From ed8e6bcd3bd0db827da71e8120c81c39d764decd Mon Sep 17 00:00:00 2001 From: robfatland Date: Mon, 15 Jul 2024 14:40:44 -0700 Subject: [PATCH] stable dataloader --- book/chapters/dataloader.ipynb | 121 +++++++++++++++------------------ 1 file changed, 56 insertions(+), 65 deletions(-) diff --git a/book/chapters/dataloader.ipynb b/book/chapters/dataloader.ipynb index 845ba47..0cfca8b 100644 --- a/book/chapters/dataloader.ipynb +++ b/book/chapters/dataloader.ipynb @@ -846,18 +846,20 @@ }, "outputs": [], "source": [ - "instrument_key = 'optaa'\n", - "for s in osb_profiler_streams: \n", - " if instrument_key in s: \n", - " print('Found this instrument stream:', s)\n", - " instrument_stream = s\n", - " break\n", + "# Not working yet\n", + "if False:\n", + " instrument_key = 'optaa'\n", + " for s in osb_profiler_streams: \n", + " if instrument_key in s: \n", + " print('Found this instrument stream:', s)\n", + " instrument_stream = s\n", + " break\n", " \n", - "ds = loadData(instrument_stream) # lazy load\n", - "t0, t1 = '2022-01-01T00', '2022-12-31T23' # January 2022\n", - "ds = ds.sel(time=slice(t0, t1)) # Subset the full time range to one month\n", - "print(ds.time[0], ' ', ds.time[-1]) # verify selected one month time range\n", - "ds # get a 'data variable' list of sensors/metadata for this instrument" + " ds = loadData(instrument_stream) # lazy load\n", + " t0, t1 = '2022-01-01T00', '2022-12-31T23' # January 2022\n", + " ds = ds.sel(time=slice(t0, t1)) # Subset the full time range to one month\n", + " print(ds.time[0], ' ', ds.time[-1]) # verify selected one month time range\n", + " ds # get a 'data variable' list of sensors/metadata for this instrument" ] }, { @@ -868,14 +870,6 @@ "...paused here: This will require unique code to retain the wavelength dimension..." ] }, - { - "cell_type": "code", - "execution_count": null, - "id": "46eb4373-7fc7-4d14-980f-20c3f6f375c1", - "metadata": {}, - "outputs": [], - "source": [] - }, { "cell_type": "markdown", "id": "363f8c5a-ca63-46c6-8f2d-db244eb7e41c", @@ -886,23 +880,14 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 12, "id": "116d035e-c844-44a3-b021-49ec801c0d88", "metadata": { "tags": [] }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Found this instrument stream: ooi-data/RS01SBPS-SF01A-3C-PARADA101-streamed-parad_sa_sample\n", - "Compare: ooi-data/RS01SBPS-SF01A-3C-PARADA101-streamed-parad_sa_sample\n" - ] - } - ], + "outputs": [], "source": [ - "if True:\n", + "if False:\n", " instrument_key = 'parad'\n", " for s in osb_profiler_streams: \n", " if instrument_key in s: \n", @@ -914,14 +899,14 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "id": "62581c86-5bd2-4adf-b70e-383b50a44c9a", "metadata": { "tags": [] }, "outputs": [], "source": [ - "if True:\n", + "if False:\n", " ds = loadData(instrument_stream) # lazy load\n", " t0, t1 = '2022-01-01T00', '2022-12-31T23' # January 2022\n", " ds = ds.sel(time=slice(t0, t1)) # Subset the full time range to one month\n", @@ -937,7 +922,7 @@ "***seems to fail: kernel restart (timeout?)***\n", "\n", "\n", - "Compare: Joe says this stream is ok: `RS01SBPS-SF01A-3C-PARADA101-streamed-parad_sa_sample`" + "Compare: Joe says this stream is ok: `RS01SBPS-SF01A-3C-PARADA101-streamed-parad_sa_sample` and use a bigger machine." ] }, { @@ -998,7 +983,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 14, "id": "8344cfa7-362c-4522-818c-788e7a639d48", "metadata": { "tags": [] @@ -1054,7 +1039,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 15, "id": "0097acb9-a10b-409b-9c28-c1713fbb7d12", "metadata": {}, "outputs": [ @@ -1068,9 +1053,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAGGCAYAAABmPbWyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABDJUlEQVR4nO3deVyVZf7/8feR5bDJcUHFBcV9ycpd0QqpXKbSaVXTMRmXcoypXGrcBcq0XGbKX+lUiNZYaaaNTWVqqW1o6kCjUampqQEaqGCagHL9/ujB+Xo8B7xREJTX8/E4j4f3dV/nOp/73MB5e9/XfR+bMcYIAAAAxapS3gUAAABcDQhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITcBVKDw8XNHR0c7ltLQ0xcbGKiUlpUxe76uvvlJsbKxOnDhRJuO//vrrqlWrlk6ePHnRvjabTbGxsaX6+kuWLJHNZtP27duL7Tdt2jR16NBBBQUFlsfOz89Xq1atNHv2bGdbbGysbDabMjMzL/r8nj17qmfPnpZfr6R69uyptm3bFtsnPz9fTZs21T/+8Y8yqwO4GhCagKvQ6tWrNW3aNOdyWlqa4uLiyjQ0xcXFlUloOn36tCZPnqy//e1vqlq1aqmPX5omTJig/fv3a+nSpZaf8/LLL+v48eP661//WoaVlS0fHx9Nnz5d8fHxysrKKu9ygHJDaAKuQu3bt1fTpk0v+fmnT58uxWouz9KlS5WVlaWRI0de8dfOz8/X2bNnLfd3OBz605/+pNmzZ8vK13aePXtWc+bM0fDhwxUYGHg5pZa7Bx98UDabTf/85z/LuxSg3BCagAqi8JTNt99+qwcffFAOh0N16tTR8OHDlZ2d7dL3/NNzmzZtUufOnSVJf/7zn2Wz2VxOYUVHRysoKEg7d+5U7969VbVqVd12222SpPXr1+uPf/yjGjRoID8/PzVr1kyPPPKIy2mj2NhYPfnkk5Kkxo0bO8fftGmTs8/y5csVERGhwMBABQUFqU+fPkpOTra03QsXLlS/fv1UrVo1l/acnByNGjVKNWvWVFBQkPr27avdu3e7PX/v3r3685//rObNmysgIED169dXv379tHPnTpd+mzZtks1m0xtvvKHx48erfv36stvt2rt3r8e60tPT1bFjRzVv3lx79uxxtg8dOlS7d+/Wxo0bL7pta9as0c8//6yhQ4d6XH/o0CHde++9Cg4OdgayX3755aLjxsXFqWvXrqpRo4aCg4PVoUMHJSQkeAxyb775piIiIhQUFKSgoCC1a9dOCQkJxY6/evVqBQQEaOTIkc5Q6evrq4EDB+qVV16xFBiBaxGhCahg7rvvPrVo0ULvvvuuJk6cqDfffFNjx44tsn+HDh2UmJgoSZo6daqSkpKUlJTkcuQmLy9P/fv316233qp///vfiouLkyT9+OOPioiI0MKFC7Vu3TpNnz5dW7du1U033aT8/HxJ0siRI52nllatWuUcv0OHDpKkZ599Vg8++KDatGmjFStW6I033tDJkyd18803KzU1tdhtPXz4sHbu3KmoqCiXdmOM7r77bmfAWb16tbp166Y//OEPbmOkpaWpZs2amj17ttauXauXXnpJ3t7e6tq1q3744Qe3/pMmTdLBgwe1aNEivf/++6pdu7Zbn127dqlr166y2+1KSkpS8+bNnes6duyooKAgffDBB8VumyR98MEHql27ttq0aeNx/T333KNmzZpp5cqVio2N1Xvvvac+ffo43/uiHDhwQI888ohWrFihVatW6d5779Vf//pXPf300y79pk+friFDhqhevXpasmSJVq9erWHDhumnn34qcuy///3veuCBBzR58mS99tpr8vb2dq7r2bOnfvrpJ+3ateui2w5ckwyACmHGjBlGknn++edd2seMGWP8/PxMQUGBs61Ro0Zm2LBhzuVt27YZSSYxMdFt3GHDhhlJZvHixcW+fkFBgcnPzzc//fSTkWT+/e9/O9fNmTPHSDL79+93ec7BgweNt7e3+etf/+rSfvLkSRMaGmoGDBhQ7GsuX77cSDJbtmxxaf/oo4+MJPPCCy+4tM+cOdNIMjNmzChyzLNnz5q8vDzTvHlzM3bsWGf7xo0bjSRzyy23uD0nMTHRSDLbtm0z69evN8HBweb+++83v/32m8fX6NGjh+natWux22aMMa1btzZ9+/Z1ay/c1+fXZ4wxy5YtM5LMv/71L2dbZGSkiYyMLPI1zp07Z/Lz8018fLypWbOm8+dk3759xsvLywwZMqTYGiMjI811111nzp07Z2JiYoyvr6/L659vz549RpJZuHBhsWMC1yqONAEVTP/+/V2Wb7jhBp05c0ZHjx69rHHvu+8+t7ajR49q9OjRCgsLk7e3t3x8fNSoUSNJ0nfffXfRMT/++GOdPXtWDz30kM6ePet8+Pn5KTIy0uUUnidpaWmS5Ha0p/DU15AhQ1zaBw8e7DbG2bNn9eyzz6pNmzby9fWVt7e3fH19tWfPHo/b4Ol9KLR06VLdcccdGjlypFasWCE/Pz+P/WrXrq2ff/652G2Tft8+T0eyCl24fQMGDJC3t/dFT/19+umnuv322+VwOOTl5eWcqJ2VleX8OVm/fr3OnTunRx999KJ1njlzRnfffbeWLVumdevWudVVqHBbrGw7cC3yvngXAFdSzZo1XZbtdrsk6bfffrvkMQMCAhQcHOzSVlBQoN69eystLU3Tpk3T9ddfr8DAQBUUFKhbt26WXu/IkSOS5JxTdaEqVYr/f1nha1wYTrKysuTt7e32XoSGhrqNMW7cOL300kv629/+psjISFWvXl1VqlTRyJEjPW5D3bp1i6zn7bfflr+/v0aOHCmbzVZkPz8/P0vvz2+//VZk8JLct6dwm4u7Qu3rr79W79691bNnT7366qtq0KCBfH199d5772nmzJnOugrnRjVo0OCidR49elSHDh3S7bffru7duxfZr3BbLudnEbiaEZqASsBTANi1a5e++eYbLVmyRMOGDXO2FzUx2pOQkBBJ0sqVK51HqEqi8PnHjh1zCTM1a9bU2bNnlZWV5RKcMjIy3Mb417/+pYceekjPPvusS3tmZqbb5HLJ83tRaNmyZZo2bZoiIyO1bt06tWvXzmO/Y8eOOWsvTkhIiI4dO1bk+oyMDNWvX9+57GmbL/T222/Lx8dH//nPf1wC2XvvvefSr1atWpJ+nzcWFhZWbJ0NGzbU/Pnzdc899+jee+/VO++84zHsFW6LlW0HrkWcngOuAZdyNKowPBQ+t5CnS8qLGr9Pnz7y9vbWjz/+qE6dOnl8FKdVq1aSfp+Qfr7CieHLli1zaX/zzTc9bseF2/DBBx9c0imkGjVqaMOGDWrdurWioqK0ZcsWj/327dtX5OTu87Vq1cpt28534fatWLFCZ8+eLfZmljabTd7e3vLy8nK2/fbbb3rjjTdc+vXu3VteXl5auHDhRess7P/xxx/rs88+01133aVTp0659dm3b58kWdp24FrEkSbgGtC0aVP5+/tr2bJlat26tYKCglSvXj3Vq1evyOe0atVKTZs21cSJE2WMUY0aNfT+++9r/fr1bn2vv/56SdILL7ygYcOGycfHRy1btlR4eLji4+M1ZcoU7du3T3379lX16tV15MgRff311woMDHReqedJ165d5e/vry1btrjM5erdu7duueUWPfXUUzp16pQ6deqkL7/80i0YSNJdd92lJUuWqFWrVrrhhhu0Y8cOzZkzx9JpKU+qVq2qtWvX6t5771WvXr20Zs0al6v7srKytGfPHks3q+zZs6fi4+N1+vRpBQQEuK1ftWqVvL291atXL3377beaNm2abrzxRg0YMKDIMe+8807Nnz9fgwcP1sMPP6ysrCzNnTvXLTiGh4dr8uTJevrpp/Xbb785b2ORmpqqzMxMj/vlpptu0ieffKK+ffuqd+/e+vDDD+VwOJzrt2zZIi8vL91yyy0X3XbgmlTeM9EB/K7wiqpffvnFpb3wyq7zr1y78Oo5Y4x56623TKtWrYyPj4/LFWbDhg0zgYGBHl8zNTXV9OrVy1StWtVUr17dPPDAA+bgwYMer1CbNGmSqVevnqlSpYqRZDZu3Ohc995775moqCgTHBxs7Ha7adSokbn//vvNhg0bLrrdQ4cONW3atHFrP3HihBk+fLipVq2aCQgIML169TLff/+9W23Hjx83I0aMMLVr1zYBAQHmpptuMp9//rnbVWeFV8+98847bq91/tVzhXJzc819991n/Pz8zAcffOBsT0hIMD4+PiYjI+Oi27Z3715js9nMihUrXNoL9/WOHTtMv379TFBQkKlatap58MEHzZEjR1z6erp6bvHixaZly5bGbrebJk2amFmzZpmEhASPVzi+/vrrpnPnzsbPz88EBQWZ9u3bu1xlWXj13Pl27dplQkNDTYcOHVx+Hm+++WbTr1+/i243cK2yGcNdygCUn+3bt6tz587asmWLunbtWt7lXNTNN9+shg0bup1aK0q/fv109uxZffTRR2VcWdn68ccf1bx5c3388cfq1atXeZcDlAtCE4ByN3DgQJ06dUr/+c9/yruUYn322Wfq3bu3UlNT1aRJE0vP2bVrl9q3b6+vvvqqyKsMrwZ//vOfdfjwYY+nb4HKgongAMrdvHnz1LlzZ508ebK8SylWVlaWXn/9dcuBSZLatm2rxMREj1f+XS3Onj2rpk2b6qWXXirvUoByxZEmAAAAC66aI00vv/yyGjduLD8/P3Xs2FGff/55eZcEAAAqkasiNC1fvlxPPPGEpkyZouTkZN188836wx/+oIMHD5Z3aQAAoJK4Kk7Pde3aVR06dHC5SVvr1q119913a9asWeVYGQAAqCwq/M0t8/LytGPHDk2cONGlvXfv3vrqq688Pic3N1e5ubnO5YKCAh07dkw1a9Ys9isUAADAtcEYo5MnT6pevXoX/R5Mqyp8aMrMzNS5c+dUp04dl/Y6deoUeTXKrFmzir0LMQAAqBwOHTp0yd8QcKEKH5oKXXiEyBhT5FGjSZMmady4cc7l7OxsNWzYUIcOHXL7pncAAHDtycnJUVhYmKpWrVpqY1b40BQSEiIvLy+3o0pHjx51O/pUyG63u30PkyQFBwcTmgAAqERKc1pOhb96ztfXVx07dnS7C+369evVvXv3cqoKAABUNhX+SJMkjRs3TkOHDlWnTp0UERGhV155RQcPHtTo0aPLuzQAAFBJXBWhaeDAgcrKylJ8fLzS09PVtm1bffjhh2rUqFF5lwYAACqJq+I+TZcrJydHDodD2dnZzGkCAFy2TZs2