zzjknb3nLW/q0xl133ZW77rqrT2PHjh2bs88+O4cddlif38P68P3vf3+F/je/+c0+3/uOd7yjO/j0ne98Jz/+8Y+7X7vggguy1VZb9Wmed7/73bnjjju6f10+97nPZe+99852223X51oAAAAAAAAAYCASfIINVFNTU4499tgceeSRuf3223PnnXfmz3/+c6ZPn56Ojo4MHjw4m222WXbbbbcccMABOfTQQ9foiLcXGjRoUIYNG5att946O+20U/bff/8ccMABGTx4cA3eVW395S9/Wes5/vrXv+bCCy/s7r/97W/vc3gsWfbrdNFFF+Wtb31rZs2alXnz5uWjH/1oJk6cmNbW1rWuDwAAAAAAqm7BS1+dJNlss83qWwgA0HAEn2ADN3z48BxxxBE54ogj1nquiy++OBdffPHaF1Wn+V9oypQpaz3HuHHjcv/996/VHGPHjs0999yz1rUAAAAAAMCGqGO3ZT9wvHlbW50rAQAaTXO9CwAAAAAAAAAAAOgvwScAAAAAAAAAAKByBJ8AAAAAAAAAAIDKaal3AQAAAAAAAAC9GfrHHydJnn7ynmx+2AfrXA0A0Ejs+AQAAAAAAAA0rMHT7s/gafdnzv2317sUAKDBCD4BAAAAAAAAAACVI/gEAAAAAAAAAABUjuATAAAAAAAAAABQOYJPAAAAAAAAAABA5Qg+AQAAAAAAAAAAlSP4BAAAAAAAAAAAVI7gE8AGoLOzs94lAAAAAAAAAMB6JfjEKjU1NSVJli5dWudKgFVZHnxa/nsWAAAAAAAAADZ0gk+sUnPzsi+RJUuW1LkSYFUWL16cJNloo43qXAkAAAAAAAAArB8t9S6AxjZkyJC0t7dn7ty5GT16dL3LAXoxZ86cJMnQoUPrXAkAAAAAANTWvHFvSJJstfXWda4EAGg0gk+s0rBhw9Le3p729nbBJ2hQnZ2dmT17dpJkxIgRda4GAAAAAABqa/4O+yVJxrS11bkSAKDROOqOVRo+fHiSZbvJzJo1q87VAC/U2dmZJ554IvPnz09zc3P371kAAAAAAAAA2NDZ8YlVGjRoUMaOHZvp06fniSeeSEdHR0aNGpWNN944TU1NaWpqqneJMKB0dnams7Mzixcvzpw5czJ79uzMnz8/TU1N2WabbdLcLM8KAAAAAAAAwMAg+MRqjRkzJosWLcqMGTMyc+bMzJw5s94lVdrSpUuTRECFmmlubs4222yToUOH1rsUAAAAAAAAAFhvBJ/ok7Fjx2b06NGZNWtWZs+encWLF6ezs7PeZVXS/Pnzk0RIhTXW1NSUjTbaKEOHDs2IESMyfPhwQToAAAAAADZYwyZ/O0ny5MM/zZZHn1PnagCARiL4RJ8NHjw4W2yxRbbYYot6l1JpkydPTpLsvPPOda4EAAAAAACg8Q16+uEkScfTdS4EAGg4tggBAAAAAAAAAAAqR/AJAAAAAAAAAACoHMEnAAAAAAAAAACgcgSfAAAAAAAAAACAyhF8AgAAAAAAAAAAKkfwCQAAAAAAAAAAqBzBJwAAAAAAAAAAoHIEnwAAAAAAAAAAgMoRfAIAAAAAAAAAACqnpd4FAAAAAAAAAPRm7q6HJkletu22da4EAGg0gk8AAAAAAABAw1q4zR5JkpF7ttW5EgCg0TjqDgAAAAAAAAAAqBzBJwAAAAAAAAAAoHIEnwAAAAAAAAAAgMppqXcBAAAAAAAAAL0Z8esbkyTT7r8pLz3h0jpXAwA0EsEnAAAAAAAAoGG1zH4ySbJwdp0LAQAajqPuAAAAAAAAAACAyhF8AgAAAAAAAAAAKkfwCQAAAAAAAAAAqBzBJwAAAAAAAAAAoHIEnwAAAAAAAAAAgMoRfAIAAAAAAAAAACpH8AkAAAAAAAAAAKgcwScAAAAAAAAAAKByBJ8AAAAAAAAAAIDKaal3AQAAAAAAAAC9ad/zqCTJuHHj6lwJANBoBJ8AAAAAAACAhrVoix2SJMN2bKtzJQBAo3HUHQAAAAAAAAAAUDmCTwAAAAAAAAAAQOUIPgEAAAAAAAAAAJXTUu8CAAAAAAAAAHoz6hdXJkn+Pqk1Lzv9+jpXAwA0EsEnAAAAAAAAoGE1L2hPkixZUOdCAICG46g7AAAAAAAAAACgcgSfAAAAAAAAAACAyhF8AgAAAAAAAAAAKkfwCQAAAAAAAAAAqBzBJwAAAAAAAAAAoHIEnwAAAAAAAAAAgMoRfAIAAAAAAAAAACpH8AkAAAAAAAAAAKgcwScAAAAAAAAAAKByWupdAAAAAAAAAEBvZu/z3iTJzjvvXOdKAIBGI/gEAAAAAAAANKwlo7ZKkgzealydKwEAGo2j7gAAAAAAAAAAgMoRfAIAAAAAAAAAACpH8AkAAAAAAAAAAKiclnoXAAAAAAAAANCbTW69KEnyyK3Jdud+r87VAACNxI5PAAAAAAAAAABA5Qg+AQAAAAAAAAAAlSP4BAAAAAAAAAAAVI7gEwAAAAAAAAAAUDmCTwAAAAAAAAAAQOUIPgEAAAAAAAAAAJUj+AQAAAAAAAAAAFSO4BMAAAAAAAAAAFA5gk8AAAAAAAAAAEDlCD4BAAAAAAAAAACV01LvAgAAAAAAAAB6M/OAU5Mku+++e50rAQAajeATAAAAAAAA0LA6Nx6RJGkZMabOlQAAjcZRdwAAAAAAAAAAQOUIPgEAAAAAAAAAAJUj+AQAAAAAAAA0rKb5c9I0f04Wz5lR71IAgAbTUu8CAAAAAAAAAHoz+o7/SJL8445ku3O/V99iAICGYscnAAAAAAAAAACgcgSfAAAAAAAAAACAyhF8AgAAAAAAAAAAKkfwCQAAAAAAAAAAqBzBJwAAAAAAAAAAoHIEnwAAAAAAAAAAgMoRfAIAAAAAAAAAACpH8AkAAAAAAAAAAKgcwScAAAAAAAAAAKByBJ8AAAAAAAAAAIDKaal3AQAAAAAAAAC9ee6Qc5IkbW1tda4EAGg0dnwCAAAAAAAAAAAqR/AJAAAAAAAAAACoHMEnAAAAAAAAAACgcgSfAAAAAAAAgIa10awnstGsJ7Lgib/WuxQAoMG01LsAAAAAAAAAgN6M/M2XkySP/ybZ7tzv1bkaAKCR2PEJAAAAAAAAAACoHMEnAAAAAAAAAACgcgSfAAAAAAAAAACAyhF8AgAAAAAAAAAAKkfwCQAAAAAAAAAAqBzBJwAAAAAAAAAAoHIEnwAAAAAAAAAAgMoRfAIAAAAAAAAAACpH8AkAAAAAAAAAAKiclnoXAAAAAAAAANCbpYOHJ0laW1vrXAkA0GgEnwAAAAAAAICGNevA05IkbW1tda4EAGg0jroDAAAAAAAAAAAqR/AJAAAAAAAAAACoHMEnAAAAAAAAAACgclrqXQAAAAAAAABAb1qfeihJMvcvSzNsx9fWuRoAoJEIPgEAAAAAAAANa/h930mSTL8v2e7c79W5GgCgkTjqDgAAAAAAAAAAqBzBJwAAAAAAAAAAoHIEnwAAAAAAAAAAgMoRfAIAAAAAAAAAACpH8AkAAAAAAAAAAKgcwScAAAAAAAAAAKByBJ8AAAAAAAAAAIDKEXwCAAAAAAAAAAAqR/AJAAAAAAAAAAConJZ6FwAAAAAAAADQm8Ujt0ySDB06tM6VAACNRvAJAAAAAAAAaFhzXv++JMmObW11rgQAaDSOugMAAAAAAAAAACpH8AkAAAAAAAAAAKgcwScAAAAAAAAAAKByWupdAAAAAAAAAEBvBj02JUkyu+nZjNzz4DpXAwA0EsEnAAAAAAAAoGENm/qTJMkzUyP4BACsYEAGn4qieEWS05IcnOTlSZYmmZbkp0m+VJbln2u0zpAk701yZJLdk4xOMjfJQ11rfbEsy/+rxVoAAAAAAAAAADCQNNe7gPWtKIp/TfLHJB9OskuSoUmGJ9kpyelJfl8UxWk1WGe3JA8kuTrJm5JsnqQ1y8JPr01yXpKyqx4AAAAAAAAAAKAfBlTwqSiKw5J8LcvCTklyd5LPdH38uuvaoCRXFEVx3Fqss02S25Ns33VpVpKvJvlEkv9M8veu68OTfL0oiqPWdC0AAAAAAAAAABiIBsxRd0VRDE9yfZ4Pe51RluUXegz5eFEUJyb5UpKmJFcVRfHjsiyfXoPlPpdkbFf7p0neXZblMz1q2TjJJUlO7VrrmqIo/qcsy441WAsAAAAAAAAAAAacgbTj04lJtuxq3/SC0FOSpCzLa5Nc2tUdnmR8fxcpimJYkiO7uu1J3tkz9NS1zvwsO1bvvq5LmyV5c3/XAgAAAAAAAACAgWogBZ96Hl33uVWM+1ySBV3tY4qiaOrnOtsnGdzV/kNZljNXNqgsy84sOw5vuXH9XAcAAAAAAAAAAAasARF8KopiyyS7d3WfKMvy/t7GlmU5I8ndXd2XJHltP5db0qO99WrGbtqj/UyvowAAAAAAAAAAgBUMiOBTkj16tO/uddTKx+zdz7X+mmRhV/tlRVEcs7JBRVFsl+RfuroLk9zRz3UAAAAAAAAAAGDAaql3AevJDj3af+vD+H/0aG/fn4XKspxXFMUNST7YdekrRVG8NskNSR5JskWSQ5N8MsmIrjGfLMvyHy+cCwAAAAAAAAAAWLmBEnzaqkd7Wh/G/1+P9tg1WO/sJK9M8oYkrUk+3PXxQtOSnF+W5ZfXYA0AAAAAAADY4C3cfNk+BaNHjapzJQBAoxkowaeefwvq6MP4eT3aI/u7WFmWc4qiOCjJB5JclGRoL0PvSvKb/s4PAAAAAAAAA8Xctn9JkuzU1lbnSgCARjNQgk+De7Tn92F8z+DT4F5HrdrRSU7PstDT9CQ/yLIj9DZNckiSXbrGvKMoipPKsvzKGq6zWu3t7Zk8efK6mp415NcEgFryXAGgVjxTAKg1zxYAasUzBYBa8lzZMAyU4NOSHu3Oft7b3/EpiuLf8/zRdl9LcnJZlnN7vP7RJCcn+UKSQUluKIri8bIsb+vvWgAAAAAAAAAAMBANlOBTe4/2xn0YP6RHuy87RHUriuKteT709PMk7y3LcmnPMWVZdia5uiiKwUkuT9Kc5MokO/dnrb4aPnx4iqJYF1OzBpanRttsxwpADXiuAFArnikA1NR/TetuerYAsLb8/woAteS50njKskx7e/vqB65Ec41raVQ9PztD+zC+Z/BpVj/X+miP9rkvDD29wJVZdvxdkuxUFMVr+7kWAAAAAAAAbNA2fuhX2fihX2XGrybWuxQAoMEMlODTEz3aW/dh/Et6tJ/s6yJFUQxKsk9Xd06Se1Y1vizLxUlu73Fpz76uBQAAAAAAAAPBkL9OypC/TsrMO79d71IAgAYzUIJPU3u0X96H8dv2aP+lH+tslqS1qz2z60i71ekZrBrVj7UAAAAAAAAAAGDAGijBpz8mWR5C6stxcq/r0b6vH+t09GiPLYpioz7cs2mP9ox+rAUAAAAAAAAAAAPWgAg+lWU5I8lvu7ovK4pi197GFkWxaZK9urrPJpncj3VmJnm6qzsoyYGrGl8URdMLxvy+r2sBAAAAAAAAAMBANiCCT10m9mh/chXjPpZloaUk+UZZlkv7uc6PerQ/VRTFqj7HxyXZsav9aJLf9XMtAAAAAAAAAAAYkAZS8On6JI91tf+5KIpPd+241K0oihOTnNnVnZfksjVY56IkC7ra+ySZWBTFyBcOKori6CTX9Lh0XlmWnS8cBwAAAAAAAAAAvFhLvQtYX8qynFsUxclJfphlga/zkry9KIr/TrI4yZuS7Nvjlg+XZTnthfMURfGVLNupKUm+Wpbl8S9Y55GiKP4tyde6Lv1zkoOLovhBkoeSDEtyUJLX9Ljt+rIsv7lWbxAAAAAAAAAAAAaQARN8SpKyLG8piuLdSa7LsgDSK7s+elqc5KyyLK9di3W+XhTF3CQ3JBmdZGSSY1cydEmSi5N8fE3XAgAAAAAAAACAgWggHXWXJCnL8ltJdk5yaZKpSdqz7Gi6v2ZZIGqPsiz/vQbr3Jzk5UnGJ/lFkulJFiWZleT3ST6fZOeyLB1xBwAAAAAAAAAA/TSgdnxarizLx5Kc1fXR33uPT3J8H8fOSnJZ1wcAAAAAAAAAAFAjAzL4BAAAAAAAAFTDgpe+Okmy2Wab1bcQAKDhCD4BAAAAAAAADatjt7ckSTZva6tzJQBAo2mudwEAAAAAAAAAAAD9JfgEAAAAAAAAAABUjuATAAAAAAAAAABQOS31LgAAAAAAAACgN0P/+OMkydNP3pPND/tgnasBABqJHZ8AAAAAAACAhjV42v0ZPO3+zLn/9nqXAgA0GMEnAAAAAAAAAACgcgSfAAAAAAAAAACAyhF8AgAAAAAAAAAAKkfwCQAAAAAAAAAAqBzBJwAAAAAAAAAAoHIEnwAAAAAAAAAAgMoRfAIAAAAAAAAAACpH8AkAAAAAAAAAAKgcwScAAAAAAAAAAKByWupdAAAAAAAAAEBv5o17Q5Jkq623rnMlAECjEXwCAAAAAAAAGtb8HfZLkoxpa6tzJQBAo3HUHQAAAAAAAAAAUDmCTwAAAAAAAAAAQOUIPgEAAAAAAAAAAJXTUu8CAAAAAAAAAHozbPK3kyRPPvzTbHn0OXWuBgBoJIJPAAAAAAAAQMMa9PTDSZKOp+tcCADQcBx1BwAAAAAAAAAAVI7gEwAAAAAAAAAAUDmCTwAAAAAAAAAAQOUIPgEAAAAAAAAAAJUj+AQAAAAAAAAAAFSO4BMAAAAAAAAAAFA5gk8AAAAAAAAAAEDlCD4BAAAAAAAAAACVI/gEAAAAAAAAAABUTku9CwAAAAAAAADozdxdD02SvGzbbetcCQDQaASfAAAAAAAAgIa1cJs9kiQj92yrcyUAQKNx1B0AAAAAAAAAAFA5gk8AAAAAAAAAAEDlCD4BAAAAAAAAAACV01LvAgAAAAAAAAB6M+LXNyZJpt1/U156wqV1rgYAaCSCTwAAAAAAAEDDapn9ZJJk4ew6FwIANBxH3QEAAAAAAAAAAJUj+AQAAAAAAAAAAFSO4BMAAAAAAAAAAFA5gk8AAAAAAAAAAEDlCD4BAAAAAAAAAACVI/gEAAAAAAAAAABUjuATAAAAAAAAAABQOYJPAAAAAAAAAABA5Qg+AQAAAAAAAAAAldNS7wIAAAAAAAAAetO+51FJknHjxtW5EgCg0Qg+AQAAAAAAAA1r0RY7JEmG7dhW50oAgEbjqDsAAAAAAAAAAKByBJ8AAAAAAAAAAIDKEXwCAAAAAAAAAAAqp6XeBQAAAAAAAAD0ZtQvrkyS/H1Sa152+vV1rgYAaCSCTwAAAAAAAEDDal7QniRZsqDOhQAADcdRdwAAAAAAAAAAQOUIPgEAAAAAAAAAAJUj+AQAAAAAAAAAAFSO4BMAAAAAAAAAAFA5gk8AAAAAAAAAAEDlCD4BAAAAAAAAAACVI/gEAAAAAAAAAABUjuATAAAAAAAAAABQOYJPAAAAAAAAAABA5bTUuwAAAAAAAACA3sze571Jkp133rnOlQAAjUbwCQAAAAAAAGhYS0ZtlSQZvNW4OlcCADQaR90BAAAAAAAAAACVI/gEAAAAAAAAAABUjuATAAAAAAAAAABQOS31LgAAAAAAAACgN5vcelGS5JFbk+3O/V6dqwEAGokdnwAAAAAAAAAAgMoRfAIAAAAAAAAAACpH8AkAAAAAAAAAAKgcwScAAAAAAAAAAKByBJ8AAAAAAAAAAIDKEXwCAAAAAAAAAAAqR/AJAAAAAAAAAACoHMEnAAAAAAAAAACgcgSfAAAAAAAAAACAyhF8AgAAAAAAAAAAKqel3gUAAAAAAAAA9GbmAacmSXbfffc6VwIANBrBJwAAAAAAAKBhdW48IknSMmJMnSsBABqNo+4AAAAAAAAAAIDKEXwCAAAAAAAAAAAqR/AJAAAAAAAAaFhN8+ekaf6cLJ4zo96lAAANpqXeBQAAAAAAAAD0ZvQd/5Ek+ccdyXbnfq++xQAADcWOTwAAAAAAAAAAQOUIPgEAAAAAAAAAAJUj+AQAAAAAAAAAAFSO4BMAAAAAAAAAAFA5gk8AAAAAAAAAAEDlCD4BAAAAAAAAAACVI/gEAAAAAAAAAABUjuATAAAAAAAAAABQOYJPAAAAAAAAAABA5Qg+AQAAAAAAAAAAldNS7wIAAAAAAAAAevPcIeckSdra2upcCQDQaOz4BAAAAAAAAAAAVI7gEwAAAAAAAAAAUDmCTwAAAAAAAAAAQOUIPgEAAAAAAAANa6NZT2SjWU9kwRN/rXcpAECDaal3AQAAAAAAAAC9GfmbLydJHv9Nst2536tzNQBAI7HjEwAAAAAAAAAAUDmCTwAAAAAAAAAAQOUIPgEAAAAAAAAAAJUj+AQAAAAAAAAAAFSO4BMAAAAAAAAAAFA5gk8AAAAAAAAAAEDlCD4BAAAAAAAAAACVI/gEAAAAAAAAAABUjuATAAAAAAAAAABQOS31LgAAAAAAAACgN0sHD0+StLa21rkSAKDRCD4BAAAAAAAADWvWgaclSdra2upcCQDQaBx1BwAAAAAAAAAAVI7gEwAAAAAAAAAAUDmCTwAAAAAAAAAAQOW01LsAAAAAAAAAgN60PvVQkmTuX5Zm2I6vrXM1AEAjEXwCAAAAAAAAGtbw+76TJJl+X7Ldud+rczUAQCNx1B0AAAAAAAAAAFA5gk8AAAAAAAAAAEDlCD4BAAAAAAAAAACVI/gEAAAAAAAAAABUjuATAAAAAAAAAABQOYJPAAAAAAAAAABA5Qg+AQAAAAAAAAAAlSP4BAAAAAAAAAAAVI7gEwAAAAAAAAAAUDkt9S4AAAAAAAAAoDeLR26ZJBk6dGidKwEAGo3gEwAAAAAAANCw5rz+fUmSHdva6lwJANBoHHUHAAAAAAAAAABUjuATAAAAAAAAAABQOYJPAAAAAAAAAABA5bTUuwAAAAAAAACA3gx6bEqSZHbTsxm558F1rgYAaCSCTwAAAAAAAEDDGjb1J0mSZ6ZG8AkAWIGj7gAAAAAAAAAAgMoRfAIAAAAAAAAAACpH8AkAAAAAAAAAAKgcwScAAAAAAAAAAKByBJ8AAAAAAAAAAIDKEXwCAAAAAAAAAAAqR/AJAAAAAAAAAACoHMEnAAAAAAAAAACgcgSfAAAAAAAAAACAymmpdwEAAAAAAAAAvVm4+fZJktGjRtW5EgCg0Qg+AQAAAAAAAA1rbtu/JEl2amurcyUAQKNx1B0AAAAAAAAAAFA5gk8AAAAAAAAAAEDlCD4BAAAAAAAAAACV01LvAgAAAAAAAAB6s/FDv0qSzJj7cMbsd3SdqwEAGongEwAAAAAAANCwhvx1UpJk5l8j+AQArMBRdwAAAAAAAAAAQOUIPgEAAAAAAAAAAJUj+AQAAAAAAAAAAFSO4BMAAAAAAAAAAFA5gk8AAAAAAAAAAEDlCD4BAAAAAAAAAACVI/gEAAAAAAAAAABUjuATAAAAAAAAAABQOYJPAAAAAAAAAABA5bTUuwAAAAAAAACA3ix46auTJJtttll9CwEAGo7gEwAAAAAAANCwOnZ7S5Jk87a2OlcCADQaR90BAAAAAAAAAACVI/gEAAAAAAAAAABUjuATAAAAAAAAAABQOS31LgAAAAAAAACgN0P/+OMkydNP3pPND/tgnasBABqJHZ8AAAAAAACAhjV42v0ZPO3+zLn/9nqXAgA0GMEnAAAAAAAAAACgcgSfAAAAAAAAAACAyhF8AgAAAAAAAAAAKkfwCQAAAAAAAAAAqBzBJwAAAAAAAAAAoHIEnwAAAAAAAAAAgMoRfAIAAAAAAAAAACqnpd4F1ENRFK9IclqSg5O8PMnSJNOS/DTJl8qy/HMN19ouyb8lOTTJtkmGJXk6yd1JbizL8n9qtRYAAAAAAAAAAAwUA27Hp6Io/jXJH5N8OMkuSYYmGZ5kpySnJ/l9URSn1Wit8UmmJpmQ5FVJNkkyKMlLkhyZ5JaiKL5fFMWQWqwHAAAAAAAAAAADxYDa8akoisOSfC3PB77uTnJbV/uNSV6fZcGkK4qimFWW5VfXYq1PJfl4j0u/SvKbJPO61jm46/oRSb6R5P9b07UAAAAAAABgQzVv3BuSJFttvXWdKwEAGs2ACT4VRTE8yfV5PvR0RlmWX+gx5ONFUZyY5EtJmpJcVRTFj8uyfHoN1to3yXld3Y4kR5dlecsLxhyU5L+TbJzkyKIo/l9Zlj/t71oAAAAAAACwIZu/w35JkjFtbXWuBABoNAPpqLsTk2zZ1b7pBaGnJElZltcmubSrOzzJ+DVc66osC08lyTteGHrqWuv2JJ/tcen4NVwLAAAAAAAAAAAGnIEUfDquR/tzqxj3uSQLutrHFEXRtIqxL1IUxR5JXt3Vvaksy5+tYviNSR7KsiP35vRnHQAAAAAAAAAAGMgGxFF3RVFsmWT3ru4TZVne39vYsixnFEVxd5L9krwkyWuT3NOP5d7Zo335qgaWZTktyY79mBsAAAAAAAAAAMjA2fFpjx7tu/swvueYvfu51j5d/52ZZHI/7wUAAAAAAAB6GDb52xk2+dt5cuJF9S4FAGgwA2LHpyQ79Gj/rQ/j/9GjvX0/13pl13//XJZlZ1EUzUneleTdWbbr1KZJnkpyR5L/KMvy3n7ODwAAAAAAAAPGoKcfTpJ0PF3nQgCAhjNQdnzaqkd7Wh/G/1+P9ti+LlIUxRZJRnd1nyiKYtskdyb5RpJDkmydZHCSbZK8J8ndRVF8riiKpr6uAQAAAAAAAAAADJwdn0b1aHf0Yfy8Hu2R/VhndI/2oCS3Jtm5a74fJpmaZHiSg7Ps+L2mJGclaU1yZj/WAQAAAAAAAACAAW2gBJ8G92jP78P4nsGnwb2OerHhPdqHdf13SpIjyrLseXzehKIoTk7yH1m269YZRVH8pCzL2/qxVp+1t7dn8uTJ62Jq1oJfEwBqyXMFgFrxTAGg1jxbAFhbm/Roe64AUCueKRuGgXLU3ZIe7c5+3tuf8UNf0J+e5JAXhJ6SJGVZXpPk4h6XzutnXQAAAAAAAAAAMGANlB2f2nu0N+7D+CE92n3ZIWq5BS/of74sy6dWMf6SJGd0rfeGoijGlGU5ox/r9cnw4cNTFEWtp2UNLU+NtrW11bkSADYEnisA1IpnCgA19V/TupueLQCsrUdufb7tuQLA2vLvYI2nLMu0t7evfuBKDJQdn3p+dl64K9PK9Aw+zerHOnNe0P/pqgaXZTkrye+6us1JXtWPtQAAAAAAAAAAYMAaKMGnJ3q0t+7D+Jf0aD/Zj3WefUH///pwz