forked from eric-moreno/IN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
IN_onnx.py
215 lines (181 loc) · 8.08 KB
/
IN_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import numpy as np
import torch
import setGPU
import argparse
import onnx
import onnxruntime as ort
import warnings
import os
import sys
import time
N = 60 # number of charged particles
N_sv = 5 # number of SVs
n_targets = 2 # number of classes
save_path = '/storage/group/gpu/bigdata/BumbleB/convert_20181121_ak8_80x_deepDoubleB_db_pf_cpf_sv_dl4jets_test/'
params_2 = ['track_ptrel',
'track_erel',
'track_phirel',
'track_etarel',
'track_deltaR',
'track_drminsv',
'track_drsubjet1',
'track_drsubjet2',
'track_dz',
'track_dzsig',
'track_dxy',
'track_dxysig',
'track_normchi2',
'track_quality',
'track_dptdpt',
'track_detadeta',
'track_dphidphi',
'track_dxydxy',
'track_dzdz',
'track_dxydz',
'track_dphidxy',
'track_dlambdadz',
'trackBTag_EtaRel',
'trackBTag_PtRatio',
'trackBTag_PParRatio',
'trackBTag_Sip2dVal',
'trackBTag_Sip2dSig',
'trackBTag_Sip3dVal',
'trackBTag_Sip3dSig',
'trackBTag_JetDistVal'
]
params_3 = ['sv_ptrel',
'sv_erel',
'sv_phirel',
'sv_etarel',
'sv_deltaR',
'sv_pt',
'sv_mass',
'sv_ntracks',
'sv_normchi2',
'sv_dxy',
'sv_dxysig',
'sv_d3d',
'sv_d3dsig',
'sv_costhetasvpv'
]
def main(args):
test_2 = np.load(save_path + 'test_0_features_2.npy')
test_3 = np.load(save_path + 'test_0_features_3.npy')
test_2 = np.swapaxes(test_2, 1, 2)
test_3 = np.swapaxes(test_3, 1, 2)
print(test_2.shape)
print(test_3.shape)
test = test_2
params = params_2
test_sv = test_3
params_sv = params_3
label = 'new'
from gnn import GraphNet
from gnn import GraphNetnoSV
if args.sv_branch:
gnn = GraphNet(N, n_targets, len(params), args.hidden, N_sv, len(params_sv),
vv_branch=int(args.vv_branch),
De=args.De,
Do=args.Do,
softmax=True)
else:
gnn = GraphNetnoSV(N, n_targets, len(params), args.hidden,
De=args.De,
Do=args.Do,
softmax=True)
gnn.load_state_dict(torch.load('%s/gnn_%s_best.pth'%(args.outdir,label), map_location=torch.device('cpu')))
torch.save(gnn.state_dict(),'%s/gnn_%s_best_onnx.pth'%(args.outdir,label))
print(gnn)
batch_size = 1
dummy_input_1 = torch.from_numpy(test[0:batch_size]).cuda()
dummy_input_2 = torch.from_numpy(test_sv[0:batch_size]).cuda()
#dummy_input_1 = torch.randn(32, 30, 60, device='cuda')
#dummy_input_2 = torch.randn(32, 14, 5, device='cuda')
if args.sv_branch:
tic = time.perf_counter()
out_test = gnn(dummy_input_1, dummy_input_2)
toc = time.perf_counter()
input_names = ['input_cpf', 'input_sv']
output_names = ['output1']
torch.onnx.export(gnn, (dummy_input_1, dummy_input_2), "%s/gnn.onnx"%args.outdir, verbose=True,
input_names = input_names, output_names = output_names,
export_params=True, # store the trained parameter weights inside the model file
opset_version=11, # the ONNX version to export the model to
dynamic_axes = {input_names[0]: {0: 'batch_size'},
input_names[1]: {0: 'batch_size'},
output_names[0]: {0: 'batch_size'}})
else:
tic = time.perf_counter()
out_test = gnn(dummy_input_1)
toc = time.perf_counter()
input_names = ['input_cpf']
output_names = ['output1']
torch.onnx.export(gnn, (dummy_input_1), "%s/gnn.onnx"%args.outdir, verbose=True,
input_names = input_names, output_names = output_names,
export_params=True, # store the trained parameter weights inside the model file
opset_version=11, # the ONNX version to export the model to
dynamic_axes = {input_names[0]: {0: 'batch_size'},
output_names[0]: {0, 'batch_size'}})
print(f"PyTorch Inference in {toc - tic:0.4f} seconds")
# Load the ONNX model
model = onnx.load("%s/gnn.onnx"%args.outdir)
# Check that the IR is well formed
onnx.checker.check_model(model)
# Print a human readable representation of the graph
print(onnx.helper.printable_graph(model.graph))
ort_session = ort.InferenceSession("%s/gnn.onnx"%args.outdir)
def to_numpy(tensor):
return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()
# compute ONNX Runtime output prediction
ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(dummy_input_1),
ort_session.get_inputs()[1].name: to_numpy(dummy_input_2)}
tic = time.perf_counter()
ort_outs = ort_session.run(None, ort_inputs)
toc = time.perf_counter()
print(f"ONNXRuntime Inference in {toc - tic:0.4f} seconds")
print('PyTorch:', out_test)
print('ONNXRuntime:', ort_outs)
# compare ONNX Runtime and PyTorch results
np.testing.assert_allclose(to_numpy(out_test), ort_outs[0], rtol=1e-03, atol=1e-05)
print("Exported model has been tested with ONNXRuntime, and the result looks good!")
from onnx_tf.backend import prepare
#warnings.filterwarnings('ignore') # Ignore all the warning messages in this tutorial
tf_rep = prepare(model) # Import the ONNX model to Tensorflow
print(tf_rep.inputs) # Input nodes to the model
print(tf_rep.outputs) # Output nodes from the model
#print(tf_rep.tensor_dict) # All nodes in the model
output = tf_rep.run((test[0:batch_size],test_sv[0:batch_size]))["output1"]
model_filename = '%s/gnn.pb'%args.outdir
tf_rep.export_graph(model_filename)
import tensorflow as tf
tf.reset_default_graph()
from tensorflow.python.platform import gfile
with tf.Session() as sess:
with gfile.FastGFile(model_filename, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
g_in = tf.import_graph_def(graph_def)
print([n.name for n in tf.get_default_graph().as_graph_def().node])
x = sess.graph.get_tensor_by_name('import/input_cpf:0')
y = sess.graph.get_tensor_by_name('import/input_sv:0')
#out = sess.graph.get_tensor_by_name('import/add_33:0')
#out = sess.graph.get_tensor_by_name('import/Softmax_130:0')
out = sess.graph.get_tensor_by_name('import/output1:0')
feed_dict = {x:test[0:batch_size], y:test_sv[0:batch_size]}
classification = sess.run(out, feed_dict)
sess.run(tf.global_variables_initializer())
print("PyTorch:",out_test)
print("TensorFlow:",classification)
if __name__ == "__main__":
""" This is executed when run from the command line """
parser = argparse.ArgumentParser()
# Required positional arguments
parser.add_argument("outdir", help="Required output directory")
parser.add_argument("sv_branch", help="Required positional argument")
parser.add_argument("vv_branch", help="Required positional argument")
# Optional arguments
parser.add_argument("--De", type=int, action='store', dest='De', default = 20, help="De")
parser.add_argument("--Do", type=int, action='store', dest='Do', default = 24, help="Do")
parser.add_argument("--hidden", type=int, action='store', dest='hidden', default = 60, help="hidden")
args = parser.parse_args()
main(args)