KSoqSsePH1e1atWuyGtGR0frxIkTeu+9967I613tyuKzv8LPacK17+jRo3rkkUfUsGFD2e12hYaGqk+fPkpKSnL2sdlspfaH4sCBA7LZbEpJSSm236ZNm2Sz2XTixAm3de3atVNsbKyzT3GPJUuWSJLeffdd9ezZUw6HQ0FBQbrhhhsUHx+vY8eOWa591apV6tWrl2rVqqXg4GBFRETo448/duv37rvvqk2bNrLb7WrTpo1Wr17tsn7WrFnq3Lmzqlatqtq1a+vuu+/WDz/84Fyfn5+vv/3tb7r++usVGBioevXq6aGHHlJaWtpFazx+/LiGDh0qh8Mhh8OhoUOHur2Hjz/+uDp27Ci73a527dpZ3v7NmzerY8eO8vPzU5MmTbRo0SKX9d9++63uu+8+hYeHy2az6R//+IelcXfu3KnIyEj5+/urfv36io+P1/n/n4yOjva4b6+77rpix33llVfUs2dPBQcHe/xZKu7nZ9u2bcWOfbF9LJX866eWLFkim82m1q1bu61bsWKFbDabwsPDXfqfHxgKn2+z2eTl5aXq1aura9euio+PV3Z2tst4he/p7NmzXdrfe+89l4m7nn4PjTF69dVXFRERoeDgYAUFBem6667T448/rr179zr7xcbGevz5Ov9vQGxs7EV/hw8cOFDs+4bKg9CEcnfffffpm2++0dKlS7V7926tWbNGPXv2LFGYsCovL69Ux+vevbvS09OdjwEDBqhv374ubQMHDtSUKVM0cOBAde7cWR999JF27dqlefPm6ZtvvtEbb7xh+fU+++wz9erVSx9++KF27NihqKgo9evXT8nJyc4+SUlJGjhwoIYOHapvvvlGQ4cO1YABA7R161Znn82bN+vRRx/Vli1btH79ep09e1a9e/fWqVOnJEmnT5/Wf//7X02bNk3//e9/tWrVKu3evVv9+/e/aI2DBw9WSkqK1q5dq7Vr1yolJUVDhw516WOM0fDhwzVw4EDL275//37dcccduvnmm5WcnKzJkyfrscce07vvvuvsc/r0aTVp0kSzZ89WaGiopXFzcnLUq1cv1atXT9u2bdOCBQs0d+5czZ8/39nnhRdecNmnhw4dUo0aNfTAAw8UO/bp06fVt29fTZ482eP6C39+0tPTNXLkSIWHh6tTp05FjmtlH1/q108FBgbq6NGjLv9pkaTFixerYcOGxT5X+v0q5fT0dB0+fFhfffWVHn74Yb3++utq166dW+j28/PTc889p+PHj1903ELGGA0ePFiPPfaY7rjjDq1bt07/+9//9OKLL8rf31/PPPOM5bEkacKECS7vf4MGDZxTQQofYWFhJRoT1zBTCWRnZxtJJjs7u7xLwQWOHz9uJJlNmzYV2adRo0ZGkvPRqFEjY4wxe/fuNf379ze1a9c2gYGBplOnTmb9+vVuz3366afNsGHDTHBwsHnooYdcxpJkIiMjPb7uxo0bjSRz/Phxt3U33nijmTFjhlv7sGHDzB//+EeXtq1btxpJ5h//+EeR78HlaNOmjYmLi3MuDxgwwPTt29elT58+fcygQYOKHOPo0aNGktm8eXORfb7++msjyfz0009F9klNTTWSzJYtW5xtSUlJRpL5/vvv3frPmDHD3HjjjUWOd76nnnrKtGrVyqXtkUceMd26dfPYv1GjRubvf//7Rcd9+eWXjcPhMGfOnHG2zZo1y9SrV88UFBR4fM7q1auNzWYzBw4csFR7cT9L58vLyzO1a9c28fHxxfazso+7dOliRo8e7dKnVatWZuLEiUWOm5iYaBwOh4mJiTEjR450th86dMjY7XYzceJE5+/f+f2LWi505MgRExISYoYMGeJsGzZsmLnrrrtMq1atzJNPPulsX716tTn/o+nC9+6tt94yksy///1vj9tw/j4r6udr//79RpJJTk52W2f158bTPl25cqVp06aN8fX1NY0aNTJz5851ec6ZM2fMk08+aRo0aGB8fX1Ns2bNzGuvvWaMMebs2bNm+PDhJjw83Pj5+ZkWLVq4/c3w9PcFRSuLz36ONKFcBQUFKSgoSO+9957LV9+cr/A0RWJiotLT053Lv/76q+644w5t2LBBycnJ6tOnj/r16+f2P+k5c+aobdu22rFjh6ZNm6avv/5akrRhwwalp6dr1apVZbiF0rJlyxQUFKQxY8Z4XF94eqPwlMGmTZssj11QUKCTJ0+qRo0azrakpCT17t3bpV+fPn2K/NohSc5TJ+eP46mPzWYrdv5GUlKSHA6Hunbt6mzr1q2bHA5Hsa9vRVHbtX37duXn51/WuJGRkS73duvTp4/S0tKKPC2TkJCg22+/3eVilMLTSJdzKmfNmjXKzMxUdHS0S3t4eLhiY2Ndai5uHxd+/dSFfYr7+qnzjRgxQsuXL9fp06cl/X7arW/fvkXeG+9iateurSFDhmjNmjU6d+6cs93Ly0vPPvusFixYoMOHD1sa66233lLLli2LPOpZXl+VtWPHDg0YMECDBg3Szp07FRsbq2nTpjlPz0vSQw89pLffflsvvviivvvuOy1atEhBQUGSfv9dbtCggVasWKHU1FRNnz5dkydP1ooVK8ple+AZoQnlytvbW0uWLNHSpUtVrVo19ejRQ5MnT9b//vc/Z59atWpJ+j1chIaGOpdvvPFGPfLII7r++uvVvHlzPfPMM2rSpInWrFnj8hq33nqrJkyYoGbNmqlZs2bO59esWVOhoaHFBoXSsGfPHjVp0kQ+Pj7F9vPx8VHLli0VEBBgeex58+bp1KlTGjBggLMtIyOjRF87ZIzRuHHjdNNNN6lt27Ye+5w5c0YTJ07U4MGDi51QmZGRodq1a7u1165du8jXt6qo7Tp79qwyMzNLfdzCdRdKT0/XRx99pJEjR7q0BwQEqGXLlhfdz8VJSEhQnz593E4HNW3aVCEhIRetubDeS/n6qfO1a9dOTZs21cqVK2WM0ZIlSzR8+PBL3SxJUqtWrXTy5EllZWW5tN9zzz1q166dZsyYYWmc3bt3q2XLli5tTzzxhPM/YBd+XcbOnTud6wofF5uLdinmz5+v2267TdOmTVOLFi0UHR2tmJgYzZkzx1n3ihUrtHjxYt1zzz1q0qSJbrvtNucpah8fH8XFxalz585q3LixhgwZoujoaEJTBUNoQrm77777lJaWpjVr1qhPnz7atGmTOnTo4PI/NE9OnTqlp556Sm3atFG1atUUFBSk77//3u1IU3FzQ64EU8xX/pyvfv36+v7779WlSxdL47711luKjY3V8uXL3YJKSb52KCYmRv/73//01ltveVyfn5+vQYMGqaCgQC+//LKzffTo0S4fREW99sVe35Pzxz3/fmyetquo1yyJkoxbOPn57rvvdmnv0qWLvv/+e9WvX/+Sajh8+LA+/vhjjRgxwm3dJ598opiYmIvWfGFbSX4OLjR8+HAlJiZq8+bNzqO6l6O49/S5557T0qVLlZqaammsC8eYMmWKUlJSNH36dP36668u61q2bKmUlBSXx4cffniJW1G07777Tj169HBp69Gjh/bs2aNz584pJSVFXl5eioyMLHKMRYsWqVOnTqpVq5aCgoL06quvXnQOGq6sq+I+Tbj2+fn5qVevXurVq5emT5+ukSNHasaMGW6nKc735JNP6uOPP9bcuXPVrFkz+fv76/7773eb7B0YGHhJNRUeUcnOznY7JXXixAk5HA5L47Ro0UJffPGF8vPzL+soxPmWL1+uESNG6J133tHtt9/usi40NNTy1w799a9/1Zo1a/TZZ595/ELL/Px8DRgwQPv379enn37qcpQpPj5eEyZMcHvtI0eOuI3zyy+/lOjUzvlXNha+ZlHb5e3trZo1a1oe+0JFjSvJrWZjjBYvXqyhQ4fK19f3kl/Tk8TERNWsWdPSZPuL7eNL+fqpCw0ZMkRPPfWUYmNj9dBDD8nb+/I+Lr777jsFBwd73Fe33HKL+vTpo8mTJxf7Oy9JzZs31/fff+/SVqtWLdWqVcvjUU5fX181a9bMpe1yt8UTT4HUnHcFpr+/f7HPX7FihcaOHat58+YpIiJCVatW1Zw5c1wm96P8caQJFVKbNm2cV3JJvx+6Pn8uhCR9/vnnio6O1j333KPrr79eoaGhluaTFH7YXTjehZo3b64qVaq4Xfqdnp6un3/+2e0UQVEGDx6sX3/91eUozfk83dKgOG+99Zaio6P15ptv6s4773RbHxER4fa1Q+vWrXP52iFjjGJiYrRq1Sp9+umnaty4sds4hYFpz5492rBhg9uHXe3atZ2nPAs/lCIiIpSdne2cNyZJW7duVXZ2dom+9uj8cQs/CIvark6dOl1WGI2IiNBnn33mErbXrVunevXquVxeL/1+1eHevXs9Hg26HMYYJSYm6qGHHrK0LRfbx6Xx9VM1atRQ//79tXnz5ss+NXf06FG9+eabuvvuu1WliuePndmzZ+v999+/6JyrBx98UD/88IP+/e9/X1ZNpa1Nmzb64osvXNq++uortWjRQl5eXrr++utVUFCgzZs3e3z+559/ru7du2vMmDFq3769mjVrph9//PFKlI6SKLUp5RUYV89VXJmZmSYqKsq88cYb5ptvvjH79u0zK1asMHXq1DHDhw939mvevLn5y1/+YtLT082xY8eMMcbcfffdpl27diY5OdmkpKSYfv36mapVq5rHH3/c+TxPV8Lk5+cbf39/88wzz5iMjAxz4sSJIuv7y1/+Yho2bGhWr15t9u3bZ7744gsTGRlprr/+epOfn+/Wv6irW5566inj5eVlnnzySfPVV1+ZAwcOmA0bNpj777/feYXM4cOHTcuWLc3WrVuLrOfNN9803t7e5qWXXjLp6enOx/nb8OWXXxovLy8ze/Zs891335nZs2cbb29vlyva/vKXvxiHw2E2bdrkMs7p06ed71H//v1NgwYNTEpKikuf3NzcIuszxpi+ffuaG264wSQlJZmkpCRz/fXXm7vuusulz549e0xycrJ55JFHTIsWLUxycrJJTk4udux9+/aZgIAAM3bsWJOammoSEhKMj4+PWblypbNPbm6uc6y6deuaCRMmmOTkZLNnz54ixz1x4oSpU6eOefDBB83OnTvNqlWrTHBwsNuVT8YY86c//cl07drV4zhbt241LVu2NIcPH3a2paenm+TkZPPqq68aSeazzz4zycnJJisry+W5GzZsMJJMamqqx7FvvfVWs2DBAueylX389ttvGx8fH5OQkGBSU1PNE088YQIDA4u94u/Cq99Onz5tMjMznct///vfL3r1XHBwsElPTzdpaWnO/dS0aVPTpEkTk5aW5uzr6Xdl6NChxs/Pr9ir5woKCsz9999v/Pz8TFxcnNmyZYvZv3+/2bRpk+nbt6+pUaOG87lX8uq5HTt2mCpVqpj4+Hjzww8/mCVLlhh/f3+TmJjofE50dLQJCwtz/j3ZuHGjWb58uTHGmH/84x8mODjYrF271vzwww9m6tSpJjg42KV+rp4rmbL47Cc0oVydOXPGTJw40XTo0ME4HA4TEBBgWrZsaaZOner8ADfGmDVr1phmzZoZb29v5x/t/fv3m6ioKOPv72/CwsLM//t//89ERkZeNDQZY8yrr75qwsLCTJUqVYq85UBhffHx8aZ169bG39/fNGrUyERHR5v09HSP/Yv7o7Z8+XJzyy23mKpVq5rAwEBzww03mPj4eOcf3cI/5Bs3biyynsjISLdbJkgyw4YNc+n3zjvvmJYtWxofHx/TqlUr8+6777qs9zSGJOcf+MJaPD2Kq88YY7KyssyQIUNM1apVTdWqVc2QIUPcLrUvajv2799f7NibNm0y7du3N76+viY8PNwsXLjQZX1RdRe3j40x5n//+5+5+eabjd1uN6GhoSY2NtbtdgMnTpww/v7+5pVXXvE4RuGH6PnbMGPGjGLf50IPPvig6d69e5H1NWrUyO0WFxfbx8YY89JLL5lGjRoZX19f06FDh2JvKWFM0bcMKGQlNBVuo81mMw6Hw3Tp0sXEx8e7/f319Lty4MABY7fbiw1Nxhhz7tw5s2jRItO1a1cTGBhofH19TZMmTcyoUaNcgmd53XLAx8fHNGzY0MyZM8flOb/99psZO3asqVu3rvOWA4sXLzbG/P63Jjo62jgcDlOtWjXzl7/8xUycOJHQdBnK4rOfr1EBAADXHL5GBQAAoJwQmgAAACyoVKGptL93DAAAVB6VKjQVFBSUdwkAAOAqValCU1nc0AwAAFQOlSo0AQAAXCpCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYUG6h6cCBAxoxYoQaN24sf39/NW3aVDNmzFBeXp5LP5vN5vZYtGhROVUNAAAqK+/yeuHvv/9eBQUF+uc//6lmzZpp165dGjVqlE6dOqW5c+e69E1MTFTfvn2dyw6H40qXCwAAKrlyC019+/Z1CUJNmjTRDz/8oIULF7qFpmrVqik0NPRKlwgAAOBUoeY0ZWdnq0aNGm7tMTExCgkJUefOnbVo0SIVFBQUO05ubq5ycnJcHgAAAJej3I40XejHH3/UggULNG/ePJf2p59+Wrfddpv8/f31ySefaPz48crMzNTUqVOLHGvWrFmKi4sr65IBAEAlYjPGmNIcMDY29qKBZdu2berUqZNzOS0tTZGRkYqMjNRrr71W7HPnzZun+Ph4ZWdnF9knNzdXubm5zuWcnByFhYUpKyvL45EsAABwbcnJyZHD4VB2draCg4NLZcxSP9IUExOjQYMGFdsnPDzc+e+0tDRFRUUpIiJCr7zyykXH79atm3JycnTkyBHVqVPHYx+73S673V6iugEAAIpT6qEpJCREISEhlvr+/PPPioqKUseOHZWYmKgqVS4+xSo5OVl+fn6qVq3aZVYKAABgXbnNaUpLS1PPnj3VsGFDzZ07V7/88otzXeGVcu+//74yMjIUEREhf39/bdy4UVOmTNHDDz/MkSQAAHBFlVtoWrdunfbu3au9e/eqQYMGLusKp1n5+Pjo5Zdf1rhx41RQUKAmTZooPj5ejz76aHmUDAAAKrFSnwheERVOBmMiOAAAlUNZTASvUPdpAgAAqKgITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCgXENTeHi4bDaby2PixIkufQ4ePKh+/fopMDBQISEheuyxx5SXl1dOFQMAgMrKu7wLiI+P16hRo5zLQUFBzn+fO3dOd955p2rVqqUvvvhCWVlZGjZsmIwxWrBgQXmUCwAAKqlyD01Vq1ZVaGiox3Xr1q1TamqqDh06pHr16kmS5s2bp+joaM2cOVPBwcFXslQAAFCJlfucpueee041a9ZUu3btNHPmTJdTb0lJSWrbtq0zMElSnz59lJubqx07dpRHuQAAoJIq1yNNjz/+uDp06KDq1avr66+/1qRJk7R//3699tprkqSMjAzVqVPH5TnVq1eXr6+vMjIyihw3NzdXubm5zuWcnJyy2QAAAFBplPqRptjYWLfJ3Rc+tm/fLkkaO3asIiMjdcMNN2jkyJFatGiREhISlJWV5RzPZrO5vYYxxmN7oVmzZsnhcDgfYWFhpb2ZAACgkin1I00xMTEaNGhQsX3Cw8M9tnfr1k2StHfvXtWsWVOhoaHaunWrS5/jx48rPz/f7QjU+SZNmqRx48Y5l3NycghOAADgspR6aAoJCVFISMglPTc5OVmSVLduXUlSRESEZs6cqfT0dGfbunXrZLfb1bFjxyLHsdvtstvtl1QDAACAJ+U2pykpKUlbtmxRVFSUHA6Htm3bprFjx6p///5q2LChJKl3795q06aNhg4dqjlz5ujYsWOaMGGCRo0axZVzAADgiiq30GS327V8+XLFxcUpNzdXjRo10qhRo/TUU085+3h5eemDDz7QmDFj1KNHD/n7+2vw4MGaO3dueZUNAAAqKZsxxpR3EWUtJydHDodDWVlZqlGjRnmXAwAAyljhZ392dnapnZ0q9/s0AQAAXA0ITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGBBuYWmTZs2yWazeXxs27bN2c/T+kWLFpVX2QAAoJLyLq8X7t69u9LT013apk2bpg0bNqhTp04u7YmJierbt69z2eFwXJEaAQAACpVbaPL19VVoaKhzOT8/X2vWrFFMTIxsNptL32rVqrn0BQAAuNIqzJymNWvWKDMzU9HR0W7rYmJiFBISos6dO2vRokUqKCi48gUCAIBKrdyONF0oISFBffr0UVhYmEv7008/rdtuu03+/v765JNPNH78eGVmZmrq1KlFjpWbm6vc3Fznck5OTpnVDQAAKodSP9IUGxtb5ATvwsf27dtdnnP48GF9/PHHGjFihNt4U6dOVUREhNq1a6fx48crPj5ec+bMKbaGWbNmyeFwOB8XBjEAAICSshljTGkOmJmZqczMzGL7hIeHy8/Pz7n89NNPa8GCBfr555/l4+NT7HO//PJL3XTTTcrIyFCdOnU89vF0pCksLExZWVmqUaNGCbYGAABcjXJycuRwOJSdna3g4OBSGbPUT8+FhIQoJCTEcn9jjBITE/XQQw9dNDBJUnJysvz8/FStWrUi+9jtdtntdss1AAAAXEy5z2n69NNPtX//fo+n5t5//31lZGQoIiJC/v7+2rhxo6ZMmaKHH36YUAQAAK6ocg9NCQkJ6t69u1q3bu22zsfHRy+//LLGjRungoICNWnSRPHx8Xr00UfLoVIAAFCZlfqcpoqo8Lwmc5oAAKgcymJOU4W5TxMAAEBFRmgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAAC8o0NM2cOVPdu3dXQECAqlWr5rHPwYMH1a9fPwUGBiokJESPPfaY8vLyXPrs3LlTkZGR8vf3V/369RUfHy9jTFmWDgAA4MK7LAfPy8vTAw88oIiICCUkJLitP3funO68807VqlVLX3zxhbKysjRs2DAZY7RgwQJJUk5Ojnr16qWoqCht27ZNu3fvVnR0tAIDAzV+/PiyLB8AAMCpTENTXFycJGnJkiUe169bt06pqak6dOiQ6tWrJ0maN2+eoqOjNXPmTAUHB2vZsmU6c+aMlixZIrvdrrZt22r37t2aP3++xo0bJ5vNVpabAAAAIKmc5zQlJSWpbdu2zsAkSX369FFubq527Njh7BMZGSm73e7SJy0tTQcOHPA4bm5urnJyclweAAAAl6NcQ1NGRobq1Knj0la9enX5+voqIyOjyD6Fy4V9LjRr1iw5HA7nIywsrAyqBwAAlUmJQ1NsbKxsNluxj+3bt1sez9PpNWOMS/uFfQongRd1am7SpEnKzs52Pg4dOmS5HgAAAE9KPKcpJiZGgwYNKrZPeHi4pbFCQ0O1detWl7bjx48rPz/feTQpNDTU7YjS0aNHJcntCFQhu93ucjoPAADgcpU4NIWEhCgkJKRUXjwiIkIzZ85Uenq66tatK+n3yeF2u10dO3Z09pk8ebLy8vLk6+vr7FOvXj3L4QwAAOBylemcpoMHDyolJUUHDx7UuXPnlJKSopSUFP3666+SpN69e6tNmzYaOnSokpOT9cknn2jChAkaNWqUgoODJUmDBw+W3W5XdHS0du3apdWrV+vZZ5/lyjkAAHBF2UwZ3iUyOjpaS5cudWvfuHGjevbsKen3YDVmzBh9+umn8vf31+DBgzV37lyX02s7d+7Uo48+qq+//lrVq1fX6NGjNX36dMuhKScnRw6HQ1lZWapRo0apbBsAAKi4Cj/7s7OznQdiLleZhqaKgtAEAEDlUhahie+eAwAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABaUaWiaOXOmunfvroCAAFWrVs1t/TfffKMHH3xQYWFh8vf3V+vWrfXCCy+49Dlw4IBsNpvbY+3atWVZOgAAgAvvshw8Ly9PDzzwgCIiIpSQkOC2fseOHapVq5b+9a9/KSwsTF999ZUefvhheXl5KSYmxqXvhg0bdN111zmXa9SoUZalAwAAuCjT0BQXFydJWrJkicf1w4cPd1lu0qSJkpKStGrVKrfQVLNmTYWGhpZJnQAAABdT4eY0ZWdnezyK1L9/f9WuXVs9evTQypUrix0jNzdXOTk5Lg8AAIDLUaFCU1JSklasWKFHHnnE2RYUFKT58+dr5cqV+vDDD3Xbbbdp4MCB+te//lXkOLNmzZLD4XA+wsLCrkT5AADgGlbi0BQbG+txYvb5j+3bt5e4kG+//VZ//OMfNX36dPXq1cvZHhISorFjx6pLly7q1KmT4uPjNWbMGD3//PNFjjVp0iRlZ2c7H4cOHSpxPQAAAOcr8ZymmJgYDRo0qNg+4eHhJRozNTVVt956q0aNGqWpU6detH+3bt302muvFbnebrfLbreXqAYAAIDilDg0hYSEKCQkpNQK+Pbbb3Xrrbdq2LBhmjlzpqXnJCcnq27duqVWAwAAwMWU6dVzBw8e1LFjx3Tw4EGdO3dOKSkpkqRmzZopKChI3377raKiotS7d2+NGzdOGRkZkiQvLy/VqlVLkrR06VL5+Pioffv2qlKlit5//329+OKLeu6558qydAAAABdlGpqmT5+upUuXOpfbt28vSdq4caN69uypd955R7/88ouWLVumZcuWOfs1atRIBw4ccC4/88wz+umnn+Tl5aUWLVpo8eLF+tOf/lSWpQMAALiwGWNMeRdR1nJycuRwOJSVlcVNMQEAqAQKP/uzs7MVHBxcKmNWqFsOAAAAVFSEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhQpqFp5syZ6t69uwICAlStWjWPfWw2m9tj0aJFLn127typyMhI+fv7q379+oqPj5cxpixLBwAAcOFdloPn5eXpgQceUEREhBISEorsl5iYqL59+zqXHQ6H8985OTnq1auXoqKitG3bNu3evVvR0dEKDAzU+PHjy7J8AAAApzINTXFxcZKkJUuWFNuvWrVqCg0N9bhu2bJlOnPmjJYsWSK73a62bdtq9+7dmj9/vsaNGyebzVbaZQMAALipEHOaYmJiFBISos6dO2vRokUqKChwrktKSlJkZKTsdruzrU+fPkpLS9OBAwfKoVoAAFAZlemRJiuefvpp3XbbbfL399cnn3yi8ePHKzMzU1OnTpUkZWRkKDw83OU5derUca5r3Lix25i5ubnKzc11Lufk5JTdBgAAgEqhxEeaYmNjPU7ePv+xfft2y+NNnTpVERERateuncaPH6/4+HjNmTPHpc+Fp+AKJ4EXdWpu1qxZcjgczkdYWFgJtxIAAMBViY80xcTEaNCgQcX2ufDIUEl069ZNOTk5OnLkiOrUqaPQ0FBlZGS49Dl69Kik/zvidKFJkyZp3LhxzuWcnByCEwAAuCwlDk0hISEKCQkpi1okScnJyfLz83PeoiAiIkKTJ09WXl6efH19JUnr1q1TvXr1igxndrvdZQ4UAADA5SrTOU0HDx7UsWPHdPDgQZ07d04pKSmSpGbNmikoKEjvv/++MjIyFBERIX9/f23cuFFTpkzRww8/7Aw9gwcPVlxcnKKjozV58mTt2bNHzz77rKZPn86VcwAA4IqxmTK8S2R0dLSWLl3q1r5x40b17NlTa9eu1aRJk7R3714VFBSoSZMmGjlypB599FF5e/9fntu5c6ceffRRff3116pevbpGjx5dotCUk5Mjh8OhrKws1ahRo9S2DwAAVEyFn/3Z2dkKDg4ulTHLNDRVFIQmAAAql7IITRXiPk0AAAAVHaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCjT0DRz5kx1795dAQEBqlatmtv6JUuWyGazeXwcPXpUknTgwAGP69euXVuWpQMAALjwLsvB8/Ly9MADDygiIkIJCQlu6wcOHKi+ffu6tEVHR+vMmTOqXbu2S/uGDRt03XXXOZdr1KhRNkUDAAB4UKahKS4uTtLvR5Q88ff3l7+/v3P5l19+0aeffuoxYNWsWVOhoaFlUicAAMDFVKg5Ta+//roCAgJ0//33u63r37+/ateurR49emjlypXlUB0AAKjMyvRIU0ktXrxYgwcPdjn6FBQUpPnz56tHjx6qUqWK1qxZo4EDB2rp0qX605/+5HGc3Nxc5ebmOpdzcnLKvHYAAHBtK/GRptjY2CInbxc+tm/fXuJCkpKSlJqaqhEjRri0h4SEaOzYserSpYs6deqk+Ph4jRkzRs8//3yRY82aNUsOh8P5CAsLK3E9AAAA57MZY0xJnpCZmanMzMxi+4SHh8vPz8+5vGTJEj3xxBM6ceJEkc8ZMWKE/vvf/yo5OfmiNSxbtkwjR47Ub7/95nG9pyNNYWFhysrKYgI5AACVQE5OjhwOh7KzsxUcHFwqY5b49FxISIhCQkJK5cUL/frrr1qxYoVmzZplqX9ycrLq1q1b5Hq73S673V5a5QEAAJTtnKaDBw/q2LFjOnjwoM6dO6eUlBRJUrNmzRQUFOTst3z5cp09e1ZDhgxxG2Pp0qXy8fFR+/btVaVKFb3//vt68cUX9dxzz5Vl6QAAAC7KNDRNnz5dS5cudS63b99ekrRx40b17NnT2Z6QkKB7771X1atX9zjOM888o59++kleXl5q0aKFFi9eXOQkcAAAgLJQ4jlNV6PC85rMaQIAoHIoizlNFeo+TQAAABUVoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMCCShWaCgoKyrsEAABwlapUoQkAAOBSVarQ5OvrW94lAACAq1SlCk0AAACXqsxC04EDBzRixAg1btxY/v7+atq0qWbMmKG8vDyXfgcPHlS/fv0UGBiokJAQPfbYY259du7cqcjISPn7+6t+/fqKj4+XMaasSgcAAHDjXVYDf//99yooKNA///lPNWvWTLt27dKoUaN06tQpzZ07V5J07tw53XnnnapVq5a++OILZWVladiwYTLGaMGCBZKknJwc9erVS1FRUdq2bZt2796t6OhoBQYGavz48WVVPgAAgAubuYKHbObMmaOFCxdq3759kqSPPvpId911lw4dOqR69epJkt5++21FR0fr6NGjCg4O1sKFCzVp0iQdOXJEdrtdkjR79mwtWLBAhw8fls1mu+jr5uTkyOFwKDs7W8HBwWW3gQAAoEIoi8/+MjvS5El2drZq1KjhXE5KSlLbtm2dgUmS+vTpo9zcXO3YsUNRUVFKSkpSZGSkMzAV9pk0aZIOHDigxo0bu71Obm6ucnNzXV5X+v0NBAAA177Cz/zSPDZ0xULTjz/+qAULFmjevHnOtoyMDNWpU8elX/Xq1eXr66uMjAxnn/DwcJc+hc/JyMjwGJpmzZqluLg4t/awsLDL3QwAAHAVycrKksPhKJWxShyaYmNjPQaS823btk2dOnVyLqelpalv37564IEHNHLkSJe+nk6vGWNc2i/sU5gaizo1N2nSJI0bN865fOLECTVq1EgHDx4stTcOly8nJ0dhYWE6dOgQp00rEPZLxcW+qZjYLxVTdna2GjZs6HKG63KVODTFxMRo0KBBxfY5/8hQWlqaoqKiFBERoVdeecWlX2hoqLZu3erSdvz4ceXn5zuPJoWGhjqPOhU6evSoJLkdpSpkt9tdTucVcjgc/EBXQMHBweyXCoj9UnGxbyom9kvFVKVK6d0ooMShKSQkRCEhIZb6/vzzz4qKilLHjh2VmJjoVnhERIRmzpyp9PR01a1bV5K0bt062e12dezY0dln8uTJysvLc96cct26dapXr57baTsAAICyUmb3aUpLS1PPnj0VFhamuXPn6pdfflFGRobLUaPevXurTZs2Gjp0qJKTk/XJJ59owoQJGjVqlDOtDx48WHa7XdHR0dq1a5dWr16tZ599VuPGjbN05RwAAEBpKLOJ4OvWrdPevXu1d+9eNWjQwGVd4ZwkLy8vffDBBxozZox69Oghf39/DR482HkfJ+n3U2rr16/Xo48+qk6dOql69eoaN26cy5yli7Hb7ZoxY4bHU3YoP+yXion9UnGxbyom9kvFVBb75YrepwkAAOBqxXfPAQAAWEBoAgAAsIDQBAAAYAGhCQAAwIJrJjS9/PLLaty4sfz8/NSxY0d9/vnnxfbfvHmzOnbsKD8/PzVp0kSLFi26QpVWLiXZL6tWrVKvXr1Uq1YtBQcHKyIiQh9//PEVrLbyKOnvS6Evv/xS3t7eateuXdkWWEmVdL/k5uZqypQpatSokex2u5o2barFixdfoWorl5Lum2XLlunGG29UQECA6tatqz//+c/Kysq6QtVe+z777DP169dP9erVk81m03vvvXfR55TK5765Brz99tvGx8fHvPrqqyY1NdU8/vjjJjAw0Pz0008e++/bt88EBASYxx9/3KSmpppXX33V+Pj4mJUrV17hyq9tJd0vjz/+uHnuuefM119/bXbv3m0mTZpkfHx8zH//+98rXPm1raT7pdCJEydMkyZNTO/evc2NN954ZYqtRC5lv/Tv39907drVrF+/3uzfv99s3brVfPnll1ew6sqhpPvm888/N1WqVDEvvPCC2bdvn/n888/NddddZ+6+++4rXPm168MPPzRTpkwx7777rpFkVq9eXWz/0vrcvyZCU5cuXczo0aNd2lq1amUmTpzosf9TTz1lWrVq5dL2yCOPmG7dupVZjZVRSfeLJ23atDFxcXGlXVqldqn7ZeDAgWbq1KlmxowZhKYyUNL98tFHHxmHw2GysrKuRHmVWkn3zZw5c0yTJk1c2l588UXToEGDMquxMrMSmkrrc/+qPz2Xl5enHTt2qHfv3i7tvXv31ldffeXxOUlJSW79+/Tpo+3btys/P7/Maq1MLmW/XKigoEAnT54s1S9brOwudb8kJibqxx9/1IwZM8q6xErpUvbLmjVr1KlTJz3//POqX7++WrRooQkTJui33367EiVXGpeyb7p3767Dhw/rww8/lDFGR44c0cqVK3XnnXdeiZLhQWl97pfZHcGvlMzMTJ07d87ty3vr1Knj9kW/hTIyMjz2P3v2rDIzM53fg4dLdyn75ULz5s3TqVOnNGDAgLIosVK6lP2yZ88eTZw4UZ9//rm8va/6PxkV0qXsl3379umLL76Qn5+fVq9erczMTI0ZM0bHjh1jXlMpupR90717dy1btkwDBw7UmTNndPbsWfXv318LFiy4EiXDg9L63L/qjzQVuvB76IwxxX43naf+ntpxeUq6Xwq99dZbio2N1fLly1W7du2yKq/Ssrpfzp07p8GDBysuLk4tWrS4UuVVWiX5fSkoKJDNZtOyZcvUpUsX3XHHHZo/f76WLFnC0aYyUJJ9k5qaqscee0zTp0/Xjh07tHbtWu3fv1+jR4++EqWiCKXxuX/V/7cxJCREXl5ebon/6NGjbqmyUGhoqMf+3t7eqlmzZpnVWplcyn4ptHz5co0YMULvvPOObr/99rIss9Ip6X45efKktm/fruTkZMXExEj6/cPaGCNvb2+tW7dOt9566xWp/Vp2Kb8vdevWVf369eVwOJxtrVu3ljFGhw8fVvPmzcu05sriUvbNrFmz1KNHDz355JOSpBtuuEGBgYG6+eab9cwzz3A2oxyU1uf+VX+kydfXVx07dtT69etd2tevX6/u3bt7fE5ERIRb/3Xr1qlTp07y8fEps1ork0vZL9LvR5iio6P15ptvcv6/DJR0vwQHB2vnzp1KSUlxPkaPHq2WLVsqJSVFXbt2vVKlX9Mu5felR48eSktL06+//ups2717t6pUqeL2Jem4dJeyb06fPq0qVVw/Xr28vCT939ENXFml9rlfomnjFVTh5aAJCQkmNTXVPPHEEyYwMNAcOHDAGGPMxIkTzdChQ539Cy89HDt2rElNTTUJCQnccqAMlHS/vPnmm8bb29u89NJLJj093fk4ceJEeW3CNamk++VCXD1XNkq6X06ePGkaNGhg7r//fvPtt9+azZs3m+bNm5uRI0eW1yZcs0q6bxITE423t7d5+eWXzY8//mi++OIL06lTJ9OlS5fy2oRrzsmTJ01ycrJJTk42ksz8+fNNcnKy8zYQZfW5f02EJmOMeemll0yjRo2Mr6+v6dChg9m8ebNz3bBhw0xkZKRL/02bNpn27dsbX19fEx4ebhYuXHiFK64cSrJfIiMjjSS3x7Bhw6584de4kv6+nI/QVHZKul++++47c/vttxt/f3/ToEEDM27cOHP69OkrXHXlUNJ98+KLL5o2bdoYf39/U7duXTNkyBBz+PDhK1z1tWvjxo3Ffl6U1ee+zRiOFQIAAFzMVT+nCQAA4EogNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgwf8H5dyVkG0sMTEAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAJOCAYAAACqbjP2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABIVUlEQVR4nO3deVyVdf7//+eR5YAgxwUVFxT3JSt3RSu0cplKp1VNx2RcyjGmcqlxFynTxmWm/KVO5VZjpZk29qlMLTVLNHWw0ajU1NAADVQwTVx4//7oxvl6PAd8oyIqj/vtdm43r/f1vt7X6+ICztPrel8HhzHGCAAAAAUqVdwFAAAAXA8ITQAAABYITQAAABYITQAAABYITQAAABYITQAAABYITQAAABYITQAAABYITQAAABYITcB1KCoqSrGxse7l1NRUxcfHa/v27UWyv40bNyo+Pl7Hjh0rkvHffPNNVaxYUcePH79oX4fDofj4+Cu6/wULFsjhcGjr1q0F9hs3bpyaN2+u3Nxc67HPnDmjhg0basqUKe62+Ph4ORwOZWRkXHT7Dh06qEOHDtb7K6wOHTqoSZMmBfY5c+aM6tSpo3/+859FVgdwPSA0Adeh5cuXa9y4ce7l1NRUTZw4sUhD08SJE4skNJ08eVKjR4/W3/72N5UpU+aKj38ljRgxQvv27dPChQutt5k1a5aOHj2qv/71r0VYWdEKCAjQ+PHjlZCQoMzMzOIuByg2hCbgOtSsWTPVqVPnkrc/efLkFazm8ixcuFCZmZkaOHDgVd/3mTNndPbsWev+LpdLf/rTnzRlyhTZ/NnOs2fPaurUqerfv79CQkIup9Ri9+ijj8rhcOhf//pXcZcCFBtCE3CNyLtl8+233+rRRx+Vy+VS5cqV1b9/f2VlZXn0Pf/23Lp169SqVStJ0p///Gc5HA6PW1ixsbEKDQ3Vjh071LlzZ5UpU0Z33XWXJGn16tX64x//qOrVqysoKEh169bVE0884XHbKD4+Xs8++6wkqVatWu7x161b5+6zePFiRUdHKyQkRKGhoerSpYuSkpKsjnv27Nnq1q2bypYt69GenZ2tQYMGqUKFCgoNDVXXrl21a9cur+337NmjP//5z6pXr55Kly6tatWqqVu3btqxY4dHv3Xr1snhcOitt97S8OHDVa1aNTmdTu3Zs8dnXWlpaWrRooXq1aun3bt3u9v79u2rXbt2ae3atRc9thUrVujnn39W3759fa4/cOCAHnzwQYWFhbkD2S+//HLRcSdOnKg2bdqofPnyCgsLU/PmzTV37lyfQe7tt99WdHS0QkNDFRoaqqZNm2ru3LkFjr98+XKVLl1aAwcOdIfKwMBA9ezZU6+