diff --git a/autotest/test_gwe_esl_analyt_sln.py b/autotest/test_gwe_esl_analyt_sln.py new file mode 100644 index 00000000000..8d39c6416a3 --- /dev/null +++ b/autotest/test_gwe_esl_analyt_sln.py @@ -0,0 +1,561 @@ +""" + An analytical solution provided by Carslaw & Jaeger (1947) and discussed in + accompanying Techniques & Methods report. + + Energy is added to the right hand side boundary using the energy source loading + (ESL) package. Basic model set up is below, with a slab of unit thickness + (1.0 m) that is 100 m "deep" with energy being loaded on right side. + Temperature will begin to rise on the right and propagate to the left. There are + no sinks in this first example. + + Section 43, case i: + ------------------- + + | <-------------------------- 10 m --------------------------> | + + +------------------------------------------------------------------+ + | Initial temperature = T_0 | <-- *ESL + +------------------------------------------------------------------+ + ^ * ESL: Energy Source Loading Boundary + | + No heat-flow boundary + + + Section 43, case ii: + -------------------- + + +------------------------------------------------------------------+ + | Initial temperature = 0.0 | <-- *ESL + +------------------------------------------------------------------+ + ^ + | + Specified temperature boundary, T_0 + + + Section 43, case iii: + --------------------- + + +------------------------------------------------------------------+ +CTP -> | | <- CTP = T_0 + = T_0 +------------------------------------------------------------------+ + \-------------------------------------------------------------/ + | + Uniform, constant heat production throughout the slab + + + Specified temperature boundary, T_0 + +""" + +import os +import math +import pytest +import flopy +import numpy as np +import matplotlib.pyplot as plt + +from framework import TestFramework + +# Parameters that vary by scenario +cases = ["esl_casei", "esl_caseii", "esl_caseiii"] +perlen = {0: [100, 900], 1: [100, 9900], 2: [100, 900]} +nstp = [100, 900] +tsmult = [ + [1.0, 1.0], + [1.0, 1.0], + [1.0, 1.0], +] + +T_0 = 0.0 # Initial temperature in all scenarios. +# Additionally serves as the CTP bnd temperature in scenarios ii and iii + +xt3d = [True] + +# Parameters for tdis package + +# Model parameters + +# Slab thickness +el = 10.0 # meters + +# Cell dimensions +nlay, nrow, ncol = 1, 1, 1000 +delc = delz = 1.0 +delr = el / ncol + +top = 1.0 +laytyp = 1 +strt = 0.0 +ss = 0.0 +sy = 0.1 +botm = [0.0] +strt = 0.0 +hnoflo = 1e30 +hdry = -1e30 +hk = 1.0 +alh = 0.0 +alv = 0.0 +ath1 = 0.0 +atv = 0.0 +lhv = 2454.0 + +# Solver parameters +nouter, ninner = 100, 300 +hclose, rclose, relax = 1e-6, 1e-6, 1.0 + +# Boundary condition (same for all scenarios +chd_perdat = {0: [[(0, 0, 0), 0.0000000], [(0, 0, ncol - 1), 0.0000000]]} + +# The following lists the parameter used in generating an analytical solution +# for comparing the MF6 solution to. + +# Density of the solids +rhos = 2700.0 # kg/m^3 + +# Density of water +rhow = 1000.0 # kg/m^3 + +# Heat capacity of the solids +Cps = 703.7 # J / (kg * C) + +# Heat capacity of water +Cpw = 4183.0 # J / (kg * C) + +# "Bulk" thermal conductivity +# For this problem, K_t_bulk represents the thermal conductivity of the +# solid material only since the problem represents a dry slab +Kts = 0.2700 * 86400 # * 1e8 # J / (day * m * C) +Ktw = 0.5918 * 86400 # J / (day * m * C) + +# Amount of saturation in a cell (cells are