+M92pv2Yy0AAAAAAAAAABiwBkrwaWqP9sv7MH7bHu2/9HWRsiyfTvJMj0uj+3Bbz+MGX7hjFAAAAAAAAAAAsBIDJfj0xySdXe3X9mH863q07+vnWr/v0X5lH8a/okf7sX6uBQAAAAAAAAAAA9KACD6VZTkjyW+7ui8rimLX3sYWRbFpkr26us8mmdzP5W7p0X7nqgYWRbFVkld1dacnKfu5FgAAAAAAAGzQ5u56aObuemg2O/SkepcCADSYARF86jKxR/uTqxj3sSSDutrfKMtyaT/X+VaSRV3tfy6KYt9VjP1knj/q7qayLJf0cy0AAAAAAADYoC3cZo8s3GaPjNzz4HqXAgA0mIEUfLo+zx8l989FUXy6KIqmngOKojgxyZld3XlJLuvvImVZTk9ySVe3KckPXhh+KoqiqSiKjyU5sevS7DVZCwAAAAAAAAAABqqW1Q/ZMJRlObcoipOT/DDLAl/nJXl7URT/nWRxkjcl6RlQ+nBZltNeOE9RFF9JclxX96tlWR6/kuU+neQNSfZPslmSSUVR3JZlx+1tlOSwPH/EXZKctrK1AAAAAAAAAACAlRswwackKcvylqIo3p3kuiTDkryy66OnxUnOKsvy2rVYZ0FRFIcmuTbJu7suv7nro6cFSd5XluV/relaAAAAAAAAAAAwEA2ko+6SJGVZfivJzkkuTTI1SXuWBZD+mmWBqD3Ksvz3GqwzryzL92TZLlLXJ3k4SUeS+UkeTPKFJDsLPQEAAAAAAEDvRvz6xoz49Y2ZdsP4epcCADSYAbXj03JlWT6W5Kyuj/7ee3yS4/sx/tdJft3fdQAAAAAAAICkZfaTSZKFs+tcCADQcAbcjk8AAAAAAAAAAED1CT4BAAAAAAAAAACVI/gEAAAAAAAAAABUjuATAAAAAAAAAABQOYJPAAAAAAAAAABA5Qg+AQAAAAAAAAAAlSP4BAAAAAAAAAAAVI7gEwAAAAAAAAAAUDmCTwAAAAAAAAAAQOW01LsAAAAAAAAAgN6073lUkmTcuHF1rgQAaDSCTwAAAAAAAEDDWrTFDkmSYTu21bkSAKDROOoOAAAAAAAAAACoHMEnAAAAAAAAAACgcgSfAAAAAAAAAACAymmpdwEAAAAAAAAAvRn1iyuTJH+f1JqXnX59nasBABqJ4BMAAAAAAADQsJoXtCdJliyocyEAQMNx1B0AAAAAAAAAAFA5gk8AAAAAAAAAAEDlCD4BAAAAAAAAAACVI/gEAAAAAAAAAABUjuATAAAAAAAAAABQOYJPAAAAAAAAAABA5Qg+AQAAAAAAAAAAlSP4BAAAAAAAAAAAVI7gEwAAAAAAAAAAUDkt9S4AAAAAAAAAoDez93lvkmTnnXeucyUAQKMRfAIAAAAAAAAa1pJRWyVJBm81rs6VAACNxlF3AAAAAAAAAABA5Qg+AQAAAAAAAAAAlSP4BAAAAAAAAAAAVE5LvQsAAAAAAAAA6M0mt16UJHnk1mS7c79X52oAgEZixycAAAAAAAAAAKByBJ8AAAAAAAAAAIDKEXwCAAAAAAAAAAAqR/AJAAAAAAAAAACoHMEnAAAAAAAAAACgcgSfAAAAAAAAAACAyhF8AgAAAAAAAAAAKkfwCQAAAAAAAAAAqBzBJwAAAAAAAAAAoHIEnwAAAAAAAAAAgMppqXcBAAAAAAAAAL2ZecCpSZLdd9+9zpUAAI1G8AkAAAAAAABoWJ0bj0iStIwYU+dKAIBG46g7AAAAAAAAAACgcgSfAAAAAAAAAACAyhF8AgAAAAAAABpW0/w5aZo/J4vnzKh3KQBAg2mpdwEAAAAAAAAAvRl9x38kSf5xR7Ldud+rbzEAQEOx4xMAAAAAAAAAAFA5gk8AAAAAAAAAAEDlCD4BAAAAAAAAAACVI/gEAAAAAAAAAABUjuATAAAAAAAAAABQOYJPAAAAAAAAAABA5bSszc1FUezX1fy/siwfrkE9AAAAAAAAAAAAq7W2Oz7dkeQXSc5c+1IAAAAAAAAAAAD6Zq12fOqPoij2TlIkSVmWX1tf6wIAAAAAAAAAABuetd3xqT+OT/KVJDeuxzUBAAAAAAAAAIAN0Hrb8amHpjqsCQAAAAAAAFTQc4eckyRpa2urcyUAQKNZnzs+AQAAAAAAAAAA1ITgEwAAAAAAAAAAUDmCTwAAAAAAAAAAQOUIPgEAAAAAAAANa6NZT2SjWU9kwRN/rXcpAECDaal3AQAAAAAAAAC9GfmbLydJHv9Nst2536tzNQBAI7HjEwAAAAAAAAAAUDmCTwAAAAAAAAAAQOUIPgEAAAAAAAAAAJUj+AQAAAAAAAAAAFROS43m2booiv1WN2Z5oyiKf0rS1NfJy7L81ZoWBgAAAAAAAAAAbHhqFXx6a9dHXzQluaMfc3emdnUCAAAAAAAAAAAbgFoGila3g1Nn10dfxi4f3+ddoQAAAAAAAAAAgIGjFsGnvoaT+htiEnoCAAAAAAAAAABWam2DT6+oSRUAAAAAAAAAAAD9sFbBp7Is/16rQgAAAAAAAABeaOng4UmS1tbWOlcCADSaWhx1BwAAAAAAALBOzDrwtCRJW1tbnSsBABpNc70LAAAAAAAAAAAA6C/BJwAAAAAAAAAAoHLW2VF3RVHsm+TgJK9Nsl2SsUmGJlmYZGaSGUkeSHJvkp+VZfnndVULAAAAAAAAAAD8/+zde5ydVX0v/k/CJCEhJMpFAbkpxOUFFY2IqAfvFsWWWu8CirTisVVBK1bbaq1if6VgFcVqQThKbYVij1oUoZ6KbQWkGMA2KIuLoInlZoAkkxCSkPz+mJ3JTiBhz8xOnnlm3u/Xa16znmevyxez4XGyP7MWE0tfg0+llGlJ3p3kxCT7dL00pas9LclOSfZKclCSt3TG/jjJp2ut5/ezJgAAAAAAAKC9pt11U5JkxY3rstMTD2m4GgBgPOnbUXellGck+e8kpyfZNxvDTlO2MGTKZn2eneTvSymXl1L27VddAAAAAAAAQHvNvubCzL7mwtx54V82XQoAMM70ZcenUsqLk1yUZOZmL61Mcl2SW5IsSbIiyY5J5ibZJckzkhzY6bshBHVYkqtLKa+stV7Tj/oAAAAAAAAAAICJZczBp1LKPkm+mWRWkvUZCjBdkuTTSX5Qa13zCON3SfJbSf53kud05tg9yT+XUp5da71jrDUCAAAAAAAAAAATSz92fDoryc4ZCiwtT3JcrfWbvQ6utd6T5MtJvlxKeXOSv0kyJ8meSU5N8rY+1AgAAAAAAAAAAEwgU8cyuJTylCS/kaHQ08okLx5J6GlztdavJXlxklUZ2jnq6FLK3mOpEQAAAAAAAAAAmHjGFHxKcnRX+09qrdeOcb7UWq9L8ledyylJXjfWOQEAAAAAAAAAgIllrMGnF3S+r8rQkXf98vkk6zrt5/dxXgAAAAAAAAAAYAIYa/Bpvwwdc/fftdZVfagnSVJr/XWS6zO049NT+jUvAAAAAAAAAAAwMYw1+LRL5/uisRbyMG7ufH/MNpgbAAAAAAAAAABosbEGn2Z2vi8dayEP497O9523wdwAAAAAAAAAAECLDYxx/A4ZOupudR9q2dyazvdp22BuAAAAAAAAoAXWztkjSTJr1qyGKwEAxpuxBp8AAAAAAAAAtpnlzzs+SfLE+fMbrgQAGG/GetQdAAAAAAAAAADAdif4BAAAAAAAAAAAtI7gEwAAAAAAAAAA0DoDfZpn51LKvn2aa3jOPs8HAAAAAAAAtMz0RdcmSZZNWZI5z3pFw9UAAONJv4JPb+l8AQAAAAAAAPTNTtd/N0ny6+sj+AQAbKJfwackmdLHuZJkfZ/nAwAAAAAAAAAAJoh+BJ/6HXja1vMCAAAAAAAAAAAtN9bg04v7UgUAAAAAAAAAAMAIjCn4VGv9t34VAgAAAAAAAAAA0KupTRcAAAAAAAAAAAAwUo0Hn0opTy6lvKDpOgAAAAAAAAAAgPYY01F3myulTElyfJLfT3JKrfUbPQw7Psn7Sym/TPIXSc6ttT7Yz7oAAAAAAAAAAICJpW87PpVS5iW5NslZSQ5O8vweh74wyZQk+yX5YpIflVIe36+6AAAAAAAAAACAiacvwadSyrOT/CjJ0zIUYkqSRzy+rpQyM0MhqSRZ3xk7P8lVpZQn9aM2AAAAAAAAAABg4hlz8KmUskeSf07y6K7btyQ5/5HG1lrvT7JnknckWdi5vT7JbkkuKaXMHWt9AAAAAAAAQHut3v3ArN79wMw6cH7TpQAA48xAH+Y4LckeGQosrU7yR0k+X2t9sJfBtdYlSc4ppZyb5H1JTs1QIGufJH+Z5F19qBEAAAAAAABooRXz35AkedJ8wScAYFNj2vGplLJ/krdkY+jpyFrrZ3sNPXWrta6vtf51kmMzdOTdlCTHd3aUAgAAAAAAAAAAGDbWo+6OyVBAKUn+stb6/THOl1rr+Um+3LkcyFAQCgAAAAAAAAAAYNhYg08v6Hx/IMkZY5yr2ykZ2kUqSQ7v47wAAAAAAAAAAMAEMNbg01MyFFD6ca31vrGXM6TW+vMkP83QblJP69e8AAAAAAAAQLvseNO/Z8eb/j33/PsFTZcCAIwzA2Mcv0vn+61jLeRhXJ/kqUl23QZzAwAAAAAAAC0w85YfJknuuyXZ5fA3NlwNADCejHXHpw3BqTVjLeRhLO98n74N5gYAAAAAAAAAAFpsrMGn+zrfd9lap1F6VOf78q11AgAAAAAAAAAAJp+xBp9uTjIlydP7UMvmntH5fvs2mBsAAAAAAAAAAGixsQafftz5/vhSylPHWswGnbkOTLI+ycJ+zQsAAAAAAAAAAEwMYw0+/XNX+4NjnKvbH3W1/7WP8wIAAAAAAAAAABPAWINPl2XjcXfHlFKOGmtBpZTfTHJM5/KBJN8Y65wAAAAAAAAAAMDEMqbgU611fZJPdi6nJPmHUsprRztfKeU1Sc7vXK5P8sVa65Kx1AgAAAAAAAAAAEw8Y93xKbXWryT5fudyZpJ/LKVcUEqZ3+scpZRDSikXJPl6Z471GdpJ6qNjrQ8AAAAAAAAAAJh4Bvo0z+uTXJnkiRna+el1SV5XSvmfJP+W5Ookdyb5dZIdk+yaZLck85O8JMnunXmmdL7fkeQ3a62DfaoPAAAAAAAAAACYQPoSfKq13ltKeX6SbyR5Qef2lCSPS/LmzteWTNns+qokb6613taP2gAAAAAAAID2emDvg5Mku+22W7OFAADjzpiPutug1rokyYuSnJhkyRa6TcmmQafu9i+T/O8kLxB6AgAAAAAAAJJk5UGvysqDXpXdj3xX06UAAONMv466S5LUWtcl+Vwp5awkb0pyVJL/laGj7bpNSbI+yU1JfpChnaL+pTMeAAAAAAAAAABgq/oafNqg1vpAkq90vlJK2T3JXkl2SvJgkqVJbqu1rtoW6wMAAAAAAAAAABPbNgk+ba7WeneSu7fHWgAAAAAAAAAAwMS3XYJPAAAAAAAAAKMxa+HFSZK77/jP7H7kuxquBgAYT6Y2XQAAAAAAAADAlsxYfF1mLL4uy6/7f02XAgCMM4JPAAAAAAAAAABA6wg+AQAAAAAAAAAArSP4BAAAAAAAAAAAtI7gEwAAAAAAAAAA0DqCTwAAAAAAAAAAQOsIPgEAAAAAAAAAAK0j+AQAAAAAAAAAALSO4BMAAAAAAAAAANA6gk8AAAAAAAAAAEDrDDRdAAAAAAAAAMCW3H/AC5Ike+61V8OVAADjjeATAAAAAAAAMG6tmnd4kmSX+fMbrgQAGG8cdQcAAAAAAAAAALSO4BMAAAAAAAAAANA6gk8AAAAAAAAAAEDrDDRdAAAAAAAAAMCW7LTgH5Mkd9x8afZ44x83XA0AMJ4IPgEAAAAAAADj1vS7b06SrLy74UIAgHHHUXcAAAAAAAAAAEDrCD4BAAAAAAAAAACtI/gEAAAAAAAAAAC0juATAAAATDCf/OQn8+xnPzullJRS8rSnPS3HHHNMlixZ0pf5165dm/nz56eUkmOOOaYvcwIwfl188cU55phj8qxnPSvPeMYzcuSRR+Zzn/tcVq5c2Zf5161bl6OPPjqllHzuc5/ry5wAAABMDoJPAAAAMIG89rWvzXnnnZfly5cP31u9enWuvvrqHH744bnxxhvHvMY73/nODA4OjnkeAMa/U089Ne973/ty9dVXZ/Xq1Zk6dWpuvvnmnHnmmXnNa16TX//612Ne40tf+lJ+/OMf96FaAAAAJhvBJwAAAJggPvaxj2XhwoVJkpe97GVZsGBBaq358Ic/nB122CFr164d8w5N3/72t/PDH/6wH+UCMM798z//c84999xMnTo1f/zHf5xrrrkm1157bc4777zstddeue2223LyySePaY2f/vSn+exnP9unigEAAJhsBJ8AAABgAli9enUuvPDCJMnBBx+cz3/+85k9e3aS5Ljjjhv+UHnp0qU555xzRrXGsmXL8uEPf7g/BQMwrj344IM588wzkyS/93u/l7e97W2ZPn16kuTQQw/NWWedlR122CFXXHFFrrzyylGt8cADD+Tkk0/OmjVrMmPGjL7VDgAAwOQh+AQAAAATwDnnnJO1a9cmSU455ZSHvP6yl70sj3nMY5Ik559//qjWOPbYY7N69erMmzcv06ZNG32xAIx7V1xxRX7xi19kypQpOe644x7y+rx58/KSl7wkSfKtb31rVGucdtppufnmm/OWt7wle+2111jKBQAAYJISfAIAAIAJ4LLLLkuSzJgxI/PmzXvYPvPnz0+SLFq0aMTzn3XWWbnhhhsyMDCQ8847b/SFAtAKV111VZKklJJdd931YfscdthhSZL/+I//GPH8l19+eb761a9m//33zwc/+MHRFwoAAMCkJvgEAAAAE8DixYuTZIsfTifJU57ylCTJ+vXrc9ttt/U89y9+8Yt8+tOfTpL82Z/9WXbZZZfRFwpAK9x8881JkgMOOGCLffbff/8kya9//evce++9Pc9933335UMf+lCmTp2aU089NTNnzhxTrQBMfCue+sqseOors9sr39l0KQDAOCP4BAAAABPAihUrkmSroaQDDzxwuH3TTTf1PPdb3/rWrFu3Ls985jPzhje8YfRFAtAad911V5LksY997Bb7dL9299139zz3n/3Zn+Wuu+7KO97xjhx88MGjrhGAyWP1Ps/M6n2emTnPekXTpQAA44zgEwAAAEwAa9euTZKt7poxe/bs4faSJUt6mvejH/1o7rjjjsyYMSPnnnvu2IoEoDU2BGpnzZq1xT4zZswYbg8ODvY07ze/+c1ccsklefKTn5x3v/vdYysSAACASU/wCQAAACaA9evXJ0mmT5++xT477bTTcHvNmjWPOOeCBQtywQUXJEk+9alPbfXDbwAmlg2B2mnTpm2xT/cz58EHH3zEOX/1q1/lE5/4RKZPn56/+qu/2urcAAAA0AvBJwAAAJgAdthhhyTJ6tWrt9hnw+4dyaa7dDyctWvX5p3vfGeS5EUvelFe/vKX96FKANpixx13TLL1oGz3M+eRQkzr1q3LH/3RH2VwcDAnnXRSnvjEJ/anUAAAACY1wScAAACYAAYGBpIkDzzwwBb7LFu2bLi92267bXW+d73rXVm+fHl23nnnfP7zn+9PkQC0xoZdAletWrXFPt2vdR+n+nDOOeecXH311TnkkEPy9re/vT9FAjBp7HzFudn5inOz+JyTmy4FABhnBpouAAAAABi7nXfeOStXrsySJUu22Ofmm28ebs+bN2+r811++eVJkuXLl+eggw56yOsbjta7+uqr86QnPSlJcsMNN4y4bgDGpz322CM/+clPcuedd26xT/dru++++1bn+9rXvpYk+dnPfpb/9b/+10Nev/fee5Mk5557bs4///wkG59FADCw7I4kyeplj9ARAJh0BJ8AAABgAth3331z55135p577tlinw3BpKlTp2afffbpee4NIafRvg5A+8ybNy+XXnppbrvtti32+cUvfpFkKPQ0d+7cnuYdHBzM4ODgFl9fuXJlVq5cOaJaAQAAmLwEnwAAAGACePnLX56rr746999/fxYtWvSwwaYf//jHSYZ28XgkP/3pT7f6+kEHHZQ1a9bkkEMOyVe/+tXRFQ3AuHXooYfmzDPPzM9+9rMsXbr0YYNNV1xxRZLkOc95ziPO9/3vf3+rrx9xxBG59dZb8+53vzvvec97Rlc0AAAAk87UpgsAAAAAxu7oo4/O1KlDP+Z/4AMfeMjrl156ae6+++4kyfHHH79dawOgfZ797GfnsY99bNauXZsvfelLD3m91prLLrssSfLmN795e5cHAAAASQSfAAAAYEIYGBjIa1/72iTJddddl+OPPz733XdfkuTLX/5yTjrppCTJ3Llzc+yxxw6PW7hwYQ466KAce+yx+cxnPrOdqwZgvJo6dWre9773JUnOPvvsfPGLX8yqVauSJFdddVXe+c535sEHH8xhhx2WQw45ZHjcnXfeObR702Wn5d5bL2+kdgAAACYPR90BAADABHHKKafkmmuuyS233JLLL788hx566CavT5s2LRdeeOEm91atWpU1a9YkSZYtW7bdagVg/HvNa16Ta6+9NhdccEE+/elP58wzz8z06dOzYsWKJMnjH//4h4Rm16xZk1tvvTVJ8uDqFdu7ZAAAACYZOz4BAADABHLxxRfn7W9/e+bMmTN8b2BgIM94xjPyve99L/vtt1+D1QHQNh//+Mdzxhln5NBDD82OO+6Y1atXZ//998873vGOXHjhhXnUox7VdIkAAABMYnZ8AgAAgAnmQx/6UD70oQ/11PfZz352aq1ZsGDBiNZYuHDhaEoDoIWOOOKIHHHEET313XvvvVNrzW/+4bdGtMYll1wymtIAAACY5Oz4BAAAAAAAAAAAtI7gEwAAAAAAAAAA0DqOugMAAAAAAADGrcFnvT5JcsABBzRcCQAw3gg+AQAAAAAAAOPWmsfMS5Ls9MT5DVcCAIw3jroDAAAAAAAAAABaR/AJAAAAAAAAAABoHcEnAAAAAAAAAACgdQaaLqAJpZTHJ3lvklck2T/JuiSLk1ya5Iu11hu28frfTHJUktRap2zLtQAAAAAAAKDN5l722STJL344Lfud+KWGqwEAxpNJt+NTKeXoJAuTnJTkKUlmJZmd5ElJTkzyk1LKe7fh+r+bTugJAAAAAAAA2LqpDwxm6gODeXDw3qZLAQDGmUkVfCqlHJnkvAyFnZLkqiSndL6u6NybnuSMUsrbtsH6j0/y6X7PCwAAAAAAAAAAk82kOequlDI7yZeyMez1vlrrZ7q6fKSUckKSLyaZkuTMUsrFtda7+7T+1AyFrnbux3wAAAAAAAAAADCZTaYdn05Iskenff5moackSa31rCSndS5nJzm5j+ufnOQFnfaaPs4LAAAAAAAAAACTzmQKPnUfXXfqVvqdmuSBTvstpZQpY124lPKMJB/vXJ6V5H/GOicAAAAAAAAAAExmkyL4VErZI8nTO5e311qv21LfWus9Sa7qXD4uySFjXHtGkr9LMj3JrUn+cCzzAQAAAAAAAAAAkyT4lOSZXe2rttjr4fscOsa1P5nkaUnWJTmu1jo4xvkAAAAAAAAAAGDSmyzBp3ld7Vt76P/LrvaBo120lPLCJO/rXH661vrvo50LAAAAAAAAAADYaLIEn/bsai/uof//dLUfO5oFSylzknwlQ/8b/zTJn45mHgAAAAAAAAAA4KEmS/Bpbld7ZQ/97+9qzxnlmp9Nsl+StUneWmtdNcp5AAAAAAAAAACAzQw0XcB2MqOr3UsAqTv4NGOLvbaglPKaJG/rXJ5Sa10w0jn6aXBwMAsWNFoCD8OfCQD95LkCwFhd8bPl+cF/L8vqf1icOVNW5hOP/nrPY0+8562bXO+9w5KcPPc7PY1dum5mPnrf6ze599Rpi3LCzpf1NH7R2l1y+rJXb3LvsBk35k07/ain8QtX752zB1+yyb0jZl6XV878r57GX7FqXi5Yedgm994468o8b8ebehr/3fufnkvuP3iTe++Y/f0cNL2XDauT81c8N1c+8MRN7n1gzrezz8A9PY0/a/mLc/2afTa59/FHXZi5U+/fwohNnbb0yCx+cNdN7p2xy3k9jU2Sj9z7uixbP2v42nvPe89775G15b13xi4b2z//5MY/m/sPeEFWzTt8k747LfjHTL/75p7WX/HUV2b1Ps/c5N7OV5ybgWV39DR+8Fmvz5rHzNvk3tzLPpupDwz2NH7ZYW/Pg3P33OTeoy/5i57GJsl9L3pP1u+48/D1lFXL86gffK7n8fce8cebXO+w9PbMufL/9DR23YzZWfri925yb9pdN2X2NRf2NH7tnD2y/HnHb3Jv+qJrs9P13+1p/OrdD8yK+W/Y5N6ON/17Zt7yw57GP7D3wVl50Ks2uTdr4cWZsfi6nsZ773nvdfPea997b4fD3j58z9+DAdAvnikTw2QJPj3Y1V4/wrEj6l9KeWySszqXC5J8coTrAQAAwHb3g/9eltVrR/ojMwAAwLa3efgKAGCDyRJ86o6t79hD/5ld7ZEeUXdOkt06495aa107wvF9N3v27JRSmi6Djg2p0fnz5zdcCQATgecKAP2y+h962+UFAMZiz732yi6b/fxyx82XZuXdvY3fb999M+dZm45ffN35Wb2st/EHHHBAdnripuN/8cNpefCB3sY/+clPzow9D9jk3s8v6W1skjz96U/PwM4bt8Nau/ye/PIHvY/f/Ge/B26/Jb+6srex06ZNe8j4FTeuy53X9DZ+1qxZeeJm45dNWZJfX9/b+EfNnZsnbTb+nhU3575behu/2267ZffNxt99x39meY//F8Z7z3uvm/de+957/g4MgH7yXBl/aq0ZHOxtR8rNTVm/fuL/Nmcp5eNJPtK5fH+t9dOP0P93kvxT5/Ifaq1H97jOCUn+tnP5h7XWv95Cv9uS7JcktdYpvcw9GgsWLPhBkhcKPo0v/iMKQD95rgDQL0d/4GvD7b8//c0NVgLAROBnFQD6yXMFgH7yXBl/uoJP/zZ//vwXjWTsZNnx6fau9l499H9cV7unQ5JLKY9OsiHotDzJQCnlA1voPqdrXHefC2qti3pZDwAAAPrpE4/+eteV4BMAAAAAMP5NluBT94an+/fQf9+u9o09rjE3yU6d9s5JTu1x3Gld7R8nEXwCAAAAAAAAAIBHMLXpAraThUk2nOl3SA/9n9vV7vGUaQAAAAAAAAAAYHuZFDs+1VrvKaX