99ppVYARuRIQm4Brz0EMPqX79+nr//fc1cuRIvf322xo6dGi+/Zs3b6758+dLksaOHavExEQlJiZ6XLk5ffq0unfvrjvvvFP/+c9/NHHiREnSjz/+qOjoaM2ePVurVq3S+PHjtXnzZt122206c+aMJGngwIHuW0vLli1zj9+8eXNJ0osvvqhHH31UjRs31pIlS/TWW2/p+PHjuv3225WcnFzgsR48eFA7duxQx44dPdqNMbr//vvdAWf58uVq27at/vCHP3iNkZqaqgoVKmjKlClauXKlXn31Vfn7+6tNmzb64YcfvPqPGjVKKSkpmjNnjj788ENVqlTJq8/OnTvVpk0bOZ1OJSYmql69eu51LVq0UGhoqD766KMCj02SPvroI1WqVEmNGzf2uf6BBx5Q3bp1tXTpUsXHx+uDDz5Qly5d3F/7/Ozfv19PPPGElixZomXLlunBBx/UX//6Vz3//PMe/caPH68+ffqoatWqWrBggZYvX65+/frpp59+ynfsf/zjH3rkkUc0evRovfHGG/L393ev69Chg3766Sft3LnzoscO3JAMgGvChAkTjCTz97//3aN9yJAhJigoyOTm5rrbatasafr16+de3rJli5Fk5s+f7zVuv379jCQzb968Avefm5trzpw5Y3766ScjyfznP/9xr5s6daqRZPbt2+exTUpKivH39zd//etfPdqPHz9uIiIiTI8ePQrc5+LFi40ks2nTJo/2Tz75xEgyL7/8skf7pEmTjCQzYcKEfMc8e/asOX36tKlXr54ZOnSou33t2rVGkrnjjju8tpk/f76RZLZs2WJWr15twsLCzMMPP2x+++03n/to3769adOmTYHHZowxjRo1Ml27dvVqzzvX59dnjDGLFi0yksy///1vd1tMTIyJiYnJdx/nzp0zZ86cMQkJCaZChQru75O9e/caPz8/06dPnwJrjImJMTfddJM5d+6ciYuLM4GBgR77P9/u3buNJDN79uwCxwRuVFxpAq4x3bt391i+5ZZbdOrUKR0+fPiyxn3ooYe82g4fPqzBgwcrMjJS/v7+CggIUM2aNSVJ33333UXH/PTTT3X27Fk99thjOnv2rPsVFBSkmJgYj1t4vqSmpkqS19WevFtfffr08Wjv3bu31xhnz57Viy++qMaNGyswMFD+/v4KDAzU7t27fR6Dr69DnoULF+qee+7RwIEDtWTJEgUFBfnsV6lSJf38888FHpv0+/H5upKV58Lj69Gjh/z9/S966+/zzz/X3XffLZfLJT8/P/dE7czMTPf3yerVq3Xu3Dk9+eSTF63z1KlTuv/++7Vo0SKtWrXKq648ecdic+zAjcj/4l0AXE0VKlTwWHY6nZKk33777ZLHLF26tMLCwjzacnNz1blzZ6WmpmrcuHG6+eabFRISotzcXLVt29Zqf4cOHZIk95yqC5UqVfD/y/L2cWE4yczMlL+/v9fXIiIiwmuMYcOG6dVXX9Xf/vY3xcTEqFy5cipVqpQGDhzo8xiqVKmSbz3vvvuugoODNXDgQDkcjnz7BQUFWX19fvvtt3yDl+R9PHnHXNATal9//bU6d+6sDh066PXXX1f16tUVGBioDz74QJMmTXLXlTc3qnr16het8/Dhwzpw4IDuvvtutWvXLt9+ecdyOd+LwPWM0ASUAL4CwM6dO/XNN99owYIF6tevn7s9v4nRvoSHh0uSli5d6r5CVRh52x85csQjzFSoUEFnz55VZmamR3BKT0/3GuPf//63HnvsMb344ose7RkZGV6TyyXfX4s8ixYt0rhx4xQTE6NVq1apadOmPvsdOXLEXXtBwsPDdeTIkXzXp6enq1q1au5lX8d8oXfffVcBAQH6v//7P49A9sEHH3j0q1ixoqTf541FRkYWWGeNGjU0Y8YMPfDAA3rwwQf13nvv+Qx7ecdic+zAjYjbc8AN4FKuRuWFh7xt8/h6pDy/8bt06SJ/f3/9+OOPatmypc9XQRo2bCjp9wnp58ubGL5o0SKP9rffftvncVx4DB999NEl3UIqX7681qxZo0aNGqljx47atGmTz3579+7Nd3L3+Ro2bOh1bOe78PiWLFmis2fPFvhhlg6HQ/7+/vLz83O3/fbbb3rrrbc8+nXu3Fl+fn6aPXv2RevM6//pp5/qiy++0H333acTJ0549dm7d68kWR07cCPiShNwA6hTp46Cg4O1aNEiNWrUSKGhoapataqqVq2a7zYNGzZUnTp1NHLkSBljVL58eX344YdavXq1V9+bb75ZkvTyyy+rX79+CggIUIMGDRQVFaWEhASNGTNGe/fuVdeuXVWuXDkdOnRIX3/9tUJCQtxP6vnSpk0bBQcHa9OmTR5zuTp37qw77rhDzz33nE6cOKGWLVvqq6++8goGknTfffdpwYIFatiwoW655RZt27ZNU6dOtbot5UuZMmW0cuVKPfjgg+rUqZNWrFjh8XRfZmamdu/ebfVhlR06dFBCQoJOnjyp0qVLe61ftmyZ/P391alTJ3377bcaN26cbr31VvXo0SPfMe+9917NmDFDvXv31uOPP67MzExNmzbNKzhGRUVp9OjRev755/Xbb7+5P8YiOTlZGRkZPs/Lbbfdps8++0xdu3ZV586d9fHHH8vlcrnXb9q0SX5+frrjjjsueuzADam4Z6ID+F3eE1W//PKLR3vek13nP7l24dNzxhjzzjvvmIYNG5qAgACPJ8z69etnQkJCfO4zOTnZdOrUyZQpU8aUK1fOPPLIIyYlJcXnE2qjRo0yVatWNaVKlTKSzNq1a93rPvjgA9OxY0cTFhZmnE6nqVmzpnn44YfNmjVrLnrcffv2NY0bN/ZqP3bsmOnfv78pW7asKV26tOnUqZP5/vvvvWo7evSoGTBggKlUqZIpXbq0ue2228yGDRu8njrLe3ruvffe89rX+U/P5cnJyTEPPfSQCQoKMh999JG7fe7cuSYgIMCkp6df9Nj27NljHA6HWbJkiUd73rnetm2b6datmwkNDTVlypQxjz76qDl06JBHX19Pz82bN880aNDAOJ1OU7t2bTN58mQzd+5cn084vvnmm6ZVq1YmKCjIhIaGmmbNmnk8ZZn39Nz5du7caSIiIkzz5s09vh9vv/12061bt4seN3CjchjDp5QBKD5bt25Vq1attGnTJrVp06a4y7mo22+/XTVq1PC6tZafbt266ezZs/rkk0+KuLKi9eOPP6pevXr69NNP1alTp+IuBygWhCYAxa5nz546ceKE/u///q+4SynQF198oc6dOys5OVm1a9e22mbnzp1q1qyZNm7cmO9ThteDP//5zzp48KDP27dAScFEcADFbvr06WrVqpWOHz9e3KUUKDMzU2+++aZ1YJKkJk2aaP78+T6f/LtenD17VnXq1NGrr75a3KUAxYorTQAAABaumytNs2bNUq1atRQUFKQWLVpow4YNxV0SAAAoQa6L0LR48WI988wzGjNmjJKSknT77bfrD3/4g1JSUoq7NAAAUEJcF7fn2rRpo+bNm3t8SFujRo10//33a/LkycVYGQAAKCmu+Q+3PH36tLZt26aRI0d6tHfu3FkbN270uU1OTo5ycnLcy7m5uTpy5IgqVKhQ4J9QAAAANwZjjI4fP66qVate9O9g2rrmQ1NGRobOnTunypUre7RXrlw536dRJk+eXOCnEAMAgJLhwIEDl/wXAi50zYemPBdeITLG5HvVaNSoURo2bJh7OSsrSzVq1NCBAwe8/tI7AAC48WRnZysyMlJlypS5YmNe86EpPDxcfn5+XleVDh8+7HX1KY/T6fT6O0ySFBYWRmgCAKAEuZLTcq75p+cCAwPVokULr0+hXb16tdq1a1dMVQEAgJLmmr/SJEnDhg1T37591bJlS0VHR+u1115TSkqKBg8eXNylAQCAEuK6CE09e/ZUZmamEhISlJaWpiZNmujjjz9WzZo1i7s0AABQQlwXn9N0ubKzs+VyuZSVlcWcJgAASoCieO+/5uc0AQAAXAsITQAAABYITQAAABYITQAAABYITQAAABYITQAAABYITQAAABYITQAAABYITQAAABYITQAAFNK6devkcDh07Nixq7bP2NhY3X///Vdtf/BGaEKxO3z4sJ544gnVqFFDTqdTERER6tKlixITE919HA6HPvjggyuyv/3798vhcGj79u0F9ivol2LTpk0VHx/v7lPQa8GCBZKk999/Xx06dJDL5VJoaKhuueUWJSQk6MiRI9a1L1u2TJ06dVLFihUVFham6Ohoffrpp1793n//fTVu3FhOp1ONGzfW8uXLPdZPnjxZrVq1UpkyZVSpUiXdf//9+uGHH9zrz5w5o7/97W+6+eabFRISoqpVq+qxxx5TamrqRWs8evSo+vbtK5fLJZfLpb59+3p9DZ9++mm1aNFCTqdTTZs2tT7+9evXq0WLFgoKClLt2rU1Z84cj/XffvutHnroIUVFRcnhcOif//yn1bg7duxQTEyMgoODVa1aNSUkJOj8vzAVGxvr89zedNNNBY772muvqUOHDgoLC/P5vVTQ98+WLVsKHPti51iSZs2apVq1aikoKEgtWrTQhg0bChxzwYIFcjgcatSokde6JUuWyOFwKCoqyqN/2bJlvbZ3OBzy8/NTuXLl1KZNGyUkJCgrK8tjvLyv6ZQpUzzaP/jgAzkcDveyr59DY4xef/11RUdHKywsTKGhobrpppv09NNPa8+ePe5+8fHxPr+/zv8dEB8ff9Gf4f379xf4dUPJQWhCsXvooYf0zTffaOHChdq1a5dWrFihDh06FCpM2Dp9+vQVHa9du3ZKS0tzv3r06KGuXbt6tPXs2VNjxoxRz5491apVK33yySfauXOnpk+frm+++UZvvfWW9f6++OILderUSR9//LG2bdumjh07qlu3bkpKSnL3SUxMVM+ePdW3b19988036tu3r3r06KHNmze7+6xfv15PPvmkNm3apNWrV+vs2bPq3LmzTpw4IUk6efKk/vvf/2rcuHH673//q2XLlmnXrl3q3r37RWvs3bu3tm/frpUrV2rlypXavn27+vbt69HHGKP+/furZ8+e1se+b98+3XPPPbr99tuVlJSk0aNH66mnntL777/v7nPy5EnVrl1bU6ZMUUREhNW42dnZ6tSpk6pWraotW7Zo5syZmjZtmmbMmOHu8/LLL3uc0wMHDqh8+fJ65JFHChz75MmT6tq1q0aPHu1z/YXfP2lpaRo4cKCioqLUsmXLfMe1OceLFy/WM888ozFjxigpKUm33367/vCHPyglJaXAmkNCQnT48GGP/7RI0rx581SjRo0Ct5WksLAwpaWl6eDBg9q4caMef/xxvfnmm2ratKlX6A4KCtJLL72ko0ePXnTcPMYY9e7dW0899ZTuuecerVq1Sv/73//0yiuvKDg4WC+88IL1WJI0YsQIj69/9erV3X8cPu8VGRlZqDFxAzMlQFZWlpFksrKyirsUXODo0aNGklm3bl2+fWrWrGkkuV81a9Y0xhizZ88e0717d1OpUiUTEhJiWrZsaVavXu217fPPP2/69etnwsLCzGOPPeYxliQTExPjc79r1641kszRo0e91t16661mwoQJXu39+vUzf/zjHz3aNm/ebCSZf/7zn/l+DS5H48aNzcSJE93LPXr0MF27dvXo06VLF9OrV698xzh8+LCRZNavX59vn6+//tpIMj/99FO+fZKTk40ks2nTJndbYmKikWS+//57r/4TJkwwt956a77jne+5554zDRs29Gh74oknTNu2bX32r1mzpvnHP/5x0XFnzZplXC6XOXXqlLtt8uTJpmrVqiY3N9fnNsuXLzcOh8Ps37/fqvaCvpfOd/r0aVOpUiWTkJBQYD+bc9y6dWszePBgjz4NGzY0I0eOzHfc+fPnG5fLZeLi4szAgQPd7QcOHDBOp9OMHDnS/fN3fv/8lvMcOnTIhIeHmz59+rjb+vXrZ+677z7TsGFD8+yzz7rbly9fbs5/a7rwa/fOO+8YSeY///mPz2M4/5zl9/21b98+I8kkJSV5rbP9vvF1TpcuXWoaN25sAgMDTc2aNc20adM8tjl16pR59tlnTfXq1U1gYKCpW7eueeONN4wxxpw9e9b079/fREVFmaCgIFO/fn2v3xm+fr8gf0Xx3s+VJhSr0NBQhYaG6oMPPlBOTo7PPnm3KebPn6+0tDT38q+//qp77rlHa9asUVJSkrp06aJu3bp5/U966tSpatKkibZt26Zx48bp66+/liStWbNGaWlpWrZsWREeobRo0SKFhoZqyJAhPtfn3d7Iu2Wwbt0667Fzc3N1/PhxlS9f3t2WmJiozp07e/Tr0qWLNm7cmO84ebdOzh/HVx+Hw+FxO+ZCiYmJcrlcatOmjbutbdu2crlcBe7fRn7HtXXrVp05c+ayxo2JiZHT6fQYNzU1Nd/bMnPnztXdd9+tmjVrutvybiNdzq2cFStWKCMjQ7GxsR7tUVFRio+P96i5oHN8+vRpbdu2zatP586drc7DgAEDtHjxYp08eVLS77fdunbtqsqVK1/CUUmVKlVSnz59tGLFCp07d87d7ufnpxdffFEzZ87UwYMHrcZ655131KBBg3yvep5/a+9q2rZtm3r06KFevXppx44dio+P17hx49y35yXpscce07vvvqtXXnlF3333nebMmaPQ0FBJv/8sV69eXUuWLFFycrLGjx+v0aNHa8mSJcVyPPCN0IRi5e/vrwULFmjhwoUqW7as2rdvr9GjR+t///ufu0/FihUl/R4uIiIi3Mu33nqrnnjiCd18882qV6+eXnjhBdWuXVsrVqzw2Medd96pESNGqG7duqpbt657+woVKigiIqLAoHAl7N69W7Vr11ZAQECB/QICAtSgQQOVLl3aeuzp06frxIkT6tGjh7stPT3d682tcuXKSk9P9zmGMUbDhg3TbbfdpiZNmvjsc+rUKY0cOVK9e/dWWFhYvvWkp6erUqVKXu2VKlXKd/+28juus2fPKiMj44qPm7fuQmlpafrkk080cOBAj/bSpUurQYMGFz3PBZk7d666dOnidTuoTp06Cg8Pv2jNefVmZGTo3Llzhfo+OF/Tpk1Vp04dLV26VMYYLViwQP3797/Uw5IkNWzYUMePH1dmZqZH+wMPPKCmTZtqwoQJVuPs2rVLDRo08Gh75pln3P8Bq169use6HTt2uNflvS42F+1SzJgxQ3fddZfGjRun+vXrKzY2VnFxcZo6daq77iVLlmjevHl64IEHVLt2bd11113uW9QBAQGaOHGiWrVqpVq1aqlPnz6KjY0lNF1jCE0odg899JBSU1O1YsUKdenSRevWrVPz5s09/ofmy4kTJ/Tcc8+pcePGKlu2rEJDQ/X99997XWkqaG7I1WCMsfrfb7Vq1fT999+rdevWVuO+8847io+P1+LFi72CyoX7K6iGuLg4/e9//9M777zjc/2ZM2fUq1cv5ebmatasWe72wYMHe7wR5bfvi+3fl/PHHTx4cIHHld8+C6Mw4+ZNfr7wKabWrVvr+++/V7Vq1S6phoMHD+rTTz/VgAEDvNZ99tlniouLu2jNF7YV5vvgQv3799f8+fO1fv1691Xdy1HQ1/Sll17SwoULlZycbDXWhWOMGTNG27dv1/jx4/Xrr796rGvQoIG2b9/u8fr4448v8Sjy991336l9+/Yebe3bt9fu3bt17tw5bd++XX5+foqJicl3jDlz5qhly5aqWLGiQkND9frrr190DhquLv/iLgCQfp8Q2qlTJ3Xq1Enjx4/XwIEDNWHCBK/bFOd79tln9emnn2ratGmqW7eugoOD9fDDD3tN9g4JCbmkmvKuqGRlZXndkjp27JhcLpfVOPXr19eXX36pM2fOXNZViPMtXrxYAwYM0Hvvvae7777bY11ERITX1YTDhw/7vLXy17/+VStWrNAXX3zh9T906ffA1KNHD+3bt0+ff/65x1WmhIQEjRgxwmvfhw4d8hrnl19+KdStnfOfbMzbZ37H5e/vrwoVKliPfaH8xpXkVbMxRvPmzVPfvn0VGBh4yfv0Zf78+apQoYLVZPuLnePw8HD5+flZfx/40qdPHz333HOKj4/XY489Jn//y3u7+O677xQWFubzXN1xxx3q0qWLRo8eXeDPvCTVq1dP33//vUdbxYoVVbFiRZ9XOQMDA1W3bl2Ptss9Fl98BVJz3hOYwcHBBW6/ZMkSDR06VNOnT1d0dLTKlCmjqVOnekzuR/HjShOuSY0bN3Y/ySX9fun6/LkQkrRhwwbFxsbqgQce0M0336yIiAir+SR5b3YXjnehevXqqVSpUl6Pfqelpennn3/2ukWQn969e+vXX3/1uEpzvsJ+zss777yj2NhYvf3227r33nu91kdHR2v16tUebatWrVK7du3cy8YYxcXFadmyZfr8889Vq1Ytr3HyAtPu3bu1Zs0arze7SpUquW955r0pRUdHKysryz1vTJI2b96srKwsj/1fzPnj5r0R5ndcLVu2vKwwGh0drS+++MIjbK9atUpVq1b1eLxe+v2pwz179vi8GnQ5jDGaP3++HnvsMatjudg5DgwMVIsWLbz6rF692vo8lC9fXt27d9f69esv+9bc4cOH9fbbb+v+++9XqVK+33amTJmiDz/88KJzrh599FH98MMP+s9//nNZNV1pjRs31pdffunRtnHjRtWvX19+fn66+eablZubq/Xr1/vcfsOGDWrXrp2GDBmiZs2aqW7duvrxxx+vRukojCs2pfwaxtNz166MjAzTsWNH89Zbb5lvvvnG7N271yxZssRUrlzZ9O/f392vXr165i9/+YtJS0szR44cMcYYc//995umTZuapKQks337dtOtWzdTpkwZ8/TTT7u38/UkzJkzZ0xwcLB54