dry in this example) +Sw = 0.0 # dimensionless + +# Define porosity +theta = 0.1 # dimensionless + +# Equation 4-6 (for now anyway) +K_t_bulk = Sw * theta * Ktw + (1 - theta) * Kts + +# Eqn 7-4: Bulk specific heat on a per volume basis +rho_C_bulk = Sw * theta * rhow * Cpw + (1 - theta) * rhos * Cps + +# Eqn 7-3: Bulk thermal diffusivity +D = K_t_bulk / rho_C_bulk + +# Energy input to boundary (q_x term in the documentation) +def calc_ener_input(primer_val): + ener_add_rate = delr * delc * delz * rho_C_bulk * primer_val + return ener_add_rate + + +# Define function to solve analytical solution +# Function names derive from equation numbers in Techniques and Methdos + + +def build_models(idx, test, ener_input): + + name = cases[idx] + + # Build MODFLOW 6 files + ws = test.workspace + sim = flopy.mf6.MFSimulation( + sim_name=name, version="mf6", exe_name="mf6", sim_ws=ws + ) + + # Create tdis package + tdis_rc = [] + for i in range(len(perlen[idx])): + tdis_rc.append((perlen[idx][i], nstp[i], tsmult[idx][i])) + + flopy.mf6.ModflowTdis( + sim, time_units="DAYS", nper=len(perlen[idx]), perioddata=tdis_rc + ) + + # Create GWF model + gwfname = "gwf_" + name + gwf = flopy.mf6.MFModel( + sim, + model_type="gwf6", + modelname=gwfname, + model_nam_file=f"{gwfname}.nam", + ) + gwf.name_file.save_flows = True + + # Create iterative model solution and register the gwf model with it + imsgwf = flopy.mf6.ModflowIms( + sim, + print_option="SUMMARY", + outer_dvclose=hclose, + outer_maximum=nouter, + under_relaxation="NONE", + inner_maximum=ninner, + inner_dvclose=hclose, + rcloserecord=rclose, + linear_acceleration="CG", + scaling_method="NONE", + reordering_method="NONE", + relaxation_factor=relax, + filename=f"{gwfname}.ims", + ) + sim.register_ims_package(imsgwf, [gwf.name]) + + # Discretization package + flopy.mf6.ModflowGwfdis( + gwf, + nlay=nlay, + nrow=nrow, + ncol=ncol, + delr=delr, + delc=delc, + top=top, + botm=botm, + idomain=np.ones((nlay, nrow, ncol), dtype=int), + pname="DIS-GWF", + filename=f"{gwfname}.dis", + ) + + # Initial conditions + flopy.mf6.ModflowGwfic( + gwf, strt=strt, pname="IC-HD", filename=f"{gwfname}.ic" + ) + + # Node property flow + flopy.mf6.ModflowGwfnpf( + gwf, + save_specific_discharge=True, + icelltype=laytyp, + k=hk, + k33=hk, + filename=f"{gwfname}.npf", + ) + + # Instantiating MODFLOW 6 storage package + flopy.mf6.ModflowGwfsto( + gwf, + ss=ss, + sy=sy, + iconvert=1, + steady_state=False, + transient=True, + pname="STO", + filename="{}.sto".format(gwfname), + ) + + # Constant head files + chd = None + # chd = flopy.mf6.ModflowGwfchd( + # gwf, + # maxbound=len(chd_perdat[0]), + # stress_period_data=chd_perdat, + # save_flows=False, + # pname="CHD-1", + # filename=f"{gwfname}.chd" + # ) + + # Output control + flopy.mf6.ModflowGwfoc( + gwf, + budget_filerecord=f"{gwfname}.cbc", + head_filerecord=f"{gwfname}.hds", + headprintrecord=[("COLUMNS", 10, "WIDTH", 15, "DIGITS", 6, "GENERAL")], + saverecord=[("HEAD", "LAST"), ("BUDGET", "LAST")], + printrecord=[("HEAD", "LAST"), ("BUDGET", "LAST")], + ) + + # ----------------- + # Create GWE model + # ----------------- + + gwename = "gwe_" + name + gwe = flopy.mf6.MFModel( + sim, + model_type="gwe6", + modelname=gwename, + model_nam_file=f"{gwename}.nam", + ) + gwe.name_file.save_flows = True + + # Create iterative model solution and register the gwt model with it + imsgwe = flopy.mf6.ModflowIms( + sim, + print_option="SUMMARY", + outer_dvclose=hclose, + outer_maximum=nouter, + under_relaxation="NONE", + inner_maximum=ninner, + inner_dvclose=hclose, + rcloserecord=rclose, + linear_acceleration="BICGSTAB", + scaling_method="NONE", + reordering_method="NONE", + relaxation_factor=relax, + filename=f"{gwename}.ims", + ) + sim.register_ims_package(imsgwe, [gwe.name]) + + flopy.mf6.ModflowGwedis( + gwe, + nlay=nlay, + nrow=nrow, + ncol=ncol, + delr=delr, + delc=delc, + top=top, + botm=botm, + idomain=1, + filename=f"{gwename}.dis", + ) + + # Initial conditions + flopy.mf6.ModflowGweic( + gwe, strt=T_0, pname="IC-1", filename=f"{gwename}.ic" + ) + + # Advection + flopy.mf6.ModflowGweadv( + gwe, scheme="UPSTREAM", pname="ADV-E", filename=f"{gwename}.adv" + ) + + # Heat conduction + flopy.mf6.ModflowGwecnd( + gwe, + alh=alh, + alv=alv, + ath1=ath1, + atv=atv, + ktw=Ktw, + kts=Kts, + pname="CND-1", + filename="{}.cnd".format(gwename), + ) + + flopy.mf6.ModflowGweest( + gwe, + porosity=theta, + cps=Cps, + rhos=rhos, + packagedata=[Cpw, rhow, lhv], + pname="EST-1", + filename="{}.est".format(gwename), + ) + + # Constant temperature + # Note: Implementation of the CTP boundary depends on which analytical sln is in view + # See notes at top of script regarding scenarios + if idx > 0: + if idx == 1: + ctp = {0: [[(0, 0, 0), T_0]]} + elif idx == 2: + ctp = {0: [[(0, 0, 0), T_0], [(0, 0, ncol - 1), T_0]]} + flopy.mf6.ModflowGwectp( + gwe, + maxbound=len(ctp), + stress_period_data=ctp, + save_flows=True, + pname="CTP-1", + filename=f"{gwename}.ctp", + ) + + # Instantiate energy source loading (ESL) package + if idx < 2: + esrc = {0: [[(0, 0, ncol - 1), ener_input]]} + + elif idx == 2: + esrcs = [] + for j in np.arange(ncol): + esrcs.append([(0, 0, j), ener_input]) + esrc = {0: esrcs} + + flopy.mf6.ModflowGweesl( + gwe, + maxbound=len(esrc[0]), + stress_period_data=esrc, + save_flows=False, + pname="ESL-1", + filename=f"{gwename}.esl", + ) + + # Sources + if chd is not None: + flopy.mf6.ModflowGwessm( + gwe, sources=[[]], pname="SSM-E", filename=f"{gwename}.ssm" + ) + + # Output control + flopy.mf6.ModflowGweoc( + gwe, + budget_filerecord=f"{gwename}.cbc", + temperature_filerecord=f"{gwename}.ucn", + temperatureprintrecord=[ + ("COLUMNS", 10, "WIDTH", 15, "DIGITS", 6, "GENERAL") + ], + saverecord=[("TEMPERATURE", "LAST"), ("BUDGET", "LAST")], + printrecord=[("TEMPERATURE", "LAST"), ("BUDGET", "LAST")], + ) + + # GWF GWE exchange + flopy.mf6.ModflowGwfgwe( + sim, + exgtype="GWF6-GWE6", + exgmnamea=gwfname, + exgmnameb=gwename, + filename=f"{name}.gwfgwe", + ) + + return sim, None + + +def eq7_24(x, t, l, D, T_0, ener_add_rate): + # Compute corresponding x_hat term + x_hat = x / l # Dimensionless distance + + # Compute corresponding t_hat term + t_hat = D * t / l ** 2 # Dimensionless time + + # Solve equation 7-24 + term1 = (1 / 2) * (x_hat ** 2 - 1 / 3) + summation_terms = [ + ((-1) ** n) + / n ** 2 + * math.exp(-1 * n ** 2 * math.pi ** 2 * t_hat) + * math.cos(n * math.pi * x_hat) + for n in np.arange(1, 1000) + ] + term2 = 2 / (math.pi ** 2) * np.sum(summation_terms) + T = T_0 + ener_add_rate * l / K_t_bulk * (t_hat + term1 - term2) + + return T + + +def eq7_25(x, t, l, D, T_0, ener_add_rate): + # Compute corresponding x_hat term + x_hat = x / l # Dimensionless distance + + # Compute corresponding t_hat term + t_hat = D * t / l ** 2 # Dimensionless time + + # Solve equation 7-25 + summation_terms = [ + ((-1) ** n) + / (2 * n + 1) ** 2 + * math.exp(-1 * (2 * n + 1) ** 2 * math.pi ** 2 * t_hat / 4) + * math.sin((2 * n + 1) * math.pi * x_hat / 2) + for n in np.arange(0, 1000) + ] + term1 = (8 / math.pi ** 2) * np.sum(summation_terms) + + T = T_0 + ener_add_rate * l / K_t_bulk * (x_hat - term1) + + return T + + +def eq7_26(x, t, el, D, T_0, ener_add_rate): + # Compute corresponding x_hat term + x_hat = x / el # Dimensionless distance + + # Compute corresponding t_hat term + t_hat = D * t / el ** 2 # Dimensionless time + + # Solve equation 7-26 + term1 = x_hat * (1 - x_hat) + summation_terms = [ + 1 + / (2 * n + 1) ** 3 + * math.exp(-1 * (2 * n + 1) ** 2 * math.pi ** 2 * t_hat) + * math.sin((2 * n + 1) * math.pi * x_hat) + for n in np.arange(0, 1000) + ] + term2 = (8 / math.pi ** 3) * np.sum(summation_terms) + T = T_0 + 0.5 * ener_add_rate * el ** 2 / K_t_bulk * (term1 - term2) + + return T + + +def check_output(idx, test, ener_input): + name = test.name + gwename = "gwe_" + name + + fpth = os.path.join(test.workspace, f"{gwename}.ucn") + tobj = flopy.utils.HeadFile(fpth, precision="double", text="TEMPERATURE") + sim_temps = tobj.get_alldata() + + # Compare simulated output to analytical solutions (scenario dependent) + if idx < 2: + t_accumulate = 0.0 + area_input = delc * delz + ener_flux = ener_input / area_input + + for sp, t in enumerate(perlen[idx]): + # Time to solution + t_accumulate += t # days + + # Iterate over x which represents the cell centroid locations for which + # analytical solution is desired (cell centroid locations) + cell_centroids = [] + analytical_temps = [] + for x in np.arange(delr / 2, el + (delr / 2), delr): + cell_centroids.append(x) + if idx == 0: + T = eq7_24(x, t_accumulate, el, D, T_0, ener_flux) + elif idx == 1: + T = eq7_25(x, t_accumulate, el, D, T_0, ener_flux) + analytical_temps.append(T) + + analytical_temps = np.array(analytical_temps) + assert np.allclose( + analytical_temps, sim_temps[sp, 0, 0, :], atol=0.005 + ), "simulated solution is whacked" + # plt.plot(cell_centroids, analytical_temps, "r-", label="Analytical Solution") + # plt.plot(cell_centroids, sim_temps[sp, 0, 0, :], "b--", label="GWE") + # plt.axhline(0.0, color='black') + # plt.legend() + # plt.show() + + elif idx == 2: + + t_accumulate = 0.0 + ener_src = ener_input / (delr * delc * delz) + + for sp, t in enumerate(perlen[idx]): + # Time to solution + t_accumulate += t # days + + analytical_temps = [] + cell_centroids = [] + for x in np.arange(delr / 2, el + (delr / 2), delr): + cell_centroids.append(x) + T = eq7_26(x, t_accumulate, el - (delr * 2), D, T_0, ener_src) + analytical_temps.append(T) + + analytical_temps = np.array(analytical_temps) + if sp == 0: + atol = 0.16 + else: + atol = 0.47 + + assert np.allclose( + analytical_temps, sim_temps[sp, 0, 0, :], atol=atol + ), "simulated solution is whacked" + + # plt.plot(cell_centroids, analytical_temps, "r-", label="Analytical Solution") + # plt.plot(cell_centroids, sim_temps[sp, 0, 0, :], "b--", label="GWE") + # plt.axhline(0.0, color='black') + # plt.legend() + # plt.show() + + +# - No need to change any code below +@pytest.mark.parametrize("idx, name", enumerate(cases)) +def test_mf6model(idx, name, function_tmpdir, targets): + if idx < 2: + ener_input = calc_ener_input(1.0) + elif idx == 2: + ener_input = calc_ener_input(0.1) + test = TestFramework( + name=name, + workspace=function_tmpdir, + targets=targets, + build=lambda t: build_models(idx, t, ener_input), + check=lambda t: check_output(idx, t, ener_input), + ) + test.run()