8KMlhSfYrpTy11nr9w/Utpeya5DmdyyVJFvS4xm1JpvTSt5RyW5L9OuN6GgMAAAAAAAAAAGw0WXZ8SpILutof20q/DyeZ3ml/tda6bptVBAAAAAAAAAAAjMpkCj59KcmiTvt1pZRPlFI22W2plHJCkvd3Lu9Pcvp2rA8AAAAAAAAAAOjRpDjqLklqrStKKb+f5FsZCnz9aZKjSikXJVmb5KVJnt815KRa6+LN5ymlfDnJ2zqXX6m1Hrct6wYAAAAAAAAAAB5q0gSfkqTW+u1SyjFJzk6yU5Kndb66rU3ywVrrWdu7PgAAAAAAAAAAoDeT6ai7JEmt9WtJnpzktCTXJxlM8kCSWzIUiHpmrfXTzVUIAAAAAAAAAAA8kkm149MGtdZFST7Y+Rrp2OOSHDfG9fcfy3gAAAAAAAAAAJjsJt2OTwAAAAAAAAAAQPtNyh2fAAAAgE2deM9bh9sXNVgHAAAAAECv7PgEAAAAAAAAAAC0juATAAAAAAAAAADQOoJPAAAAAAAAAABA6ww0XQAAAADQvL13WNJ0CQAAAAAAIyL4BAAAAOTkud/pujq+sToAAAAAAHrlqDsAAAAAAAAAAKB1BJ8AAAAAAAAAAIDWEXwCAAAAAAAAAABaR/AJAAAAAAAAAABoHcEnAAAAAAAAAACgdQSfAAAAAAAAAACA1hF8AgAAAAAAAAAAWkfwCQAAAAAAAAAAaB3BJwAAAAAAAAAAoHUGmi4AAAAAaN7SdTObLgEAAAAAYEQEnwAAAIB89L7XD7cvarAOAAAAAIBeOeoOAAAAAAAAAABoHcEnAAAAAAAAAACgdQSfAAAAAAAAAACA1hlougAAAACgeU+dtqjpEgAAAAAARkTwCQAAAMgJO1/WdfXuxuoAAAAAAOiVo+4AAAAAAAAAAIDWEXwCAAAAAAAAAABaR/AJAAAAAAAAAABoHcEnAAAAAAAAAACgdQSfAAAAAAAAAACA1hF8AgAAAAAAAAAAWkfwCQAAAAAAAAAAaB3BJwAAAAAAAAAAoHUEnwAAAAAAAAAAgNYZaLoAAAAAoHmL1u4y3H5Cg3UAAAAAAPRK8AkAAADI6ctePdx+YYN1AAAAAAD0ylF3AAAAAAAAAABA6wg+AQAAAAAAAAAArSP4BAAAAAAAAAAAtM5A0wUAAAAAzTtsxo1NlwAAAAAAMCKCTwAAAEDetNOPmi4BAAAAAGBEHHUHAAAAAAAAAAC0juATAAAAAAAAAADQOoJPAAAAAAAAAABA6wg+AQAAAAAAAAAArSP4BAAAAAAAAAAAtI7gEwAAAAAAAAAA0DqCTwAAAAAAAAAAQOsIPgEAAAAAAAAAAK0j+AQAAAAAAAAAALTOQNMFAAAAAM1buHrv4fYTGqwDAAAAAKBXgk8AAABAzh58yXD7txqsAwAAAACgV466AwAAAAAAAAAAWkfwCQAAAAAAAAAAaB3BJwAAAAAAAAAAoHUGmi4AAAAAaN4RM6/rujqqqTIAAAAAAHom+AQAAADklTP/q+kSAAAAAABGxFF3AAAAAAAAAABA6wg+AQAAAAAAAAAArSP4BAAAAAAAAAAAtI7gEwAAAAAAAAAA0DqCTwAAAAAAAAAAQOsIPgEAAAAAAAAAAK0j+AQAAAAAAAAAALSO4BMAAAAAAAAAANA6gk8AAAAAAAAAAEDrDDRdAAAAANC8K1bNG24/ocE6AAAAAAB6JfgEAAAA5IKVhw23j2mwDgAAAACAXjnqDgAAAAAAAAAAaB3BJwAAAAAAAAAAoHUEnwAAAAAAAAAAgNYZaLoAAAAAoHlvnHVl19VRjdUBAAAAANArwScAAAAgz9vxpqZLAAAAAAAYEUfdAQAAAAAAAAAArSP4BAAAAAAAAAAAtI7gEwAAAAAAAAAA0DqCTwAAAAAAAAAAQOsIPgEAAAAAAAAAAK0j+AQAAAAAAAAAALSO4BMAAAAAAAAAANA6gk8AAAAAAAAAAEDrCD4BAAAAAAAAAACtM9B0AQAAAEDzvnv/04fbf9BgHQAAAAAAvRJ8AgAAAHLJ/QcPtwWfAAAAAIA2cNQdAAAAAAAAAADQOoJPAAAAAAAAAABA6wg+AQAAAAAAAAAArTPQdAEAAABA894x+/tdV0c1VgcAAAAAQK8EnwAAAIAcNH1x0yUAAAAAAIyIo+4AAAAAAAAAAIDWEXwCAAAAAAAAAABaR/AJAAAAAAAAAABoHcEnAAAAAAAAAACgdQSfAAAAAAAAAACA1hF8AgAAAAAAAAAAWkfwCQAAAAAAAAAAaB3BJwAAAAAAAAAAoHUEnwAAAAAAAAAAgNYZaLoAAAAAoHnnr3jucPuPG6wDAAAAAKBXgk8AAABArnzgiU2XAAAAAAAwIo66AwAAAAAAAAAAWkfwCQAAAAAAAAAAaB3BJwAAAAAAAAAAoHUGmi4AAAAAaN4H5ny76+qoxuoAAAAAAOiV4BMAAACQfQbuaboEAAAAAIARcdQdAAAAAAAAAADQOoJPAAAAAAAAAABA6wg+AQAAAAAAAAAArSP4BAAAAAAAAAAAtI7gEwAAAAAAAAAA0DqCTwAAAAAAAAAAQOsIPgEAAAAAAAAAAK0j+AQAAAAAAAAAALSO4BMAAAAAAAAAANA6A00XAAAAADTvrOUvHm7/ZYN1AAAAAAD0SvAJAAAAyPVr9mm6BAAAAACAEXHUHQAAAAAAAAAA0DqCTwAAAAAAAAAAQOsIPgEAAAAAAAAAAK0z0HQBAAAAQPM+/qgLu66OaqwOAAAAAIBeCT4BAAAAmTv1/qZLAAAAAAAYEUfdAQAAAAAAAAAArSP4BAAAAAAAAAAAtI7gEwAAAAAAAAAA0DqCTwAAAAAAAAAAQOsIPgEAAAAAAAAAAK0j+AQAAAAAAAAAALSO4BMAAAAAAAAAANA6gk8AAAAAAAAAAEDrCD4BAAAAAAAAAACtM9B0AQAAAEDzTlt65HD7Cw3WAQAAAADQK8EnAAAAIIsf3LXpEgAAAAAARsRRdwAAAAAAAAAAQOsIPgEAAAAAAAAAAK0j+AQAAAAAAAAAALTOQNMFAAAAAM07Y5fzuq6OaqwOAAAAAIBe2fEJAAAAAAAAAABoHcEnAAAAAAAAAACgdQSfAAAAAAAAAACA1hF8AgAAAAAAAAAAWkfwCQAAAAAAAAAAaB3BJwAAAAAAAAAAoHUEnwAAAAAAAAAAgNYRfAIAAAAAAAAAAFpH8AkAAAAAAAAAAGgdwScAAAAAAAAAAKB1BpouAAAAAGjeR+593XD77xusAwAAAACgV4JPAAAAQJatn9V0CQAAAAAAI+KoOwAAAAAAAAAAoHUEnwAAAAAAAAAAgNZx1B0AAACQOVNWNl0CAAAAAMCICD4BAAAA+cSjv9519ebG6gAAAAAA6JWj7gAAAAAAAAAAgNYRfAIAAAAAAAAAAFpH8AkAAAAAAAAAAGgdwScAAAAAAAAAAKB1BJ8AAAAAAAAAAIDWEXwCAAAAAAAAAABaR/AJAAAAAAAAAABoHcEnAAAAAAAAAACgdQSfAAAAAAAAAACA1hF8AgAAAAAAAAAAWmeg6QIAAACA5p14z1uH2xc1WAcAAAAAQK/s+AQAAAAAAAAAALSO4BMAAAAAAAAAANA6gk8AAAAAAAAAAEDrDDRdAAAAANC8vXdY0nQJAAAAAAAjIvgEAAAA5OS53+m6Or6xOgAAAAAAeuWoOwAAAAAAAAAAoHUEnwAAAAAAAAAAgNYRfAIAAAAAAAAAAFpH8AkAAAAAAAAAAGgdwScAAAAAAAAAAKB1BJ8AAAAAAAAAAIDWEXwCAAAAAAAAAABaZ6DpAppQSnl8kvcmeUWS/ZOsS7I4yaVJvlhrvaFP68xN8rtJXpXkoCS7JFnZWesHnbUW9mMtAAAAAAAAAACYTCbdjk+llKOTLExyUpKnJJmVZHaSJyU5MclPSinv7cM6r0xyc5JPJXlpkscmmZZkbpKnJvmDJP9VSvlUKWWHsa4HAAAAAAAAAACTyaTa8amUcmSS87Ix8HVVku912i9J8rwk05OcUUpZWmv9yijXeVmSb2Uo6JQkv0pyUZJFSeZkKAj17CRTkrw/Q8Grd45mLQAAAOiHpetmNl0CAAAAAMCITJrgUylldpIvZWPo6X211s90dflIKeWEJF/MUCDpzFLKxbXWu0e4zswk52Zj6Olvk5xYa31gs35HJ/k/nX4nlFL+b6310hH+YwEAAEBffPS+1w+3L2qwDgAAAACAXk2mo+5OSLJHp33+ZqGnJEmt9awkp3UuZyc5eRTrvCHJPp32vyV51+ahp85af5/kT7tuvX8UawEAAAAAAAAAwKQ0mYJPb+tqn7qVfqcm2RBUekspZcoI1/mtrvZnaq3rt9L3C0nWdtovLKVMpj8PAAAAAAAAAAAYtUkRtCml7JHk6Z3L22ut122pb631niRXdS4fl+SQES739K72j7fWsda6PMmGo/RmJNllhGsBAAAAAAAAAMCkNNB0AdvJM7vaV22x16Z9Du+0D03ynyNY69lJ9k6yV5I7ttaxlLJ52GlwBOsAAABA3zx12qKmSwAAAAAAGJHJEnya19W+tYf+v+xqHziShWqtS5MsTXJ9D91flaGdnpLk1lrrqpGsBQAAAP1yws6XdV29u7E6AAAAAAB6NSmOukuyZ1d7cQ/9/6er/dg+15IkKaVMS/LnXbe+sS3WAQAAAAAAAACAiWiyBJ/mdrVX9tD//q72nD7XssFfJnlap70yyenbaB0AAAAAAAAAAJhwJstRdzO62r0cJ9cdfJqxxV6jVEp5T5L3d936UK319n6vs8Hg4GAWLFiwraZnlPyZANBPnisAjNWju9qeKwD0i2cKAP3kuQJAP3muTAyTZcenB7va60c4dqT9t6qU8u4kZ3Td+lqt9XP9XAMAAAAAAAAAACa6ybLj02BXe8ce+s/saveyQ1RPSikfTfLnXbcuSXJcv+bfktmzZ6eUsq2XoUcbUqPz589vuBIAJgLPFQD65eeXbGx7rgAwVn5WAaCfPFcA6CfPlfGn1prBwcFH7vgwJmPwaVYP/buDT0vHungpZVqSv03y9q7b307yulrr6rHODwAAAAAAAAAAk81kCT7d3tXeq4f+j+tq3zGWhUspj0ryT0le0nX7q0neXmtdO5a5AQAAAAAAAABgspradAHbyfVd7f176L9vV/vG0S5aStk7yRXZNPR0WpK3Cj0BAAAAAAAAAMDoTZYdnxYmWZ9kSpJDeuj/3K72NaNZsJSyf5IfJNmvc2tdkhNrrWeOZj4AAAAAAAAAAGCjSbHjU631niQ/6lzuV0p56pb6llJ2TfKczuWSJAtGul4p5TFJ/jUbQ08PJHmd0BMAAADj1aK1uwx/AQAAAAC0wWTZ8SlJLkhyWKf9sSSv30K/DyeZ3ml/tda6biSLlFKmJPm7JE/o3FqZ5Ddrrd8fUbUAAACwHZ2+7NXD7Rc2WAcAAAAAQK8mxY5PHV9KsqjTfl0p5ROdkNKwUsoJSd7fubw/yemjWOeEJK/otNcnOVroCQAAAAAAAAAA+mvS7PhUa11RSvn9JN/KUODrT5McVUq5KMnaJC9N8vyuISfVWhdvPk8p5ctJ3ta5/Eqt9biu16Yl+ZOu7jcnObCU8oEeyzyr1rqsx74AAAAAAAAAADBpTZrgU5LUWr9dSjkmydlJdkrytM5Xt7VJPlhrPWsUS7wkyT5d1/OSnDaC8V9PIvgEAAAAAAAAAACPYFIFn5Kk1vq1UsoPk7wnyauS7JdkWpLFSb6f5LO11oWjnH7zEBUAAAC0wmEzbmy6BAAAAACAEZl0wackqbUuSvLBztdIxx6X5LgtvHZ6ktPHUhsAAAA04U07/ajpEgAAAAAARmRq0wUAAAAAAAAAAACMlOATAAAAAAAAAADQOoJPAAAAAAAAAABA6wg+AQAAAAAAAAAArSP4BAAAAAAAAAAAtI7gEwAAAAAAAAAA0DqCTwAAAAAAAAAAQOsIPgEAAAAAAAAAAK0j+AQAAAAAAAAAALTOQNMFAAAAAM1buHrv4fYTGqwDAAAAAKBXgk8AAABAzh58yXD7txqsAwAAAACgV466AwAAAAAAAAAAWkfwCQAAAAAAAAAAaB3BJwAAAAAAAAAAoHUGmi4AAAAAaN4RM6/rujqqqTIAAAAAAHom+AQAAADklTP/q+kSAAAAAABGxFF3AAAAAAAAAABA6wg+AQAAAAAAAAAArSP4BAAAAAAAAAAAtI7gEwAAAAAAAAAA0DqCTwAAAAAAAAAAQOsIPgEAAAAAAAAAAK0j+AQAAAAAAAAAALSO4BMAAAAAAAAAANA6gk8AAAAAAAAAAEDrDDRdAAAAANC8K1bNG24/ocE6AAAAAAB6JfgEAAAA5IKVhw23j2mwDgAAAACAXjnqDgAAAAAAAAAAaB3BJwAAAAAAAAAAoHUEnwAAAAAAAAAAgNYZaLoAAAAAoHlvnHVl19VRjdUBAAAAANArwScAAAAgz9vxpqZLAAAAAAAYEUfdAQAAAAAAAAAArSP4BAAAAAAAAAAAtI7gEwAAAAAAAAAA0DqCTwAAAAAAAAAAQOsIPgEAAAAAAAAAAK0j+AQAAAAAAAAAALSO4BMAAAAAAAAAANA6gk8AAAAAAAAAAEDrCD4BAAAAAAAAAACtM9B0AQAAAEDzvnv/04fbf9BgHQAAAAAAvRJ8AgAAAHLJ/QcPtwWfAAAAAIA2cNQdAAAAAAAAAADQOoJPAAAAAAAAAABA6wg+AQAAAAAAAAAArTPQdAEAAABA894x+/tdV0c1VgcAAAAAQK8EnwAAAIAcNH1x0yUAAAAAAIyIo+4AAAAAAAAAAIDWEXwCAAAAAAAAAABaR/AJAAAAAAAAAABoHcEnAAAAAAAAAACgdQSfAAAAAAAAAACA1hF8AgAAAAAAAAAAWkfwCQAAAAAAAAAAaB3BJwAAAAAAAAAAoHUEnwAAAAAAAAAAgNYZaLoAAAAAoHnnr3jucPuPG6wDAAAAAKBXgk8AAABArnzgiU2XAAAAAAAwIo66AwAAAAAAAAAAWkfwCQAAAAAAAAAAaB3BJwAAAAAAAAAAoHUGmi4AAAAAaN4H5ny76+qoxuoAAAAAAOiV4BMAAACQfQbuaboEAAAAAIARcdQdAAAAAAAAAADQOoJPAAAAAAAAAABA6wg+AQAAAAAAAAAArSP4BAAAAAAAAAAAtI7gEwAAAAAAAAAA0DqCTwAAAAAAAAAAQOsIPgEAAAAAAAAAAK0j+AQAAAAAAAAAALSO4BMAAAAAAAAAANA6A00XAAAAADTvrOUvHm7/ZYN1AAAAAAD0SvAJAAAAyPVr9mm6BAAAAACAEXHUHQAAAAAAAAAA0DqCTwAAAAAAAAAAQOsIPgEAAAAAAAAAAK0z0HQBAAAAQPM+/qgLu66OaqwOAAAAAIBeCT4BAAAAmTv1/qZLAAAAAAAYEUfdAQAAAAAAAAAArSP4BAAAAAAAAAAAtI7gEwAAAAAAAAAA0DqCTwAAAAAAAAAAQOsIPgEAAAAAAAAAAK0j+AQAAAAAAAAAALSO4BMAAAAAAAAAANA6gk8AAAAAAAAAAEDrCD4BAAAAAAAAAACtM9B0AQAAAEDzTlt65HD7Cw3WAQAAAADQK8EnAAAAIIsf3LXpEgAAAAAARsRRdwAAAAAAAAAAQOsIPgEAAAAAAAAAAK0j+AQAAAAAAAAAALTOQNMFAAAAAM07Y5fzuq6OaqwOAAAAAIBe2fEJAAAAAAAAAABoHcEnAAAAAAAAAACgdQSfAAAAAAAAAACA1hF8AgAAAAAAAAAAWkfwCQAAAAAAAAAAaB3BJwAAAAAAAAAAoHUEnwAAAAAAAAAAgNYRfAIAAAAAAAAAAFpH8AkAAAAAAAAAAGgdwScAAAAAAAAAAKB1BpouAAAAAGjeR+593XD77xusAwAAAACgV4JPAAAAQJatn9V0CQAAAAAAI+KoOwAAAAAAAAAAoHUEnwAAAAAAAAAAgNZx1B0AAACQOVNWNl0CAAAAAMCICD4BAAAA+cSjv9519ebG6gAAAAAA6JWj7gAAAAAAAAAAgNYRfAIAAAAAAAAAAFpH8AkAAAAAAAAAAGgdwScAAAAAAAAAAKB1BJ8AAAAAAAAAAIDWEXwCAAAAAAAAAABaR/AJAAAAAAAAAABoHcEnAAAAAAAAAACgdQSfAAAAAAAAAACA1hF8AgAAAAAAAAAAWmeg6QIAAACA5p14z1uH2xc1WAcAAAAAQK/s+AQAAAAAAAAAALSO4BMAAAAAAAAAANA6gk8AAAAAAAAAAEDrDDRdAAAAANC8vXdY0nQJAAAAAAAjIvgEAAAA5OS53+m6Or6xOgAAAAAAeuWoOwAAAAAAAAAAoHUEnwAAAAAAAAAAgNYRfAIAAAAAAAAAAFpH8AkAAAAAAAAAAGgdwScAAAAAAAAAAKB1BJ8AAAAAAAAAAIDWEXwCAAAAAAAAAABaR/AJAAAAAAAAAABoHcEnAAAAAAAAAACgdQaaLgAAAABo3tJ1M5suAQAAAABgRASfAAAAgHz0vtcPty9qsA4AAAAAgF456g4AAAAAAAAAAGgdwScAAAAAAAAAAKB1BJ8AAAAAAAAAAIDWGWi6AAAAAKB5T522qOkSAAAAAABGRPAJAAAAyAk7X9Z19e7G6gAAAAAA6JWj7gAAAAAAAAAAgNYRfAIAAAAAAAAAAFrHUXcwBp/85CfzjW98I8uXL0+STJ8+Pc94xjNyxhlnZNdddx3xfIODgznppJNy1VVXZfXq1UmSnXbaKUcccUROOeWUTJ0qqwgwkXmuAAAAAAAAQO982gWj9NrXvjbnnXfe8IfTSbJ69epcffXVOfzww3PjjTeOaL5ly5blhS98Yf7jP/5j+MPpJFmxYkX+6Z/+KS984Quzdu3avtUPwPjiuQIAAAAAAAAjI/gEo/Cxj30sCxcuTJK87GUvy4IFC1JrzYc//OHssMMOWbt2bY455pgRzfn6178+g4ODmTJlSk488cT87Gc/y7XXXpvf/u3fTpLcdddd+b3f+71+/6MAMA54rgAAAAAAAMDICT7BCK1evToXXnhhkuTggw/O5z//+cyePTtJctxxx+Wzn/1skmTp0qU555xzeprzqquuym233ZYkOfHEE/P7v//7mTp1ambNmpVTTz01Rx55ZJLkyiuvzK9+9as+/xMB0CTPFQAAAAAAABgdwScYoXPOOWf4aKBTTjnlIa+/7GUvy2Me85gkyfnnn9/TnH/913+dJJk+fXre9a53PeT1v/iLv8iUKVOSJH/zN38zqroBGJ88VwAAAAAAAGB0BJ9ghC677LIkyYwZMzJv3ryH7TN//vwkyaJFi3qa88Ybb0ySHHDAAQ/7+o477pjHPvaxSZLLL798RPUCML55rgAAAAAAAMDoCD7BCC1evDhJsuuuu26xz1Oe8pQkyfr164ePGtqalStXJtnyB9RJsueeeyZJlixZ0mupALSA5woAAAAAAACMjuATjNCKFSuSJLvssssW+xx44IHD7Ztuummr8919993D7f3333+L/fbYY48kyZo1a3opE4CW8FwBYLxYtHaX4S8AAAAAgDYYaLoAaJu1a9cmSWbOnLnFPrNnzx5uP9JOGnfddddwe+edd95iv1mzZiUZ2u0DgInDcwWA8eL0Za8ebr+wwToAAAAAAHplxycYoQ0fEE+fPn2LfXbaaafh9iPtpLF69erh9o477rjFfjNmzOi1RABaxHMFAAAAAAAARkfwCUZohx12SLLpB8ub23BsUfLIHyzPmTNnuL1q1aot9nvggQd6LRGAFvFcAQAAAAAAgNERfIIRGhgYOiFyax8YL1u2bLi92267bXW+3Xfffbg9ODi4xX4rV65MkkyZMqWnOgFoB88VAAAAAAAAGJ2BpguAttl5552zcuXKLFmyZIt9br755uH2vHnztjrfnDlzMmXKlKxfvz6LFi3aYr/bb789ydaPQgKgfTxXABgvDptxY9MlAAAAAACMiOATjNC+++6bO++8M/fcc88W+9xwww1JkqlTp2afffZ5xDlnz56d5cuX55Zbbtlinw0fUO+6664jrBiA8cxzBYDx4k07/ajpEgAAAAAARsRRdzBCL3/5y5Mk999//xZ30vjxj3+cJNljjz16mvPJT35ykuSmm2562NdXrVqVu+66K0nyrGc9a0T1AjC+ea4AAAAAAADA6Ag+wQgdffTRmTp16F+dD3zgAw95/dJLL83dd9+dJDn++ON7mvN3f/d3kwx9EP2FL3zhIa9/6EMfyvr165MkJ5988qjqBmB88lwBAAAAAACA0RF8ghEaGBjIa1/72iTJddddl+OPPz733XdfkuTLX/5yTjrppCTJ3Llzc+yxxw6PW7hwYQ466KAce+yx+cxnPrPJnC960Yuy7777JknOOOOMnH766Vm3bl1WrVqVD37wg/nud7+bJDnssMN63u0DgHbwXAEAAAAAAIDRGWi6AGijU045Jddcc01uueWWXH755Tn00EM3eX3atGm58MILN7m3atWqrFmzJkmybNmyh8x53nnn5ZWvfGXuv//+nH322Tn77LM3eX2PPfbIueee2+d/EgDGA88VAAAAAAAAGDk7PsEoXXzxxXn729+eOXPmDN8bGBjIM57xjHzve9/LfvvtN6L59txzz/zwhz/M4YcfnhkzZgzfnzlzZl71qlflX//1X4ePQgJg4vFcAQAAAAAAgJGZsn79+qZrYBtZsGDBD5K8cPbs2SmlNF0OHQsWLEiSzJ8/v+FKAJgIPFcA6Jeff/K1w+0n/Mk/NVgJABOBn1UA6CfPFQD6yXNl/Km1ZnBwMEn+bf78+S8ayVi/5g8AAAAAAAAAALSO4BMAAAAAAAAAANA6gk8AAAAAAAAAAEDrDDRdAAAAANC8hav3Hm4/ocE6AAAAAAB6JfgEAAAA5OzBlwy3f6vBOgAAAAAAeuWoOwAAAAAAAAAAoHUEnwAAAAAAAAAAgNaZlEfdlVIen+S9SV6RZP8k65IsTnJpki/WWm/o0zpTk7wpyVuTPCvJo5LcneRnSb6a5Ku11rX9WAsAAAAAAAAAACaTSRd8KqUcneSsJLM2e+lJna93lVJOrrV+dozrPCrJN5O8cLOX9up8vbSz1utqrYvGshYAAACM1REzr+u6OqqpMgAAAAAAejapgk+llCOTnJeNR/xdleR7nfZLkjwvyfQkZ5RSltZavzLKdQaSfDvJ8zu3lib5epJbM7TD1OuTzE3ynCTfKaU8r9Y6OJq1AAAAoB9eOfO/mi4BAAAAAGBEJk3wqZQyO8mXsjH09L5a62e6unyklHJCki8mmZLkzFLKxbXWu0ex3EnZGHq6Pslv1Fp/1VXLR5JclOTZSZ6W5CNJ/mgU6wAAAAAAAAAAwKQ09ZG7TBgnJNmj0z5/s9BTkqTWelaS0zqXs5OcPNJFSinTszHEtC7JG7pDT5117kjy6iTLOrfeXUrZbaRrAQAAAAAAAADAZDWZgk9v62qfupV+pyZ5oNN+SyllygjXOTLJhhDTRbXWnz5cp1rrnUnO6lzOSvI7I1wHAAAAAAAAAAAmrUkRfCql7JHk6Z3L22ut122pb631niRXdS4fl+SQES73iq72dx+h78Vd7d8e4ToAAAAAAAAAADBpTYrgU5JndrWv2mKvh+9z6AjXelZX+0eP0Pc/x7AOAAAAAAAAAABMWpMl+DSvq31rD/1/2dU+cFutVWtdkWRJ53KXUsqjR7gWAAAAAAAAAABMSpMl+LRnV3txD/3/p6v92F4XKaXMSLIhvLS81rpsW60FAAAAAAAAAACT2WQJPs3taq/sof/9Xe0523CdsawFAAAAAAAAAACT1kDTBWwnM7raq3ro3x1GmrHFXmNfZyxr9WxwcDALFizYFlMzClf8bHmm3fjvefQlf9Fb/1XzcsHKwza598ZZV+Z5O97U0/jv3v/0XHL/wZvce8fs7+eg6b1sfpacv+K5ufKBJ25y7wNzvp19Bu7pafxZy1+c69fss8m9jz/qwsydev8WRmzqtKVHZvGDu25y74xdzutpbJJ85N7XZdn6WcPXc6aszCce/fWex594z1s3ud57hyU5ee53ehq7dN3MfPS+129y76nTFuWEnS/rafyitbvk9GWv3uTeYTNuzJt2+lFP4xeu3jtnD75kk3tHzLwur5z5Xz2N997z3uvmvTd+33sbtpr8+SVD3733vPe6+e+e914vvPe89zb46Nydcve6OXnStNv9DAlA33imANBPnisA9JPnysQwWXZ8erCrvX6EY0fSfyzrjHYMLXPFDcvz4Dp/1AAAwPhy5vLfyD0Pzs6q9ZPld6QAAAAAgLabLH+bOdjV3rGH/jO72r3u3DSadcayVs9mz56dUsq2mJpReN7PlmeHG6c0XQYAAMAm7lk3O2umTMs9j/+NvGD+/KbLAaDlNvzm9HzPFAD6wHMFgH7yXBl/aq0ZHBx85I4PY8r69RN/55lSyseTfKRz+f5a66cfof/vJPmnzuU/1FqP7nGdqdm469OyWuvcHsb8V5KndS6fWGvt7TyLHixYsOAHSV4o+DS++I8oAP3kuQJAv3imANBPnisA9JPnCgD95Lky/nQFn/5t/vz5LxrJ2Mly1N3tXe29euj/uK72Hb0uUmtdl+SuzuWcUspO22otAAAAAAAAAACYzCZL8On6rvb+PfTft6t947Zaq5QyO8kuncs7aq3LR7gWAAAAAAAAAABMSpMl+LQwyYYz/Q7pof9zu9rXjHCt/+5qP+cR+h46hnUAAAAAAAAAAGDSmhTBp1rrPUl+1Lncr5Ty1C31LaXsmo2BpSVJFoxwue90tV/1CH27X/+XEa4DAAAAAAAAAACT1qQIPnVc0NX+2Fb6fTjJ9E77q7XWdSNc5/tJ7u60f6eU8vSH61RK2TPJCZ3LNUm+NsJ1AAAAAAAAAABg0ppMwacvJVnUab+ulPKJUsqU7g6llBOSvL9zeX+S00e6SK11bZJTOpdTk3yzlPLEzdbZI8lFSWZ3bn2x1nrXSNcCAAAAAAAAAIDJaqDpAraXWuuKUsrvJ/lWhgJJf5rkqFLKRUnWJnlpkud3DTmp1rp483lKKV9O8rbO5Vdqrcc9zHKfT/LGJM9L8vgk15VSvp6kJtk3yRuSPGpDaUn+ZCz/bAAAAAAAAAAAMNlMmuBTktRav11KOSbJ2Ul2SvK0zle3tUk+WGs9awzrPFhKeVWSbyR5cZKZSY59mK4/SfLqWuvy0a4FAAAAAAAAAACT0WQ66i5JUmv9WpInJzktyfVJBpM8kOSWDAWinllr/XQf1lmaoV2k3pTkO0nuSLImyb1J/i3Ju5I85+F2lQIAAAAAAAAAALZuUu34tEGtdVGSD3a+Rjr2uCTH9dh3fZILOl8AAAAAAAAAAECfTLodnwAAAAAAAAAAgPYTfAIAAAAAAAAAAFpH8AkAAAAAAAAAAGgdwScAAAAAAAAAAKB1BJ8AAAAAAAAAAIDWEXwCAAAAAAAAAABaR/AJAAAAAAAAAABoHcEnAAAAAAAAAACgdQSfAAAAAAAAAACA1hF8AgAAAAAAAAAAWkfwCQAAAAAAAAAAaB3BJwAAAAAAAAAAoHUEnwAAAAAAAAAAgNYRfAIAAAAAAAAAAFpH8AkAAAAAAAAAAGgdwScAAAAAAAAAAKB1BJ8AAAAAAAAAAIDWEXwCAAAAAAAAAABaR/AJAAAAAAAAAABoHcEnAAAAAAAAAACgdQSfAAAAAAAAAACA1hF8AgAAAAAAAAAAWkfwCQAAAAAAAAAAaB3BJwAAAAAAAAAAoHUEnwAAAAAAAAAAgNYRfAIAAAAAAAAAAFpH8AkAAAAAAAAAAGgdwScAAAAAAAAAAKB1BJ8AAAAAAAAAAIDWEXwCAAAAAAAAAABaR/AJAAAAAAAAAABoHcEnAAAAAAAAAACgdQSfAAAAAAAAAACA1hF8AgAAAAAAAAAAWkfwCQAAAAAAAAAAaB3BJwAAAAAAAAAAoHWmrF+/vuka2EYWLFiwOMnjpk6dmlmzZjVdDh2Dg4NJktmzZzdcCQATgecKAP3imQJAP3muANBPnisA9JPnyvizcuXKrFu3Lkl+NX/+/L1HMnZg25TEODE7SdatWzf8Ly7jhz8TAPrJcwWAfvFMAaCfPFcA6CfPFQD6yXNlXBpxGk3waWK7NcnjkwwmubnhWgAAAAAAAAAAYHMHZij0dOtIBzrqDgAAAAAAAAAAaJ2pTRcAAAAAAAAAAAAwUoJPAAAAAAAAAABA6wg+AQAAAAAAAAAArSP4BAAAAAAAAAAAtI7gEwAAAAAAAAAA0DqCTwAAAAAAAAAAQOsIPgEAAAAAAAAAAK0j+AQAAAAAAAAAALSO4BMAAAAAAAAAANA6gk8AAAAAAAAAAEDrCD4BAAAAAAAAAACtI/gEAAAAAAAAAAC0juATAAAAAAAAAADQOoJPAAAAAAAAAABA6wg+AQAAAAAAAAAArSP4BAAAAAAAAAAAtM5A0wUAQ0opj0/yv5O8JMkBSXZOsjTJjUkuTfKFWutdzVUIQNuVUv4hyZuT/Hmt9WMNlwPAONH5WeS9SV6RZP8k65IsztDPIV+std7QXHUAtF0pZcckP03y+CQvrrX+oNmKAGiLUsrzk7w9yfOTPC7JjCT3JLk2yTeTfKXW+kBjBQLQKqWUVyU5LslzkzwmyWCSXyb5dpL/U2u9tbnqGIsp69evb7oGmPRKKR9K8olsPYy4IskJtdZ/2D5VATCRlFLenGTDM0TwCYAkSSnl6CRnJZm1hS6rk5xca/3s9qsKgImklPK3SU7oXAo+AfCISimzk5yd5E2P0PXWJK+ttV677asCoK1KKTtn6PORV2+l26okf1pr/dT2qYp+EnyChpVS/izJx7pu/STJ9zL0WwuPS/KbSfbtev0ttdavbbcCAWi9UsrLk1yUod+KSwSfAEhSSjkyyT8nmdq5dVWGfhZJhnaifV5X9+NqrV/ZjuUBMAGUUj6S5ONdtwSfANiqUspAku8meVnn1voM/ZxyVZIHkjwxyWsydGpGktyX5DA71QLwcEopOyT5fpLDO7fWJbk4Q5/Jz8zQ3389t2vIH9Za/3q7FsmYCT5Bg0opT8/QlqxTkzyY5J211nM26zMtyekZOnoiSZYnOaDWevf2rBWAdiqlvC3J32Zj6CkRfAKY9Dq/QX1Tkj06t95Xa/3MZn1OSPLFJFMytPX3E/wcAkAvOn+f9akk79nsJcEnALaqlPIHSc7sXN6Z5Kha61Wb9dk9ydez8UPsK2ut3b+4AQBJklLKe5Oc0bn8dZJX1lp/vFmfY5Ocm6HTmdZk6LP4Rdu1UMZk6iN3Abah92Xjv4d/sXnoKUlqrWtqrSdmKHmaDP0Ww+9tp/oAaKlSyk6llC8m+XI2DT0BQDJ05NCG0NP5m4eekqTWelaS0zqXs5OcvH1KA6DNSin7JflBHhp6AoBe/GFX+y2bh56SpPMLGb+V5I7OrcNKKYdtj+IAaJ33d7WP2zz0lCS11r9L8oXO5bQkx2+PwugfwSdo1m91vq/LxqTplnyuq/2SbVMOAG1XSplaSvndDO3i8c7O7bVJ/qW5qgAYh97W1T51K/1OzdBxEknyllLKlG1XEgBtVkrZuZTy/yW5IRuPS70zyUM+WACAh1NKeVqSx3cuf1Jr/f6W+tZalybpPo7b5yYAbKKU8qQk+3Uuf1lr/c5Wul/a1T5o21XFtiD4BA0ppTwuyS6dy1trrUseYcjPu9p7bpuqAJgAnp7kS9n4rLg1yUuTfK2xigAYV0ope2ToeZEkt9dar9tS31rrPUk2/Ib145Icsm2rA6DFfjfJh5Ls2Lm+LMlzklzfWEUAtM3Tu9q9BGd9bgLAFtVab0gyN0O/mHHMI3Tfsau9ZpsVxTYx0HQBMIn9T4aOltgryawe+u/V1R7cJhUBMJGsytBugp+ota4opTyh6YIAGDee2dV+yLERD+OqJId32ocm+c++VwTARHJ7ko8kObfWur6U0nQ9ALTHBUn+PUO/dLG8h/4+NwFgq2qty5Jc2UPXN3S1e/n7MsYRwSdoSK11fYa2+76zxyGv6Wr/tP8VATBBrEzyqSSfqbUubroYAMaleV3tW3vo/8uu9oF9rgWAiWNxkvclObvWuqLpYgBon1rr2iSLOl+98LkJAGNSSnlUkj/JxuDT/yQ5p7GCGBXBJ2iBUsrjk7yj69Y3mqoFgPGt1npjkg80XQcA41r3ERC9hGT/p6v92D7XAsAEUWv9etM1ADB5lFLemI1H461OcnGD5QDQIqWUlyZ5aYZ+we9VSXbqvHR7kt+otdpFsGUEn2CcK6VMT/L3SWZ2bl2b5NvNVQQAALTc3K72yh7639/VntPnWgAAAEak88vin++69Te11l83VQ8ArfO7Sd682b1fJDmi1npDA/UwRoJPMEKllP3T23EQW/LhWutf9rjWDkn+LslhnVurk5zQOSYPgAlgez5XAKBjRld7VQ/9u4NPM7bYCwAAYBsrpTwmQ7s77dq59fMkf95cRQC00L4Pc2+/JD8ppXw6yZ/UWh/czjUxBlObLgB4eKWUgQyFnt7Qdfu9tdYfN1QSAAAwMXT/xc1If6nCL2EAAACNKKXskeT/JXlS59aKJK+rtd7XWFEAtNF7kzw6QycuPTPJWZ3705P8UTbdVZAWsOMTjNyaJHUM45c8UodSyqwk/5jkyK7bH621/u0Y1gVgfNrmzxUA2MxgV3vHHvrP7Gr3skMUAABAX5VSnpDkX5Ic0Lm1Kslraq3XNlcVAG1Ua72m6/K6JO8spSxIsuGz+HeWUv6u1nr5di+OURF8ghGqtf4qG3+boO86v7FwUZJnd93+01rrJ7fVmgA0Z1s/VwDgYXQHn2b10L87+LS0z7UAAABsVSnlsCTfSrJ759bKJL9da/1ec1UBMJHUWs8qpfxOkt/o3DouieBTSzjqDsaRUsrTklyVjaGndUneLfQEAAD00e1d7b166P+4rvYdfa4FAABgi0opb0jy/WwMPd2b5OVCTwBsA//Y1X5mY1UwYoJPME6UUl6c5IdJ9u3cWpXkDbVWZ4gCAAD9dH1Xe/8e+u/b1b6xv6UAAAA8vFLKB5Kcn41HdP8yyQtqrVc0VxUAbVNK2aGUMqOHrou72nO2VT30n+ATjAOllFcm+W42/gf0niQvq7X+U3NVAQAAE9TCJOs77UN66P/crvY1/S8HAABgU6WUP09yWpIpnVvXJXlurfWnjRUFQKuUUn6vlHJzhjYc+cMehuzS1V6ybapiWxB8goaVUp6f5P8m2ZAy/WWS59danRkKAAD0Xa31niQ/6lzuV0p56pb6llJ2TfKczuWSJAu2cXkAAMAkV0r5wyQf7br1r0kOr7XevoUhAPBwViQ5IMlAkt/uof8rutr+DqxFBJ+gQaWU3ZJcmI3btN6coW1ab2iuKgAAYBK4oKv9sa30+3CS6Z32V2ut67ZZRQAAwKRXSjk8yaldt/45yZG11uUNlQRAe12cod2ekuSQUsrLt9SxlHJwkmO6bv3DNqyLPhN8gmZ9LsmenfaSJL9Ra13UYD0AAMDk8KUkG372eF0p5ROllCndHUopJyR5f+fy/iSnb8f6AACASaaUMiPJeUl26Nz6UZI31FofaK4qANqq1ro0yWe7bn21lPKszfuVUp6boZDUtM6t/1trvWI7lEifDDRdAExWpZQnJ3lj162rk/xOKaWX4UtrrWdvk8IAAIAJr9a6opTy+0m+laFfivrTJEeVUi5KsjbJS5M8v2vISbXWxdu/UgAAYBI5Lsl+XdcLkrynx89NFtZaL9kWRQHQah9LcniS5yZ5TJL/LKV8J0OfzU/r3H95kg2/ELgwyfHbv0zGQvAJmvPWbPwP6P/f3v2EWjrHcRz/XI2aqCERSmzUz/+NhY2FhhpMpmGhpjBE/oSShcbOAlmQ3IUFJn82llIKk6RpdjQTRvnaTQ0KC000aDgW99Ecx73zB/ec+XVerzp1n+/znPpuZ+77/p4kuX74HIt9SYRPAADAv1ZV77TWbsvSvy1OTXL58Bl3KMljVfXStPcDAADmzp0T1w8ex3dfTyJ8AuBvqupga+2GJK8m2ZylUwU3DZ9JbyW5azgpio4In2B2Jn+hAAAAMFVV9WZrbVeSh5PcmKW/rj45yf4kHyZZrKq9M1wRAACYH35vAsD/rqp+THJza+3aJHdl6ZTzc5L8nuSbJDuTvFZVu2a2JP/Jwmg0mvUOAAAAAAAAAAAAx+WkWS8AAAAAAAAAAABwvIRPAAAAAAAAAABAd4RPAAAAAAAAAABAd4RPAAAAAAAAAABAd4RPAAAAAAAAAABAd4RPAAAAAAAAAABAd4RPAAAAAAAAAABAd4RPAAAAAAAAAABAd4RPAAAAAAAAAABAd4RPAAAAAAAAAABAd4RPAAAAAAAAAABAd4RPAAAAAAAAAABAd4RPAAAAAAAAAABAd4RPAAAAAAAAAABAd4RPAAAAAAAAAABAd4RPAAAAAAAAAABAd4RPAAAAAAAAAABAd4RPAAAAAAAAAABAd4RPAAAAAAAAAABAd4RPAAAAAAAAAABAd4RPAAAAAAAAAABAd9bMegEAAAAAOJG01tYm2ZPkomF0IMklVfX1Cs+fkmR3kjaMKsmVVfXzau8KAAAAMM+c+AQAAAAAY6rqlyS3Jzk0jNYlefEIX3kuh6On35JsET0BAAAArD7hEwAAAABMqKpPkjw5NtrUWrt18rnW2sYk94+NHq+qPau9HwAAAADCJwAAAABYyVNJPh67XmytnfHXRWvtrCTbx+6/n+T5Ke0GAAAAMPeETwAAAACwjKo6lKVX3h0cRmcneXbske3DLEm+S7K1qkbT2xAAAABgvi2MRv4vBgAAAABW0lp7OMni2OiaJBcmeWW4HiXZWFXvTnk1AAAAgLkmfAIAAACAI2itLSTZkeS6YVRJzk2ybrh+oaoemcFqAAAAAHNN+AQAAAAAR9FaOy/J50lOn7j1aZKrqurXqS8FAAAAMOdOmvUCAAAAAHCiq6r9SR6aGB9MskX0BAAAADAbwicAAAAAODZfJvlj7HpNkrUz2gUAAABg7nnVHQAAAAAcRWttbZLdSS6euPVFkiud+gQAAAAwfU58AgAAAICjeyaHo6cfhk+SXJrk6ZlsBAAAADDnnPgEAAAAAEfQWluf5IMkC8NoS5KTk7wxXI+SrK+qj6a/HQAAAMD8Ej4BAAAAwApaa6cl+SzJ+cPo7araPNx7L8mGYb4vyRVVdWDqSwIAAADMKa+6AwAAAICVLeZw9PRjkgfG7t2X5Kfh5wuGZwEAAACYEuETAAAAACyjtXZLkjvGRo9W1bd/XVTVviTbxu5vba1tntJ6AAAAAHPPq+4AAAAAYEJr7ewke5OcOYx2VNWGZZ5bSLIzydXD6Pskl1XVd1NZFAAAAGCOOfEJAAAAAP7p5RyOnn5Kcu9yD1XVKMndSX4ZRmcN3wUAAABglQmfAAAAAGBMa+2eJDeNjbYNr7VbVlV9leSJsdGm1trdq7QeAAAAAAOvugMAAAAAAAAAALrjxCcAAAAAAAAAAKA7wicAAAAAAAAAAKA7wicAAAAAAAAAAKA7wicAAAAAAAAAAKA7wicAAAAAAAAAAKA7wicAAAAAAAAAAKA7wicAAAAAAAAAAKA7wicAAAAAAAAAAKA7wicAAAAAAAAAAKA7wicAAAAAAAAAAKA7wicAAAAAAAAAAKA7wicAAAAAAAAAAKA7wicAAAAAAAAAAKA7wicAAAAAAAAAAKA7wicAAAAAAAAAAKA7wicAAAAAAAAAAKA7wicAAAAAAAAAAKA7wicAAAAAAAAAAKA7wicAAAAAAAAAAKA7wicAAAAAAAAAAKA7fwJV7z4CUYxvqQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 603, + "width": 1183 + }, + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "my_bernoulli = sts.bernoulli(p=0.6)\n", + "x = np.arange(-2, 4)\n", + "y = my_bernoulli.cdf(x)\n", + "y2 = my_bernoulli.cdf(x / 2)\n", + "\n", + "fig, ax = plt.subplots()\n", + "ax.step(x, y, where=\"post\", label=\"CDF X\")\n", + "ax.step(x, y2, where=\"post\", ls=\"--\", label=\"CDF 2X\")\n", + "for xx, yy, yy2 in zip(x, y, y2):\n", + " ax.text(xx, yy + 0.02, str(round(yy, 2)), horizontalalignment=\"center\")\n", + " ax.text(xx, yy2 + 0.02, str(round(yy2, 2)), horizontalalignment=\"center\")\n", + "ax.set_xlabel(\"x\")\n", + "ax.set_ylabel(\"CDF\")\n", + "ax.legend();" + ] + }, + { + "cell_type": "markdown", + "id": "bd8a49f0", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Example 7\n", + "\n", + "Let $X \\sim Be(p)$. Find the distribution of $Y = X^2$." + ] + }, + { + "cell_type": "markdown", + "id": "9a69d9ac", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Solution 7\n", + "\n", + "- $X \\sim Be(p)$\n", + "- $X \\in \\{0, 1\\}$\n", + "- $Y = X^2$\n", + "- $Y \\in \\{0, 1\\}$\n", + "\n", + "So we need to define PMF at 0 and 1:\n", + "\n", + "$$\n", + "\\begin{cases}\n", + "\\mathbb{P}(Y = 0) = \\mathbb{P}(X^2 = 0) = \\mathbb{P}(X = \\sqrt{0}) = \\mathbb{P}(X = 0) = 1 - p \\\\\n", + "\\mathbb{P}(Y = 1) = \\mathbb{P}(X^2 = 1) = \\mathbb{P}(X = \\pm \\sqrt{1}) = \\mathbb{P}(X = -1) + \\mathbb{P}(X = 1) = 0 +p = p\n", + "\\end{cases}\n", + "$$" + ] + } + ], + "metadata": { + "celltoolbar": "Slideshow", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.0" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/Seminar_materials/seminar_05/Seminar 5 (Random variables).pdf b/Seminar_materials/seminar_05/Seminar 5 (Random variables).pdf new file mode 100644 index 0000000..5e2bd8e Binary files /dev/null and b/Seminar_materials/seminar_05/Seminar 5 (Random variables).pdf differ diff --git a/Seminar_materials/seminar_05/Seminar 5 (Random variables).slides.html b/Seminar_materials/seminar_05/Seminar 5 (Random variables).slides.html new file mode 100644 index 0000000..c669ce5 --- /dev/null +++ b/Seminar_materials/seminar_05/Seminar 5 (Random variables).slides.html @@ -0,0 +1,7999 @@ + + + + + + + +Seminar 5 (Random variables) slides + + + + + + + + + + + + + + + + + +
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ + + diff --git a/home_assignments/MSAI_Prob24_HW4_5.pdf b/home_assignments/MSAI_Prob24_HW4_5.pdf new file mode 100644 index 0000000..56895f7 Binary files /dev/null and b/home_assignments/MSAI_Prob24_HW4_5.pdf differ