YUXTHp6ujl27Fi+9f3lL38xNWrUMMuXLzd79+41X375pYmJiTE333yzOXPmjFf//J5uee6554yfn5959tlnzcaNG83+/fvNmjVrzMMPP+x+QubgwYOmQYMGZvPmzfnW8/bbbxt/f3/z6quvmrS0NPfr/GP46quvjJ+fn5kyZYr57rvvzJQpU4y/v7/HE21/+ctfjMvlMuvWrfMY5+TJk+6vUffu3U316tXN9u3bPfrk5OTkW58xxnTt2tXccsstJjEx0SQmJpqbb77Z3HfffR59du/ebZKSkswTTzxh6tevb5KSkkxSUlKBY+/du9eULl3aDB061CQnJ5u5c+eagIAAs3TpUnefnJwc91hVqlQxI0aMMElJSWb37t35jnvs2DFTuXJl8+ijj5odO3aYZcuWmbCwMK8nn4wx5k9/+pNp06aNz3E2b95sGjRoYA4ePOhuS0tLM0lJSeb11183kswXX3xhkpKSTGZmpse2a9asMZJMcnKyz7HvvPNOM3PmTPeyzTl+9913TUBAgJk7d65JTk42zzzzjAkJCSnwib8Ln347efKkycjIcC//4x//uOjTc2FhYSYtLc2kpqa6z1OdOnVM7dq1TWpqqruvr5+Vvn37mqCgoAKfnsvNzTUPP/ywCQoKMhMnTjSbNm0y+/btM+vWrTNdu3Y15cuXd297NZ+e27ZtmylVqpRJSEgwP/zwg1mwYIEJDg428+fPd28TGxtrIiMj3b9P1q5daxYvXmyMMeaf//ynCQsLMytXrjQ//PCDGTt2rAkLC/Oon6fnCqco3vsJTShWp06dMiNHjjTNmzc3LpfLlC5d2jRo0MCMHTvW/QZujDErVqwwdevWNf7+/u5f2vv27TMdO3Y0wcHBJjIy0vx//9//Z2JiYi4amowx5vXXXzeRkZGmVKlS+X7kQF59CQkJplGjRiY4ONjUrFnTxMbGmrS0NJ/9C/qltnjxYnPHHXeYMmXKmJCQEHPLLbeYhIQE9y/dvF/ka9euzbeemJgYr49MkGT69evn0e+9994zDRo0MAEBAaZhw4bm/fff91jvawxJ7l/webX4ehVUnzHGZGZmmj59+pgyZcqYMmXKmD59+ng9ap/fcezbt6/AsdetW2eaNWtmAgMDTVRUlJk9e7bH+vzqLugcG2PM//73P3P77bcbp9NpIiIiTHx8vNfHDRw7dswEBweb1157zecYeW+i5x/DhAkTCvw653n00UdNu3bt8q2vZs2aXh9xcbFzbIwxr776qqlZs6YJDAw0zZs3L/AjJYzJ/yMD8tiEprxjdDgcxuVymdatW5uEhASv37++flb2799vnE5ngaHJGGPOnTtn5syZY9q0aWNCQkJMYGCgqV27thk0aJBH8CyujxwICAgwNWrUMFOnTvXY5rfffjNDhw41VapUcX/kwLx584wxv/+uiY2NNS6Xy5QtW9b85S9/MSNHjiQ0XYaieO93GHPeTdcbVHZ2tlwul7Kysgp88gcAANwYiuK9nzlNAAAAFghNAAAAFghNAAAAFghNAAAAFkpUaLqcv08FAABKthIVmi72YYYAAAD5KVGhqbj++jUAALj+lajQ5OfnV9wlAACA61SJCk0AAACXitAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABgodhC0/79+zVgwADVqlVLwcHBqlOnjiZMmKDTp0979HM4HF6vOXPmFFPVAACgpPIvrh1///33ys3N1b/+9S/VrVtXO3fu1KBBg3TixAlNmzbNo+/8+fPVtWtX97LL5bra5QIAgBKu2EJT165dPYJQ7dq19cMPP2j27Nleoals2bKKiIi42iUCAAC4XVNzmrKyslS+fHmv9ri4OIWHh6tVq1aaM2eOcnNzCxwnJydH2dnZHi8AAIDLUWxXmi70448/aubMmZo+fbpH+/PPP6+77rpLwcHB+uyzzzR8+HBlZGRo7Nix+Y41efJkTZw4sahLBgAAJYjDGGOu5IDx8fEXDSxbtmxRy5Yt3cupqamKiYlRTEyM3njjjQK3nT59uhISEpSVlZVvn5ycHOXk5LiXs7OzFRkZqczMTJ9XsgAAwI0lOztbLpdLWVlZCgsLuyJjXvErTXFxcerVq1eBfaKiotz/Tk1NVceOHRUdHa3XXnvtouO3bdtW2dnZOnTokCpXruyzj9PplNPpLFTdAAAABbnioSk8PFzh4eFWfX/++Wd17NhRLVq00Pz581Wq1MWnWCUlJSkoKEhly5a9zEoBAADsFducptTUVHXo0EE1atTQtGnT9Msvv7jX5T0p9+GHHyo9PV3R0dEKDg7W2rVrNWbMGD3++ONcSQIAAFdVsYWmVatWac+ePdqzZ4+qV6/usS5vmlVAQIBmzZqlYcOGKTc3V7Vr11ZCQoKefPLJ4igZAACUYFd8Ivi1KG8yGBPBAQAoGYpiIvg19TlNAAAA1ypCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgIViDU1RUVFyOBwer5EjR3r0SUlJUbdu3RQSEqLw8HA99dRTOn36dDFVDAAASir/4i4gISFBgwYNci+Hhoa6/33u3Dnde++9qlixor788ktlZmaqX79+MsZo5syZxVEuAAAooYo9NJUpU0YRERE+161atUrJyck6cOCAqlatKkmaPn26YmNjNWnSJIWFhV3NUgEAQAlW7HOaXnrpJVWoUEFNmzbVpEmTPG69JSYmqkmTJu7AJEldunRRTk6Otm3bVhzlAgCAEqpYrzQ9/fTTat68ucqVK6evv/5ao0aN0r59+/TGG29IktLT01W5cmWPbcqVK6fAwEClp6fnO25OTo5ycnLcy9nZ2UVzAAAAoMS44lea4uPjvSZ3X/jaunWrJGno0KGKiYnRLbfcooEDB2rOnDmaO3euMjMz3eM5HA6vfRhjfLbnmTx5slwul/sVGRl5pQ8TAACUMFf8SlNcXJx69epVYJ+oqCif7W3btpUk7dmzRxUqVFBERIQ2b97s0efo0aM6c+aM1xWo840aNUrDhg1zL2dnZxOcAADAZbnioSk8PFzh4eGXtG1SUpIkqUqVKpKk6OhoTZo0SWlpae62VatWyel0qkWLFvmO43Q65XQ6L6kGAAAAX4ptTlNiYqI2bdqkjh07yuVyacuWLRo6dKi6d++uGjVqSJI6d+6sxo0bq2/fvpo6daqOHDmiESNGaNCgQTw5BwAArqpiC01Op1OLFy/WxIkTlZOTo5o1a2rQoEF67rnn3H38/Pz00UcfaciQIWrfvr2Cg4PVu3dvTZs2rbjKBgAAJZTDGGOKu4iilp2dLZfLpczMTJUvX764ywEAAEUs770/Kyvrit2dKvbPaQIAALgeEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsEJoAAAAsFFtoWrdunRwOh8/Xli1b3P18rZ8zZ05xlQ0AAEoo/+Lacbt27ZSWlubRNm7cOK1Zs0YtW7b0aJ8/f766du3qXna5XFelRgAAgDzFFpoCAwMVERHhXj5z5oxWrFihuLg4ORwOj75ly5b16AsAAHC1XTNzmlasWKGMjAzFxsZ6rYuLi1N4eLhatWqlOXPmKDc39+oXCAAASrRiu9J0oblz56pLly6KjIz0aH/++ed11113KTg4WJ999pmGDx+ujIwMjR07Nt+xcnJylJOT417Ozs4usroBAEDJcMWvNMXHx+c7wTvvtXXrVo9tDh48qE8//VQDBgzwGm/s2LGKjo5W06ZNNXz4cCUkJGjq1KkF1jB58mS5XC7368IgBgAAUFgOY4y5kgNmZGQoIyOjwD5RUVEKCgpyLz///POaOXOmfv75ZwUEBBS47VdffaXbbrtN6enpqly5ss8+vq40RUZGKjMzU+XLly/E0QAAgOtRdna2XC6XsrKyFBYWdkXGvOK358LDwxUeHm7d3xij+fPn67HHHrtoYJKkpKQkBQUFqWzZsvn2cTqdcjqd1jUAAABcTLHPafr888+1b98+n7fmPvzwQ6Wnpys6OlrBwcFau3atxowZo8cff5xQBAAArqpiD01z585Vu3bt1KhRI691AQEBmjVrloYNG6bc3FzVrl1bCQkJevLJJ4uhUgAAUJJd8TlN16K8+5rMaQIAoGQoijlN18znNAEAAFzLCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWCE0AAAAWijQ0TZo0Se3atVPp0qVVtmxZn31SUlLUrVs3hYSEKDw8XE899ZROnz7t0WfHjh2KiYlRcHCwqlWrpoSEBBljirJ0AAAAD/5FOfjp06f1yCOPKDo6WnPnzvVaf+7cOd17772qWLGivvzyS2VmZqpfv34yxmjmzJmSpOzsbHXq1EkdO3bUli1btGvXLsXGxiokJETDhw8vyvIBAADcijQ0TZw4UZK0YMECn+tXrVql5ORkHThwQFWrVpUkTZ8+XbGxsZo0aZLCwsK0aNEinTp1SgsWLJDT6VSTJk20a9cuzZgxQ8OGDZPD4SjKQwAAAJBUzHOaEhMT1aRJE3dgkqQuXbooJydH27Ztc/eJiYmR0+n06JOamqr9+/f7HDcnJ0fZ2dkeLwAAgMtRrKEpPT1dlStX9mgrV66cAgMDlZ6enm+fvOW8PheaPHmyXC6X+xUZGVkE1QMAgJKk0KEpPj5eDoejwNfWrVutx/N1e80Y49F+YZ+8SeD53ZobNWqUsrKy3K8DBw5Y1wMAAOBLoec0xcXFqVevXgX2iYqKshorIiJCmzdv9mg7evSozpw5476aFBER4XVF6fDhw5LkdQUqj9Pp9LidBwAAcLkKHZrCw8MVHh5+RXYeHR2tSZMmKS0tTVWqVJH0++Rwp9OpFi1auPuMHj1ap0+fVmBgoLtP1apVrcMZAADA5SrSOU0pKSnavn27UlJSdO7cOW3fvl3bt2/Xr7/+Kknq3LmzGjdurL59+yopKUmfffaZRowYoUGDBiksLEyS1Lt3bzmdTsXGxmrnzp1avny5XnzxRZ6cAwAAV5XDFOGnRMbGxmrhwoVe7WvXrlWHDh0k/R6shgwZos8//1zBwcHq3bu3pk2b5nF7bceOHXryySf19ddfq1y5cho8eLDGjx9vHZqys7PlcrmUmZmp8uXLX5FjAwAA16689/6srCz3hZjLVaSh6VpBaAIAoGQpitDE354DAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwUKShadKkSWrXrp1Kly6tsmXLeq3/5ptv9OijjyoyMlLBwcFq1KiRXn75ZY8++/fvl8Ph8HqtXLmyKEsHAADw4F+Ug58+fVqPPPKIoqOjNXfuXK/127ZtU8WKFfXvf/9bkZGR2rhxox5//HH5+fkpLi7Oo++aNWt00003uZfLly9flKUDAAB4KNLQNHHiREnSggULfK7v37+/x3Lt2rWVmJioZcuWeYWmChUqKCIiokjqBAAAuJhrbk5TVlaWz6tI3bt3V6VKldS+fXstXbq0wDFycnKUnZ3t8QIAALgc11RoSkxM1JIlS/TEE0+420JDQzVjxgwtXbpUH3/8se666y717NlT//73v/MdZ/LkyXK5XO5XZGTk1SgfAADcwAodmuLj431OzD7/tXXr1kIX8u233+qPf/yjxo8fr06dOrnbw8PDNXToULVu3VotW7ZUQkKChgwZor///e/5jjVq1ChlZWW5XwcOHCh0PQAAAOcr9JymuLg49erVq8A+UVFRhRozOTlZd955pwYNGqSxY8detH/btm31xhtv5Lve6XTK6XQWqgYAAICCFDo0hYeHKzw8/IoV8O233+rOO+9Uv379NGnSJKttkpKSVKVKlStWAwAAwMUU6dNzKSkpOnLkiFJSUnTu3Dlt375dklS3bl2Fhobq22+/VceOHdW5c2cNGzZM6enpkiQ/Pz9VrFhRkrRw4UIFBASoWbNmKlWqlD788EO98soreumll4qydAAAAA9FGprGjx+vhQsXupebNWsmSVq7dq06dOig9957T7/88osWLVqkRYsWufvVrFlT+/fvdy+/8MIL+umnn+Tn56f69etr3rx5+tOf/lSUpQMAAHhwGGNMcRdR1LKzs+VyuZSZmcmHYgIAUALkvfdnZWUpLCzsiox5TX3kAAAAwLWK0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGCB0AQAAGChSEPTpEmT1K5dO5UuXVply5b12cfhcHi95syZ49Fnx44diomJUXBwsKpVq6aEhAQZY4qydAAAAA/+RTn46dOn9cgjjyg6Olpz587Nt9/8+fPVtWtX97LL5XL/Ozs7W506dVLHjh21ZcsW7dq1S7GxsQoJCdHw4cOLsnwAAAC3Ig1NEydOlCQtWLCgwH5ly5ZVRESEz3WLFi3SqVOntGDBAjmdTjVp0kS7du3SjBkzNGzYMDkcjitdNgAAgJdrYk5TXFycwsPD1apVK82ZM0e5ubnudYmJiYqJiZHT6XS3denSRampqdq/f38xVAsAAEqiIr3SZOP555/XXXfdpeDgYH322WcaPny4MjIyNHbsWElSenq6oqKiPLapXLmye12tWrW8xszJyVFOTo57OTs7u+gOAAAAlAiFvtIUHx/vc/L2+a+tW7dajzd27FhFR0eradOmGj58uBISEjR16lSPPhfegsubBJ7frbnJkyfL5XK5X5GRkYU8SgAAAE+FvtIUFxenXr16FdjnwitDhdG2bVtlZ2fr0KFDqly5siIiIpSenu7R5/Dhw5L+3xWnC40aNUrDhg1zL2dnZxOcAADAZSl0aAoPD1d4eHhR1CJJSkpKUlBQkPsjCqKjozV69GidPn1agYGBkqRVq1apatWq+YYzp9PpMQcKAADgchXpnKaUlBQdOXJEKSkpOnfunLZv3y5Jqlu3rkJDQ/Xhhx8qPT1d0dHRCg4O1tq1azVmzBg9/vjj7tDTu3dvTZw4UbGxsRo9erR2796tF198UePHj+fJOQAAcNU4TBF+SmRsbKwWLlzo1b527Vp16NBBK1eu1KhRo7Rnzx7l5uaqdu3aGjhwoJ588kn5+/+/PLdjxw49+eST+vrrr1WuXDkNHjy4UKEpOztbLpdLmZmZKl++/BU7PgAAcG3Ke+/PyspSWFjYFRmzSEPTtYLQBABAyVIUoema+JwmAACAax2hCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwAKhCQAAwEKRhqZJkyapXbt2Kl26tMqWLeu1fsGCBXI4HD5fhw8fliTt37/f5/qVK1cWZekAAAAe/Ity8NOnT+uRRx5RdHS05s6d67W+Z8+e6tq1q0dbbGysTp06pUqVKnm0r1mzRjfddJN7uXz58kVTNAAAgA9FGpomTpwo6fcrSr4EBwcrODjYvfzLL7/o888/9xmwKlSooIiIiCKpEwAA4GKuqTlNb775pkqXLq2HH37Ya1337t1VqVIltW/fXkuXLi2G6gAAQElWpFeaCmvevHnq3bu3x9Wn0NBQzZgxQ+3bt1epUqW0YsUK9ezZUwsXLtSf/vQnn+Pk5OQoJyfHvZydnV3ktQMAgBtboa80xcfH5zt5O++1devWQheSmJio5ORkDRgwwKM9PDxcQ4cOVevWrdWyZUslJCRoyJAh+vvf/57vWJMnT5bL5XK/IiMjC10PAADA+RzGGFOYDTIyMpSRkVFgn6ioKAUFBbmXFyxYoGeeeUbHjh3Ld5sBAwbov//9r5KSki5aw6JFizRw4ED99ttvPtf7utIUGRmpzMxMJpADAFACZGdny+VyKSsrS2FhYVdkzELfngsPD1d4ePgV2XmeX3/9VUuWLNHkyZOt+iclJalKlSr5rnc6nXI6nVeqPAAAgKKd05SSkqIjR44oJSVF586d0/bt2yVJdevWVWhoqLvf4sWLdfbsWfXp08drjIULFyogIEDNmjVTqVKl9OGHH+qVV17RSy+9VJSlAwAAeCjS0DR+/HgtXLjQvdysWTNJ0tq1a9WhQwd3+9y5c/Xggw+qXLlyPsd54YUX9NNPP8nPz0/169fXvHnz8p0EDgAAUBQKPafpepR3X5M5TQAAlAxFMafpmvqcJgAAgGsVoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMBCiQpNubm5xV0CAAC4TpWo0AQAAHCpSlRoCgwMLO4SAADAdapEhSYAAIBLRWgCAACwQGgCAACwQGgCAACwQGgCAACwUGShaf/+/RowYIBq1aql4OBg1alTRxMmTNDp06c9+qWkpKhbt24KCQlReHi4nnrqKa8+O3bsUExMjIKDg1WtWjUlJCTIGFNUpQMAAHjxL6qBv//+e+Xm5upf//qX6tatq507d2rQoEE6ceKEpk2bJkk6d+6c7r33XlWsWFFffvmlMjMz1a9fPxljNHPmTElSdna2OnXqpI4dO2rLli3atWuXYmNjFRISouHDhxdV+QAAAB4c5ipespk6dapmz56tvXv3SpI++eQT3XfffTpw4ICqVq0qSXr33XcVGxurw4cPKywsTLNnz9aoUaN06NAhOZ1OSdKUKVM0c+ZMHTx4UA6H46L7zc7OlsvlUlZWlsLCworuAAEAwDWhKN77i+xKky9ZWVkqX768ezkxMVFNmjRxByZJ6tKli3JycrRt2zZ17NhRiYmJiomJcQemvD6jRo3S/v37VatWLa/95OTkKCcnx2O/0u9fQAAAcOPLe8+/kteGrlpo+vHHHzVz5kxNnz7d3Zaenq7KlSt79CtXrpwCAwOVnp7u7hMVFeXRJ2+b9PR0n6Fp8uTJmjhxold7ZGTk5R4GAAC4jmRmZsrlcl2RsQodmuLj430GkvNt2bJFLVu2dC+npqaqa9eueuSRRzRw4ECPvr5urxljPNov7JOXGvO7NTdq1CgNGzbMvXzs2DHVrFlTKSkpV+wLh8uXnZ2tyMhIHThwgNum1xDOy7WLc3Nt4rxcm7KyslSjRg2PO1yXq9ChKS4uTr169Sqwz/lXhlJTU9WxY0dFR0frtdde8+gXERGhzZs3e7QdPXpUZ86ccV9NioiIcF91ynP48GFJ8rpKlcfpdHrczsvjcrn4hr4GhYWFcV6uQZyXaxfn5trEebk2lSp15T4ooNChKTw8XOHh4VZ9f/75Z3Xs2FEtWrTQ/PnzvQqPjo7WpEmTlJaWpipVqkiSVq1aJafTqRYtWrj7jB49WqdPn3b/wd1Vq1apatWqXrftAAAAikqRfU5TamqqOnTooMjISE2bNk2//PKL0tPTPa4ade7cWY0bN1bfvn2VlJSkzz77TCNGjNCgQYPcab13795yOp2KjY3Vzp07tXz5cr344osaNmyY1ZNzAAAAV0KRTQRftWqV9uzZoz179qh69eoe6/LmJPn5+emjjz7SkCFD1L59ewUHB6t3797uz3GSfr+ltnr1aj355JNq2bKlypUrp2HDhnnMWboYp9OpCRMm+Lxlh+LDebk2cV6uXZybaxPn5dpUFOflqn5OEwAAwPWKvz0HAABggdAEAABggdAEAABggdAEAABg4YYJTbNmzVKtWrUUFBSkFi1aaMOGDQX2X79+vVq0aKGgoCDVrl1bc+bMuUqVliyFOS/Lli1Tp06dVLFiRYWFhSk6OlqffvrpVay25Cjsz0uer776Sv7+/mratGnRFlhCFfa85OTkaMyYMapZs6acTqfq1KmjefPmXaVqS5bCnptFixbp1ltvVenSpVWlShX9+c9/VmZm5lWq9sb3xRdfqFu3bqpataocDoc++OCDi25zRd73zQ3g3XffNQEBAeb11183ycnJ5umnnzYhISHmp59+8tl/7969pnTp0ubpp582ycnJ5vXXXzcBAQFm6dKlV7nyG1thz8vTTz9tXnrpJfP111+bXbt2mVGjRpmAgADz3//+9ypXfmMr7HnJc+zYMVO7dm3TuXNnc+utt16dYkuQSzkv3bt3N23atDGrV682+/btM5s3bzZfffXVVay6ZCjsudmwYYMpVaqUefnll83evXvNhg0bzE033WTuv//+q1z5jevjjz82Y8aMMe+//76RZJYvX15g/yv1vn9DhKbWrVubwYMHe7Q1bNjQjBw50mf/5557zjRs2NCj7YknnjBt27YtshpLosKeF18aN25sJk6ceKVLK9Eu9bz07NnTjB071kyYMIHQVAQKe14++eQT43K5TGZm5tUor0Qr7LmZOnWqqV27tkfbK6+8YqpXr15kNZZkNqHpSr3vX/e3506fPq1t27apc+fOHu2dO3fWxo0bfW6TmJjo1b9Lly7aunWrzpw5U2S1liSXcl4ulJubq+PHj1/RP7ZY0l3qeZk/f75+/PFHTZgwoahLLJEu5bysWLFCLVu21N///ndVq1ZN9evX14gRI/Tbb79djZJLjEs5N+3atdPBgwf18ccfyxijQ4cOaenSpbr33nuvRsnw4Uq97xfZJ4JfLRkZGTp37pzXH++tXLmy1x/6zZOenu6z/9mzZ5WRkeH+O3i4dJdyXi40ffp0nThxQj169CiKEkukSzkvu3fv1siRI7Vhwwb5+1/3vzKuSZdyXvbu3asvv/xSQUFBWr58uTIyMjRkyBAdOXKEeU1X0KWcm3bt2mnRokXq2bOnTp06pbNnz6p79+6aOXPm1SgZPlyp9/3r/kpTngv/Dp0xpsC/Teerv692XJ7Cnpc877zzjuLj47V48WJVqlSpqMorsWzPy7lz59S7d29NnDhR9evXv1rllViF+XnJzc2Vw+HQokWL1Lp1a91zzz2aMWOGFixYwNWmIlCYc5OcnKynnnpK48eP17Zt27Ry5Urt27dPgwcPvhqlIh9X4n3/uv9vY3h4uPz8/LwS/+HDh71SZZ6IiAif/f39/VWhQoUiq7UkuZTzkmfx4sUaMGCA3nvvPd19991FWWaJU9jzcvz4cW3dulVJSUmKi4uT9PubtTFG/v7+WrVqle68886rUvuN7FJ+XqpUqaJq1arJ5XK52xo1aiRjjA4ePKh69eoVac0lxaWcm8mTJ6t9+/Z69tlnJUm33HKLQkJCdPvtt+uFF17gbkYxuFLv+9f9labAwEC1aNFCq1ev9mhfvXq12rVr53Ob6Ohor/6rVq1Sy5YtFRAQUGS1liSXcl6k368wxcbG6u233+b+fxEo7HkJCwvTjh07tH37dvdr8ODBatCggbZv3642bdpcrdJvaJfy89K+fXulpqbq119/dbft2rVLpUqV8voj6bh0l3JuTp48qVKlPN9e/fz8JP2/qxu4uq7Y+36hpo1fo/IeB507d65JTk42zzzzjAkJCTH79+83xhgzcuRI07dvX3f/vEcPhw4dapKTk83cuXP5yIEiUNjz8vbbbxt/f3/z6quvmrS0NPfr2LFjxXUIN6TCnpcL8fRc0SjseTl+/LipXr26efjhh823335r1q9fb+rVq2cGDhxYXIdwwyrsuZk/f77x9/c3s2bNMj/++KP58ssvTcuWLU3r1q2L6xBuOMePHzdJSUkmKSnJSDIzZswwSUlJ7o+BKKr3/RsiNBljzKuvvmpq1qxpAgMDTfPmzc369evd6/r162diYmI8+q9bt840a9bMBAYGmqioKDN79uyrXHHJUJjzEhMTYyR5vfr163f1C7/BFfbn5XyEpqJT2PPy3XffmbvvvtsEBweb6tWrm2HDhpmTJ09e5apLhsKem1deecU0btzYBAcHmypVqpg+ffqYgwcPXuWqb1xr164t8P2iqN73HcZwrRAAAOBirvs5TQAAAFcDoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMACoQkAAMDC/w/FepJDq7gUAQAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -1097,17 +1082,17 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 16, "id": "6476db17-0835-498c-865e-07641dbe09e4", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[]" + "[]" ] }, - "execution_count": 26, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, @@ -1128,17 +1113,17 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 17, "id": "8aefd0e3-2738-4e9b-9f64-9864f9223710", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[]" + "[]" ] }, - "execution_count": 23, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" }, @@ -1167,7 +1152,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 18, "id": "69f59bc3-04c9-4dff-9950-b10a3bffd5fa", "metadata": { "tags": [] @@ -1222,21 +1207,27 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 19, "id": "5d3aa1c9-d4ae-45de-a79c-94d56195c008", "metadata": {}, "outputs": [ { - "ename": "AttributeError", - "evalue": "'Dataset' object has no attribute 'nitrate'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[24], line 7\u001b[0m\n\u001b[1;32m 4\u001b[0m ds_nitrate\u001b[38;5;241m.\u001b[39mto_netcdf(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m./data/rca/sensors/osb/nitrate_jan_2022.nc\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 6\u001b[0m ds_nitrate \u001b[38;5;241m=\u001b[39m xr\u001b[38;5;241m.\u001b[39mopen_dataset(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m./data/rca/sensors/osb/nitrate_jan_2022.nc\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m----> 7\u001b[0m fig, axes \u001b[38;5;241m=\u001b[39m ChartSensor(profiles, ranges[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnitrate\u001b[39m\u001b[38;5;124m'\u001b[39m], [\u001b[38;5;241m3\u001b[39m], ds_nitrate\u001b[38;5;241m.\u001b[39mnitrate, \u001b[38;5;241m-\u001b[39mds_nitrate\u001b[38;5;241m.\u001b[39mdepth, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnitrate \u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mblack\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mascent\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;241m6\u001b[39m, \u001b[38;5;241m4\u001b[39m)\n", - "File \u001b[0;32m~/miniconda3/envs/oceanography/lib/python3.12/site-packages/xarray/core/common.py:278\u001b[0m, in \u001b[0;36mAttrAccessMixin.__getattr__\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m 276\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m suppress(\u001b[38;5;167;01mKeyError\u001b[39;00m):\n\u001b[1;32m 277\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m source[name]\n\u001b[0;32m--> 278\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mAttributeError\u001b[39;00m(\n\u001b[1;32m 279\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mtype\u001b[39m(\u001b[38;5;28mself\u001b[39m)\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m!r}\u001b[39;00m\u001b[38;5;124m object has no attribute \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mname\u001b[38;5;132;01m!r}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 280\u001b[0m )\n", - "\u001b[0;31mAttributeError\u001b[0m: 'Dataset' object has no attribute 'nitrate'" + "name": "stdout", + "output_type": "stream", + "text": [ + "Attempting 1 charts\n", + "\n" ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAJOCAYAAABBWYj1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABs5klEQVR4nO3dd1gU9+I18LO0pa8CKqAIiIoSu1jAAmoAjSVqYizRQCyJhcR6c60RiTUaU8xVEwuaZkkiRo0NC5YIxgKKXRREpVkBQfr3/cOX/bnScWFY9nyeZ5/szszOnh1GOJkqE0IIEBEREVGpdKQOQERERKQpWJyIiIiIyojFiYiIiKiMWJyIiIiIyojFiYiIiKiMWJyIiIiIyojFiYiIiKiMWJyIiIiIyojFiYiIiKiMWJyIqEQODg7w8/NTvo6Pj0dAQAAiIyMr5fNOnTqFgIAAPH36tFLmX5Rbt25BLpcjLCxMOczT0xMtWrQo0/tlMhkCAgIqKd2L+fv7+5c4zY0bN2BgYIDz589XWg4iYnEiolIEBwdj3rx5ytfx8fFYsGBBpRanBQsWVGlxmjFjBry8vODm5lZln6luTZs2xfvvv4+pU6dKHYWoRtOTOgARVW9t27Z9rfdnZGTA2NhYTWnU7+rVq9i5cyf2798vdZTX5u/vD1dXV5w6dQru7u5SxyGqkbjFiUgLBQQEQCaT4fLlyxg+fDgUCgXq1auH0aNHIyUlRWXal3fVhYaGokOHDgCADz/8EDKZTGU3lZ+fH0xNTREVFQVvb2+YmZmhV69eAICQkBC8/fbbaNCgAQwNDdG4cWN8/PHHePjwoUqu//znPwAAR0dH5fxDQ0OV02zbtg1ubm4wMTGBqakpfHx8EBERUeFlsWbNGlhbW8PLy6vI8SdOnEDnzp1hZGSE+vXrY968ecjLyytxng8ePMDEiRPh4uICU1NT1K1bFz179sSJEycKTZuVlYXAwEA0b94choaGsLS0RI8ePXDq1Kli5y+EwOzZs6Gvr49169Yph7dv3x7NmzfH2rVry/jtiai8uMWJSIu98847GDp0KMaMGYOoqCjMmjULALBx48Yip2/Xrh2CgoLw4YcfYu7cuejbty8AoEGDBsppsrOzMWDAAHz88ceYOXMmcnNzAbw4jsjNzQ1jx46FQqFAbGwsVq5cia5duyIqKgr6+voYO3YsHj9+jFWrVmHHjh2wsbEBALi4uAAAFi9ejLlz5yo/Pzs7G8uXL0e3bt3w77//Kqcrj7///hvdu3eHjk7h/49MTEzEsGHDMHPmTAQGBuLvv//GwoUL8eTJE3z//ffFzvPx48cAgPnz58Pa2hrPnj1DcHAwPD09cfjwYXh6egIAcnNz0adPH5w4cQJTpkxBz549kZubi/DwcMTFxRW51SgrKwt+fn74+++/sXv3bvTu3VtlvKenJ37//XcIISCTycq9PIioFIKItM78+fMFAPHll1+qDJ84caIwNDQU+fn5ymH29vbC19dX+frMmTMCgAgKCio0X19fXwFAbNy4scTPz8/PFzk5OeLOnTsCgPjrr7+U45YvXy4AiJiYGJX3xMXFCT09PfHJJ5+oDE9LSxPW1tbivffeK+VbF5aUlCQAiKVLlxYa5+HhUSibEEKMGzdO6OjoiDt37iiHARDz588v9nNyc3NFTk6O6NWrlxg0aJBy+E8//SQAiHXr1pWYE4CYNGmSePTokejatauoX7++iIyMLHLadevWCQDi6tWrJc6TiCqGu+qItNiAAQNUXrdq1QqZmZlITk5+rfm+8847hYYlJydj/PjxsLOzg56eHvT19WFvbw/gxXFGpTlw4AByc3PxwQcfIDc3V/kwNDSEh4eHyu68soqPjwcA1K1bt8jxZmZmhZbRiBEjkJ+fj+PHj5c477Vr16Jdu3YwNDRUft/Dhw+rfNd9+/bB0NAQo0ePLjVrTEwM3NzckJqaivDwcLRu3brI6Qq+y/3790udJxGVH3fVEWkxS0tLlddyuRwA8Pz58wrP09jYGObm5irD8vPz4e3tjfj4eMybNw8tW7aEiYkJ8vPz0blz5zJ9XlJSEgAoj7F6VVG72kpT8LmGhoZFjq9Xr16hYdbW1gCAR48eFTvflStXYvr06Rg/fjy++OILWFlZQVdXF/PmzVMpTg8ePICtrW2Zsv/77794+PAhFi1apLJr9FUF3+V1foZEVDwWJyJSq6KOq7l06RIuXLiATZs2wdfXVzk8Ojq6zPO1srICAPzxxx/KLVWvq2CeBcckvaqgrL0sMTERQOHS+bJffvkFnp6eWLNmjcrwtLQ0ldd16tTByZMnkZ+fX2p5Gjp0KKytrTFnzhzk5+dj7ty5RU5X8F0KvhsRqReLExGVS0W2ShWUqYL3Fvjhhx/KPH8fHx/o6enh1q1bRe4KrAh7e3sYGRnh1q1bRY5PS0vDrl27VHbX/fbbb9DR0UH37t2Lna9MJiv0XS9evIiwsDDY2dkph/Xp0wdbtmzBpk2byrS7bu7cuTAzM8PUqVORnp6OJUuWFJrm9u3b0NHRgbOzc6nzI6LyY3EionJxcnKCkZERfv31VzRv3hympqawtbWFra1tse9p1qwZnJycMHPmTAghYGFhgd27dyMkJKTQtC1btgQAfPvtt/D19YW+vj6cnZ3h4OCAwMBAzJkzB7dv30bv3r1Ru3ZtJCUl4d9//4WJiQkWLFhQru9iYGAANzc3hIeHFzne0tISEyZMQFxcHJo2bYq9e/di3bp1mDBhAho2bFjsfPv164cvvvgC8+fPh4eHB65fv47AwEA4OjoqzzIEgOHDhyMoKAjjx4/H9evX0aNHD+Tn5+P06dNo3rw5hg0bVmjekydPhqmpKT766CM8e/YM3333ncpWvvDwcLRp0wa1a9cu17IgojKS+uh0Iqp6BWfVPXjwQGV4UFBQoTPaXj2rTgghtmzZIpo1ayb09fVVzijz9fUVJiYmRX7mlStXhJeXlzAzMxO1a9cWQ4YMEXFxcUWekTZr1ixha2srdHR0BABx9OhR5bidO3eKHj16CHNzcyGXy4W9vb149913xaFDhyq0LDZs2CB0dXVFfHy8ynAPDw/xxhtviNDQUOHq6irkcrmwsbERs2fPFjk5OSrTvvodsrKyxIwZM0T9+vWFoaGhaNeundi5c6fw9fUV9vb2Ku99/vy5+Pzzz0WTJk2EgYGBsLS0FD179hSnTp1Smf+kSZNU3rdlyxahp6cnPvzwQ5GXlyeEeHGGobGxsfjqq68qtCyIqHQyIYSQsLcREUkqMzMTDRs2xPTp0/Hf//5X6jivZcOGDZg8eTLu3r3LLU5ElYSXIyAirWZoaIgFCxZg5cqVSE9PlzpOheXm5mLZsmWYNWsWSxNRJeIxTkSk9T766CM8ffoUt2/fVh5jpWnu3r2LkSNHYvr06VJHIarRuKuOiIiIqIw0Zlfd6tWr4ejoCENDQ7Rv377Im2USERERVSaNKE7btm3DlClTMGfOHERERKBbt27o06cP4uLipI5GREREWkQjdtV16tQJ7dq1U7kKb/PmzTFw4MAiLwBHREREVBmq/cHh2dnZOHfuHGbOnKky3NvbG6dOnSryPVlZWcjKylK+zs/Px+PHj2FpaVnk7SCIiIioZhJCIC0trcz3hSxNtS9ODx8+RF5eXqGbbdarV095z6hXLVmypNxXECYiIqKa6+7duyXeILusqn1xKvDqliIhRLFbj2bNmoVp06YpX6ekpKBhw4a4e/duobu2ExERUc2VmpoKOzs7mJmZqWV+1b44WVlZQVdXt9DWpeTk5EJboQrI5fJCN9gEAHNzcxYnIiIiLaSuQ3Wq/Vl1BgYGaN++faGbgYaEhMDd3V2iVERERKSNqv0WJwCYNm0aRo0aBVdXV7i5ueHHH39EXFwcxo8fL3U0IiIi0iIaUZyGDh2KR48eITAwEAkJCWjRogX27t0Le3t7qaMRERGRFtGI6zi9rtTUVCgUCqSkpPAYJyIiIi2i7g5Q7Y9xIiIiIqouWJyIiIiIyojFiYiIiKiMWJyIiIiIyojFiYiIiKiMWJyIiIiIyojFiYiIiKiMWJyIiIiIyojFiYiIiKiMWJyIiIgqIDQ0FDKZDE+fPq2yz/Tz88PAgQOr7POoMBYnqhaSk5Px8ccfo2HDhpDL5bC2toaPjw/CwsKU08hkMuzcuVMtnxcbGwuZTIbIyMgSpyvpF2ObNm0QEBCgnKakx6ZNmwAAf/75Jzw9PaFQKGBqaopWrVohMDAQjx8/LnP2HTt2wMvLC3Xq1IG5uTnc3Nxw4MCBQtP9+eefcHFxgVwuh4uLC4KDg1XGL1myBB06dICZmRnq1q2LgQMH4vr168rxOTk5+O9//4uWLVvCxMQEtra2+OCDDxAfH19qxidPnmDUqFFQKBRQKBQYNWpUoWU4efJktG/fHnK5HG3atCnz9z927Bjat28PQ0NDNGrUCGvXrlUZf/nyZbzzzjtwcHCATCbDN998U6b5RkVFwcPDA0ZGRqhfvz4CAwPx8h2p/Pz8ivzZvvHGGyXO98cff4SnpyfMzc2LXJdKWn/OnDlT4rxL+xkDwOrVq+Ho6AhDQ0O0b98eJ06cKHGemzZtgkwmQ/PmzQuN2759O2QyGRwcHFSmr1WrVqH3y2Qy6Orqonbt2ujUqRMCAwORkpKiMr+CZbp06VKV4Tt37oRMJlO+LurfoRAC69atg5ubG8zNzWFqaoo33ngDkydPRnR0tHK6gICAItevl38HBAQElPpvODY2tsTlRtqDxYmqhXfeeQcXLlzA5s2bcePGDezatQuenp7lKhRllZ2drdb5ubu7IyEhQfl477330Lt3b5VhQ4cOxZw5czB06FB06NAB+/btw6VLl/DVV1/hwoUL+Pnnn8v8ecePH4eXlxf27t2Lc+fOoUePHujfvz8iIiKU04SFhWHo0KEYNWoULly4gFGjRuG9997D6dOnldMcO3YMkyZNQnh4OEJCQpCbmwtvb2+kp6cDADIyMnD+/HnMmzcP58+fx44dO3Djxg0MGDCg1IwjRoxAZGQk9u/fj/379yMyMhKjRo1SmUYIgdGjR2Po0KFl/u4xMTF466230K1bN0RERGD27Nn49NNP8eeffyqnycjIQKNGjbB06VJYW1uXab6pqanw8vKCra0tzpw5g1WrVmHFihVYuXKlcppvv/1W5Wd69+5dWFhYYMiQISXOOyMjA71798bs2bOLHP/q+pOQkICxY8fCwcEBrq6uxc63LD/jbdu2YcqUKZgzZw4iIiLQrVs39OnTB3FxcSVmNjExQXJyssr/uADAxo0b0bBhwxLfCwDm5uZISEjAvXv3cOrUKXz00Uf46aef0KZNm0LF29DQEMuWLcOTJ09KnW8BIQRGjBiBTz/9FG+99RYOHjyIixcv4rvvvoORkREWLlxY5nkBwIwZM1SWf4MGDZQ3lS942NnZlWueVIMJLZCSkiIAiJSUFKmjUBGePHkiAIjQ0NBip7G3txcAlA97e3shhBDR0dFiwIABom7dusLExES4urqKkJCQQu/94osvhK+vrzA3NxcffPCByrwACA8PjyI/9+jRowKAePLkSaFxrVu3FvPnzy803NfXV7z99tsqw06fPi0AiG+++abYZfA6XFxcxIIFC5Sv33vvPdG7d2+VaXx8fMSwYcOKnUdycrIAII4dO1bsNP/++68AIO7cuVPsNFeuXBEARHh4uHJYWFiYACCuXbtWaPr58+eL1q1bFzu/l3322WeiWbNmKsM+/vhj0blz5yKnt7e3F19//XWp8129erVQKBQiMzNTOWzJkiXC1tZW5OfnF/me4OBgIZPJRGxsbJmyl7QuvSw7O1vUrVtXBAYGljhdWX7GHTt2FOPHj1eZplmzZmLmzJnFzjcoKEgoFArh7+8vxo4dqxx+9+5dIZfLxcyZM5X//l6evrjXBZKSkoSVlZV4//33lcN8fX1Fv379RLNmzcR//vMf5fDg4GDx8p+nV5fdli1bBADx119/FfkdXv6ZFbd+xcTECAAiIiKi0LiyrjdF/Uz/+OMP4eLiIgwMDIS9vb1YsWKFynsyMzPFf/7zH9GgQQNhYGAgGjduLNavXy+EECI3N1eMHj1aODg4CENDQ9G0adNCvzOK+v1CJVN3B+AWJ5KcqakpTE1NsXPnTmRlZRU5TcEui6CgICQkJChfP3v2DG+99RYOHTqEiIgI+Pj4oH///oX+j3r58uVo0aIFzp07h3nz5uHff/8FABw6dAgJCQnYsWNHJX5D4Ndff4WpqSkmTpxY5PiCXR0Fuw9CQ0PLPO/8/HykpaXBwsJCOSwsLAze3t4q0/n4+ODUqVPFzqdgN8rL8ylqGplMprJr5lVhYWFQKBTo1KmTcljnzp2hUChK/PyyKO57nT17Fjk5Oa81Xw8PD8jlcpX5xsfHF7uLZsOGDXjzzTdhb2+vHFawS+l1duvs2rULDx8+hJ+fn8pwBwcHBAQEqGQu6WecnZ2Nc+fOFZrG29u7TD+HMWPGYNu2bcjIyADwYhdc7969Ua9evQp8K6Bu3bp4//33sWvXLuTl5SmH6+rqYvHixVi1ahXu3btXpnlt2bIFzs7OxW79fHk3X1U6d+4c3nvvPQwbNgxRUVEICAjAvHnzlLvqAeCDDz7A1q1b8d133+Hq1atYu3YtTE1NAbz4t9ygQQNs374dV65cweeff47Zs2dj+/btknwfKhqLE0lOT08PmzZtwubNm1GrVi106dIFs2fPxsWLF5XT1KlTB8CLgmFtba183bp1a3z88cdo2bIlmjRpgoULF6JRo0bYtWuXymf07NkTM2bMQOPGjdG4cWPl+y0tLWFtbV1iWVCHmzdvolGjRtDX1y9xOn19fTg7O8PY2LjM8/7qq6+Qnp6O9957TzksMTGx0B+4evXqITExsch5CCEwbdo0dO3aFS1atChymszMTMycORMjRoyAubl5sXkSExNRt27dQsPr1q1b7OeXVXHfKzc3Fw8fPlT7fAvGvSohIQH79u3D2LFjVYYbGxvD2dm51J9zSTZs2AAfH59Cu4acnJxgZWVVauaCvA8fPkReXl651oOXtWnTBk5OTvjjjz8ghMCmTZswevToin4tAECzZs2QlpaGR48eqQwfNGgQ2rRpg/nz55dpPjdu3ICzs7PKsClTpij/J6xBgwYq46KiopTjCh6lHZtWEStXrkSvXr0wb948NG3aFH5+fvD398fy5cuVubdv346NGzdi0KBBaNSoEXr16qXcXa2vr48FCxagQ4cOcHR0xPvvvw8/Pz8Wp2qGxYmqhXfeeQfx8fHYtWsXfHx8EBoainbt2qn8n1pR0tPT8dlnn8HFxQW1atWCqakprl27VmiLU0nHilQFIUSZ/i+4fv36uHbtGjp27Fim+W7ZsgUBAQHYtm1bobLy6ueVlMHf3x8XL17Eli1bihyfk5ODYcOGIT8/H6tXr1YOHz9+vMofo+I+u7TPL8rL8x0/fnyJ36u4zyyP8sy34IDoV89u6tixI65du4b69etXKMO9e/dw4MABjBkzptC4w4cPw9/fv9TMrw4rz3rwqtGjRyMoKAjHjh1Tbt19HSUt02XLlmHz5s24cuVKmeb16jzmzJmDyMhIfP7553j27JnKOGdnZ0RGRqo89u7dW8FvUbyrV6+iS5cuKsO6dOmCmzdvIi8vD5GRkdDV1YWHh0ex81i7di1cXV1Rp04dmJqaYt26daUek0ZVS0/qAEQFDA0N4eXlBS8vL3z++ecYO3Ys5s+fX2iXxcv+85//4MCBA1ixYgUaN24MIyMjvPvuu4UOADcxMalQpoItKykpKYV2Tz19+hQKhaJM82natClOnjyJnJyc19oa8bJt27ZhzJgx+P333/Hmm2+qjLO2ti60VSE5ObnI3SyffPIJdu3ahePHjxf6P3XgRWl67733EBMTgyNHjqhsbQoMDMSMGTMKfXZSUlKh+Tx48KBcu3lePuOx4DOL+156enqwtLQs87xfVdx8ARTKLITAxo0bMWrUKBgYGFT4M4sSFBQES0vLMh2AX9rP2MrKCrq6umVeD4ry/vvv47PPPkNAQAA++OAD6Om93p+Mq1evwtzcvMifVffu3eHj44PZs2eX+G8eAJo0aYJr166pDKtTpw7q1KlT5NZOAwMDNG7cWGXY636XohRVSsVLZ2YaGRmV+P7t27dj6tSp+Oqrr+Dm5gYzMzMsX75c5YB/kh63OFG15eLiojzDC3ixGfvlYyMA4MSJE/Dz88OgQYPQsmVLWFtbl+n4koI/eK/O71VNmjSBjo5OodPCExIScP/+/UK7C4ozYsQIPHv2TGVrzcvKex2YLVu2wM/PD7/99hv69u1baLybmxtCQkJUhh08eBDu7u7K10II+Pv7Y8eOHThy5AgcHR0LzaegNN28eROHDh0q9Aevbt26yt2fBX+Y3NzckJKSojyODABOnz6NlJQUlc8vzcvzLfhjWNz3cnV1fa1C6ubmhuPHj6sU7oMHD8LW1lbl1HvgxdmI0dHRRW4Veh1CCAQFBeGDDz4o03cp7WdsYGCA9u3bF5omJCSkzD8HCwsLDBgwAMeOHXvt3XTJycn47bffMHDgQOjoFP2nZ+nSpdi9e3epx2ANHz4c169fx19//fVamdTNxcUFJ0+eVBl26tQpNG3aFLq6umjZsiXy8/Nx7NixIt9/4sQJuLu7Y+LEiWjbti0aN26MW7duVUV0Kg+1HGJezfGsuurt4cOHokePHuLnn38WFy5cELdv3xbbt28X9erVE6NHj1ZO16RJEzFhwgSRkJAgHj9+LIQQYuDAgaJNmzYiIiJCREZGiv79+wszMzMxefJk5fuKOkMmJydHGBkZiYULF4rExETx9OnTYvNNmDBBNGzYUAQHB4vbt2+LkydPCg8PD9GyZUuRk5NTaPriznr57LPPhK6urvjPf/4jTp06JWJjY8WhQ4fEu+++qzxz5t69e8LZ2VmcPn262Dy//fab0NPTE//73/9EQkKC8vHyd/jnn3+Erq6uWLp0qbh69apYunSp0NPTUznTbcKECUKhUIjQ0FCV+WRkZCiX0YABA0SDBg1EZGSkyjRZWVnF5hNCiN69e4tWrVqJsLAwERYWJlq2bCn69eunMs3NmzdFRESE+Pjjj0XTpk1FRESEiIiIKHHet2/fFsbGxmLq1KniypUrYsOGDUJfX1/88ccfymmysrKU87KxsREzZswQERER4ubNm8XO9+nTp6JevXpi+PDhIioqSuzYsUOYm5sXOiNKCCFGjhwpOnXqVOR8Tp8+LZydncW9e/eUwxISEkRERIRYt26dACCOHz8uIiIixKNHj1Tee+jQIQFAXLlypch59+zZU6xatUr5uiw/461btwp9fX2xYcMGceXKFTFlyhRhYmJS4pmAr54Vl5GRIR4+fKh8/fXXX5d6Vp25ublISEgQ8fHxyp+Tk5OTaNSokYiPj1dOW9S/lVGjRglDQ8MSz6rLz88X7777rjA0NBQLFiwQ4eHhIiYmRoSGhorevXsLCwsL5Xur8qy6c+fOCR0dHREYGCiuX78uNm3aJIyMjERQUJDyPX5+fsLOzk75++To0aNi27ZtQgghvvnmG2Fubi72798vrl+/LubOnSvMzc1V8vOsuvJTdwdgcSLJZWZmipkzZ4p27doJhUIhjI2NhbOzs5g7d67yj7gQQuzatUs0btxY6OnpKX9xx8TEiB49eggjIyNhZ2cnvv/+e+Hh4VFqcRJCiHXr1gk7Ozuho6NT7OUICvIFBgaK5s2bCyMjI2Fvby/8/PxEQkJCkdOX9Itt27Ztonv37sLMzEyYmJiIVq1aicDAQOUv3oJf5kePHi02j4eHR6HLKQAQvr6+KtP9/vvvwtnZWejr64tmzZqJP//8U2V8UfMAoPwlX5ClqEdJ+YQQ4tGjR+L9998XZmZmwszMTLz//vuFTsMv7nvExMSUOO/Q0FDRtm1bYWBgIBwcHMSaNWtUxheXu6SfsRBCXLx4UXTr1k3I5XJhbW0tAgICCl2K4OnTp8LIyEj8+OOPRc6j4A/py99h/vz5JS7nAsOHDxfu7u7F5rO3ty90+YvSfsZCCPG///1P2NvbCwMDA9GuXbsSLzchRPGXEyhQluJU8B1lMplQKBSiY8eOIjAwsNDv4KL+rcTGxgq5XF5icRJCiLy8PLF27VrRqVMnYWJiIgwMDESjRo3EuHHjVMqnVJcj0NfXFw0bNhTLly9Xec/z58/F1KlThY2NjfJyBBs3bhRCvPhd4+fnJxQKhahVq5aYMGGCmDlzJovTa1J3B5AJ8dIO2BoqNTUVCoUCKSkpJZ4NRERERDWLujsAj3EiIiIiKiMWJyIiIqIyYnEiIiIiKiMWJyIiIqIyYnEiIiIiKiMWJw2iBSdAEhERVWssThpACIFt27ahY8eOSEtLkzoOERGR1mJx0gBZWVmYNWsWzp49i4ULF0odh4iISGuxOGkAQ0NDTJ8+HQAK3TONiIiIqg6Lk4aoXbs2ABS68zYRERFVHRYnDVFwYHhxdxUnIiKiyse/whri4cOHAABdXV2JkxAREWkvFicNkJ2dja+//hoA4O3tLXEaIiIi7cXipAGCgoJw584dWFtbY/z48VLHISIi0losThpg1apVAIDExEQYGRlJnIaIiEh7sThpgK5duyqfX716VcIkRERE2o3FSQOsXbsW3bt3BwCEhIRInIaIiEh7sThpiH79+gFgcSIiIpISi5OGKDibLjQ0FNnZ2RKnISIi0k4sThqiZcuWqFu3LtLT0xEWFiZ1HCIiIq3E4qQhdHR00LJlSwDA5cuXJU5DRESknVicNERmZqZyS1Pnzp0lTkNERKSdWJw0xOHDh5GRkQE7Ozu0bdtW6jhERERaicVJQ/z1118AgL59+0Imk0mchoiISDuxOGmI06dPAwAeP34scRIiIiLtxeKkITw9PQGAlyIgIiKSEIuThii4jlNsbKy0QYiIiLQYi5OGcHR0BMDiREREJCUWJw1hb28PAHj69CmePn0qbRgiIiItxeKkIUxMTFCnTh0A3OpEREQkFRYnDZGfnw9jY2MAQHx8vMRpiIiItBOLk4b44YcfcOfOHZiZmaF9+/ZSxyEiItJKLE4aIDc3F7NmzQIA9OvXD/Xq1ZM4ERERkXZicdIAQgjlweEnT55EXl6exImIiIi0k2TFKTY2FmPGjIGjoyOMjIzg5OSE+fPnF7rAo0wmK/RYu3atRKmloa+vj9DQUCgUCty9exf79u2TOhIREZFWkqw4Xbt2Dfn5+fjhhx9w+fJlfP3111i7di1mz55daNqgoCAkJCQoH76+vhIkllbt2rUxduxYAMDq1aslTkNERKSdZEIIIXWIAsuXL8eaNWtw+/Zt5TCZTIbg4GAMHDiwwvNNTU2FQqFASkoKzM3N1ZBUGtHR0WjSpAlkMhlu3rwJJycnqSMRERFVa+ruANXqGKeUlBRYWFgUGu7v7w8rKyt06NABa9euRX5+fonzycrKQmpqqsqjJmjcuDG8vLwghMDvv/8udRwiIiKtoyd1gAK3bt3CqlWr8NVXX6kM/+KLL9CrVy8YGRnh8OHDmD59Oh4+fIi5c+cWO68lS5ZgwYIFlR1ZEgUbCGvVqiVtECIiIi2k9l11AQEBpZaWM2fOwNXVVfk6Pj4eHh4e8PDwwPr160t871dffYXAwECkpKQUO01WVhaysrKUr1NTU2FnZ6fxu+ry8vJQu3ZtpKWlITIyEq1bt5Y6EhERUbWm7l11at/i5O/vj2HDhpU4jYODg/J5fHw8evToATc3N/z444+lzr9z585ITU1FUlJSsdczksvlkMvl5cqtCa5cuYK0tDSYmJjgjTfekDoOERGR1lF7cbKysoKVlVWZpr1//z569OiB9u3bIygoCDo6pR9yFRERAUNDQ63cVRUeHg4A6NChA/T0qs1eViIiIq0h2V/f+Ph4eHp6omHDhlixYgUePHigHGdtbQ0A2L17NxITE+Hm5gYjIyMcPXoUc+bMwUcffVQjtyiV5rvvvgMAhIaGShuEiIhIS0lWnA4ePIjo6GhER0ejQYMGKuMKDrvS19fH6tWrMW3aNOTn56NRo0YIDAzEpEmTpIgsOWtra1y6dAnAi912Li4uEiciIiLSLtXqOk6VpaZcx+nhw4do0qQJnj59ioEDByI4OFjqSERERNVajb6OE5XMysoKp06dgo6ODnbu3IlTp05JHYmIiEirsDhpmObNm2PQoEEAgKVLl0qchoiISLuwOGmYkJAQ7Nq1CwB4SQIiIqIqxuKkQf79918MGjQIOTk5GDJkCBYuXCh1JCIiIq3C4qQhrly5gj59+iA9PR1eXl74+eefoaurK3UsIiIircLipAEyMjLg4+ODx48fAwB27NihldexIiIikhqLkwZIS0vDvXv3AABvvvkmTE1NJU5ERESknVicNEC9evWwbNkyAOCtVoiIiCTE4qQhGjduDAB49uyZxEmIiIi0F4uThijYPZeWliZxEiIiIu3F4qQhWJyIiIikx+KkIaytrQEA9+7dQ3Z2tsRpiIiItBOLk4ZwdHRErVq1kJ2djcuXL0sdh4iISCuxOGkImUwGV1dXAMDZs2clTkNERKSdWJw0CIsTERGRtFicNEi9evUAAA8fPpQ4CRERkXZicdIgBcc2ubi4SJyEiIhIO7E4aZCLFy8CAFq2bClxEiIiIu3E4qQh8vPzlVucWrVqJXEaIiIi7cTipCFiYmKQnp4OuVyuvP0KERERVS0WJw1RcEC4tbU1b/RLREQkERYnDWFoaAgAyMrKkjgJERGR9mJx0hBGRkYAgOfPn0uchIiISHuxOGkIFiciIiLpsThpiIJdddnZ2cjLy5M4DRERkXZicdIQBVucACAzM1PCJERERNqLxUlDsDgRERFJj8VJQ+jq6iqf8zgnIiIiabA4aYiMjAzl82fPnkmYhIiISHuxOGmII0eOKJ/zyuFERETSYHHSEHv27AEATJo0iVcOJyIikgiLkwYQQiiLU79+/SROQ0REpL1YnDRAZGQk7t+/DxMTE3h6ekodh4iISGuxOGmA6OhoAICFhYXK2XVERERUtVicNIC3tzesrKxw9+5d/Pjjj1LHISIi0losThpAoVAgMDAQADB//nw8ffpU2kBERERaisVJQ4wdOxYA8OjRIyxatEjiNERERNqJxUlD/Pzzz8rnW7ZskTAJERGR9mJx0hCHDx8GAHTq1Alr1qyROA0REZF24pUUNcSZM2cAAAEBAejdu7fEaYiIiLQTtzhpgKdPn+LmzZsAAFdXV4nTEBERaS8WJw1w9uxZAICjoyOsrKwkTkNERKS9WJw0wOPHjwEA+fn5yMnJkTgNERGR9mJx0gB9+/ZF3bp1cefOHWzcuFHqOERERFqLxUkDmJiYYO7cuQCAwMBAPH/+XOJERERE2onFqZoTQiAwMBD79u0DAMTHx2Pt2rUSpyIiItJOvBxBNZeUlIT58+erDCu46S8RERFVLW5xquasra3RuXNnAC9u9rtv3z6sWLFC4lRERETaicVJA0yfPh0AcP78eXh4eMDIyEjiRERERNqJxUkDDBw4EA4ODnj48CF++eUXqeMQERFpLRYnDaCnp4fJkycDAFatWiVxGiIiIu3F4qQh3nvvPQDA5cuXkZeXJ3EaIiIi7cTipCHq1asHHR0d5OfnIzk5Weo4REREWonFSUPo6uqibt26AIDExESJ0xAREWknSYuTg4MDZDKZymPmzJkq08TFxaF///4wMTGBlZUVPv30U2RnZ0uUWDrBwcHKwpSQkCBxGiIiIu0k+QUwAwMDMW7cOOVrU1NT5fO8vDz07dsXderUwcmTJ/Ho0SP4+vpCCKFVB0kLITB8+HDl66ysLAnTEBERaS/Ji5OZmRmsra2LHHfw4EFcuXIFd+/eha2tLQDgq6++gp+fHxYtWgRzc/OqjCoZmUyGPn36YOfOnQAAHx8faQMRERFpKcmPcVq2bBksLS3Rpk0bLFq0SGU3XFhYGFq0aKEsTcCL0pCVlYVz585JEVcyBTf51dXV5a46IiIiiUhanCZPnoytW7fi6NGj8Pf3xzfffIOJEycqxycmJqJevXoq76lduzYMDAxKPEA6KysLqampKg9N1759e/Tp0wd5eXlYtmyZ1HGIiIi0ktqLU0BAQKEDvl99nD17FgAwdepUeHh4oFWrVhg7dizWrl2LDRs24NGjR8r5yWSyQp8hhChyeIElS5ZAoVAoH3Z2dur+mpKYPXs2AGDTpk3Izc2VOA0REZH2UfsxTv7+/hg2bFiJ0zg4OBQ5vOBmttHR0bC0tIS1tTVOnz6tMs2TJ0+Qk5NTaEvUy2bNmoVp06YpX6emptaI8mRoaAjgxQH0OjqS72UlIiLSOmovTlZWVrCysqrQeyMiIgAANjY2AAA3NzcsWrQICQkJymEHDx6EXC5H+/bti52PXC6HXC6vUIbqLCwsDMCLgsniREREVPUkO6suLCwM4eHh6NGjBxQKBc6cOYOpU6diwIABaNiwIQDA29sbLi4uGDVqFJYvX47Hjx9jxowZGDdunNacUfeyU6dOAQDc3d0lTkJERKSdJCtOcrkc27Ztw4IFC5CVlQV7e3uMGzcOn332mXIaXV1d/P3335g4cSK6dOkCIyMjjBgxAitWrJAqtmQeP36MrVu3AnixJY6IiIiqnkwIIaQOUdlSU1OhUCiQkpKisVuq2rVrp9yVmZqaCjMzM4kTERERVX/q7gA8UEZDpKWlAQBGjx7N0kRERCQRFicNUXAmYvfu3aUNQkREpMVYnDSEo6MjACAmJkbiJERERNqLxUlDFGxx2rZtG7Zu3YrMzExpAxEREWkhFicN0b17d+jq6uLatWsYPnw4bGxsMGnSJJw7dw5acHw/ERFRtcDipCG6du2KGzduYN68ebCzs8PTp0+xevVquLq6ok2bNvjmm2/w4MEDqWMSERHVaLwcgQbKy8vDkSNHsHHjRgQHByMrKwsAoK+vj/79++PDDz9E7969oacn2WW6iIiIqgV1dwAWJw335MkTbNmyBRs3bsS5c+dUxhkbG2P//v1wcnJC3bp1WaSIiEjrsDhVQE0uTi+7ePEigoKCsG7dOqSnp6uMk8lkqFu3LqytrWFjYwMbG5tinxsbG0v0DYiIiNSLxakCtKU4FcjOzkbz5s1x+/ZtAICOjg7y8/PL/H4zM7NSy5W1tTUsLS0hk8kq62sQERG9NnV3AO67qYEMDAxw69Yt5eu8vDw8fPgQCQkJSEhIQGJiYpHPExIS8Pz5c6SlpSEtLQ03btwo8XP09fVhbW1d6lasevXqwcDAoLK/NhERUaXjFidSEkIgLS2txHJV8PzRo0flmrelpWWpW7BsbGxgZmbGrVhERKQ23FVXASxO6pednY2kpKRSt2IlJiYiNze3zPM1NjaGjY0NGjZsCEdHR5WHg4MDrK2toaPDq2gQEVHZsDhVAIuTdPLz8/H48eMybcUquJFxSeRyORwcHFTK1MvlysLCglusiIhIicWpAlicNEN6ejoSExMRHx+P2NhYxMTEKP8bExODu3fvlnqQu5mZWaEy9XLBMjMzq6JvQ0RE1QGLUwWwONUMOTk5uHv3bqFCVfBITEwsdR6WlpZFFipHR0fY29vD0NCwCr4JERFVFRanCmBx0g7Pnz/HnTt3ChWqgqL1+PHjUudha2tb7BYrOzs7XkSUiEjDsDhVAIsTAUBKSkqhLVUvv371oqGv0tXVhZ2dHRwcHGBvb6/yaNiwIezs7LjFioiommFxqgAWJyqNEAIPHz4sslDFxMTgzp07yM7OLnU+1tbWaNiwYaFSVfC8Vq1alf9liIhIicWpAlic6HXl5+cjISFBWaru3LmDO3fuIC4uTvn8+fPnpc7H3Ny8xGLFyy0QEakXi1MFsDhRZRNC4NGjR8oS9WqpiouLw8OHD0udj76+Puzs7IosVQ0bNkTDhg0hl8ur4BsREdUMLE4VwOJE1UF6ejri4uJUCtXLBev+/fvIy8srdT7W1taFSpW9vT0cHR3RuHFjHmdFRPQSFqcKYHEiTZCbm4v4+Phit1jduXMHGRkZJc5DR0cHDg4OaNasGZo1awZnZ2fl8zp16vDioESkdVicKoDFiWqCl3cHFlWqoqOjkZKSUuz7a9WqVahQOTs7w8nJiTdhJqIai8WpAlicSBsIIZCUlITr16/j2rVryv9eu3YNsbGxKO6fuq6uLpycnFTKVEHBsrS0rOJvQUSkXixOFcDiRNru+fPniI6OLlSorl+/jmfPnhX7PktLyyK3UjVq1IgXAyUijcDiVAEsTkRFE0IgPj6+UJm6du0a4uLiSn3/5cuX4eLiUgVJiYgqhsWpAliciMovPT0dN2/eLFSoIiMjVabr1KkTBg0ahEGDBqFp06bShCUiKgaLUwWwOBGpT05ODqZMmYKNGzciMzNTZVzz5s0xcOBADBo0CK6urjyLj4gkx+JUASxORJUjISEBu3btQnBwMI4cOYKcnBzluPr162PgwIEYOHAgPDw8oK+vL2FSItJWLE4VwOJEVPlSUlKwd+9e7Ny5E3v37lU56LxWrVro168fBg0aBB8fH5iYmEiYlIi0CYtTBbA4EVWtzMxMHDlyBMHBwfjrr7/w4MED5ThDQ0NMnz4dCxYsgK6uroQpiUgbsDhVAIsTkXTy8vIQFhaGnTt3Ijg4GLdv3wYAeHl54bfffoOVlZXECYmoJmNxqgAWJ6LqQQiBbdu2YcyYMcjIyIC9vT127NiBdu3aSR2NiGoodXcAHTVkIiIqE5lMhmHDhuH06dNo3Lgx7ty5A3d3d2zatEnqaEREZcLiRERVrkWLFjhz5gz69++PrKwsfPjhhxg7diz27NmDS5cuIT8/X+qIRERFYnEiIknUqlULO3fuRGBgIGQyGTZs2ID+/fujZcuW6NChA44ePSp1RCKiQliciEgyOjo6mDdvHg4cOIDBgwejXbt2MDIywvnz59GzZ0/0798fV69elTomEZESixMRSc7Lywt//vknzp07h9jYWEyaNAm6urrYs2cPWrZsiQkTJiApKUnqmERELE5EVL3UrVsX33//PS5fvoyBAwciLy8Pa9euRePGjbFw4UJkZGRIHZGItBiLExFVS87OzggODsaxY8fQoUMHPHv2DPPmzUOTJk0wb948nD59mgeRE1GV43WciKjay8/Px7Zt2zBr1izcuXNHObxu3bp466230L9/f3h5ecHMzEzClERUHfECmBXA4kRUM2RmZuL333/H7t27ceDAAaSmpirH6evrw9PTE/3790e/fv3g6OgoYVIiqi5YnCqAxYmo5snOzsbJkyexZ88e7N69G9HR0SrjXVxc0K9fP/Tv3x+dO3eGnp6eREmJSEosThXA4kRU812/fh179uzBnj17cOLECeTl5SnHWVhYwNPTE126dMFHH30EU1NTCZMSUVVicaoAFici7fLkyRMcOHAAkydPRnJyssq47t2749ixYxIlI6KqxnvVERGVonbt2hg2bBg++OCDQuN4Q2Eieh0sTkRUYwUEBODTTz+FTCYDAFhaWqJt27bQgg3tRFRJWJyIqMYyMTHBt99+i/DwcLRs2RKPHj2Cr68vvL29cevWLanjEZEGYnEiohqvY8eOOHfuHJYsWQJDQ0McOnQILVq0wH//+1/89NNPuHfvntQRiUhD8OBwItIq0dHR+Pjjj3HkyBHlMAcHB9y+fVu5S4+Iag4eHE5E9BoaN26MQ4cO4bfffoOvry8AIDY2Fg8fPpQ4GRFpAhYnItI6MpkMw4cPx6ZNm9CwYUMAwI0bNyRORUSagMWJiLSas7MzgBcX0CQiKg2LExFpNQcHBwDAli1bpA1CRBpBsuIUGhoKmUxW5OPMmTPK6Yoav3btWqliE1EN06lTJwDAoUOHcPz4cYnTEFF1J9lZddnZ2Xj8+LHKsHnz5uHQoUMqZ7fIZDIEBQWhd+/eyukUCgWMjIzK/Fk8q46IipOVlQVDQ0MAgLGxMfbt24fu3btLnIqI1KXGnFVnYGAAa2tr5cPS0hK7du3C6NGjC50SXKtWLZVpy1OaiIhKIpfLkZGRAW9vb2RkZKBPnz7c8kRExao2xzjt2rULDx8+hJ+fX6Fx/v7+sLKyQocOHbB27Vrk5+dXfUAiqrGMjIywc+dOliciKlW1KU4bNmyAj48P7OzsVIZ/8cUX+P3333Ho0CEMGzYM06dPx+LFi0ucV1ZWFlJTU1UeREQlKao8hYWFSR2LiKoZtRengICAYg/6LnicPXtW5T337t3DgQMHMGbMmELzmzt3Ltzc3NCmTRtMnz4dgYGBWL58eYkZlixZAoVCoXy8WsaIiIpSUJ68vLyQkZGBvn374tKlS1LHIqJqRO0Hhz98+LDUK/A6ODgoD8YEXmxVWrVqFe7fvw99ff0S3/vPP/+ga9euSExMRL169YqcJisrC1lZWcrXqampsLOz48HhRFQm6enp8PLyQlhYGGxsbHDy5Ek0atRI6lhEVAHqPjhcTw2ZVFhZWcHKyqrM0wshEBQUhA8++KDU0gQAERERMDQ0RK1atYqdRi6XQy6XlzkDEdHLTExMsGfPHnh4eODSpUvw9vbGyZMnYW1tLXU0IpKY2otTeR05cgQxMTFF7qbbvXs3EhMT4ebmBiMjIxw9ehRz5szBRx99xGJERJXKwsICBw8eRJcuXXDr1i14enri2LFjxW7pJiLtIPnB4Rs2bIC7uzuaN29eaJy+vj5Wr14NNzc3tGrVCt9++y0CAwPx1VdfSZCUiLSNjY0NQkJCALy4JYu1tTWmTp2KK1euSJyMiKQi2QUwqxIvgElEr2Pv3r34+OOPce/ePeUwd3d3jBs3DkOGDIGJiYmE6YioJDXmAphERJrirbfeQmxsLP7++28MHDgQurq6OHXqFD788EPY2tpiwoQJOH/+vNQxiagKcIsTEVE5JSQkYNOmTVi/fj1u376tHN6uXTuMGzcOI0aM4O8aompC3R2AxYmIqILy8/MRGhqKdevWYceOHcjOzgbw4p53w4cPx5w5c+Do6ChxSiLtxl11RETVhI6ODnr27IktW7bg/v37WLlyJZo3b46MjAxs2LABzZo1w4wZM/DkyROpoxKRmrA4ERGpgZWVFaZOnYrLly/jxIkT6NWrF7Kzs/HVV1/ByckJK1euVLkwLxFpJhYnIiI1kslk6Nq1K0JCQrB37160aNECT548wfTp09G8eXNs27YNWnCEBFGNxeJERFQJZDIZ+vTpg8jISKxfvx42NjaIiYnBsGHD0LlzZxw/fpwFikgD8eBwIqIqkJ6ejq+++gpffvkl0tPTAQCmpqZ444034OXlhd69e6NTp07Q05P8hg5ENQrPqqsAFiciqi4SExMxf/58BAUFIScnR2WcQqHAm2++id69e8PHxwd2dnYSpSSqOVicKoDFiYiqm6ysLMTExCA8PBz79+9HSEgIHj9+rDKNi4uLskR1794dhoaGEqUl0lwsThXA4kRE1V1eXh7Onj2L/fv348CBAzh9+jTy8/OV442MjODp6QkfHx/07t0bTZs2hUwmkzAxkWZgcaoAFici0jSPHz/GoUOHcODAAezfvx/x8fEq4x0cHODj4wMvLy+4u7vDxsZGoqRE1RuLUwWwOBGRJhNC4PLly9i/fz/279+PEydOKK9SXqBhw4bo1KkTOnfujM6dO6Ndu3bctUcEFqcKYXEiopokPT0doaGh2L9/P44fP45Lly6p7NYDAH19fbRp0wadO3dWFqpGjRpx9x5pHRanCmBxIqKaLC0tDWfPnsXp06cRHh6OsLAwJCcnF5rOyspKuUWqc+fO6NChA38nUo3H4lQBLE5EpE2EELhz5w7Cw8MRHh6O06dP4/z584V278lkMri4uKiUqebNm0NXV1ei5ETqx+JUASxORKTtsrKyEBkZqSxT4eHhiI2NLXLaZcuW4bPPPqvagESVhMWpAliciIgKS0pKUu7eW7Jkicq4O3fuoGHDhhIlI1IfdXcA3quOiEhL1atXDwMGDMDixYuRk5ODUaNGKce5uLhg+fLlha5uTqTtWJyIiAh6enr46aefEBUVha5duyI9PR2fffYZ2rVrh5MnT0odj6jaYHEiIiKlFi1a4NixY9i4cSMsLS1x6dIldOvWDWPGjMHDhw+ljkckORYnIiJSoaOjgw8//BDXr1/H2LFjAQAbN25Es2bNcO7cOYnTEUmLxYmIiIpkaWmJdevW4Z9//kHLli3x6NEjDBgwAPfv35c6GpFkWJyIiKhE7u7uOHHiBFxcXBAfH48BAwYgPT1d6lhEkmBxIiKiUikUCuzZswdWVlY4f/48Ro0aVeg2L0TagMWJiIjKxNHRETt37oRMJkNwcDBmz54tdSSiKscLYBIRUbkYGxvj+fPnAICEhARYW1tLnIioeLwAJhERSWr16tXK5+PHj+fxTqRVWJyIiKhc/Pz88Ntvv0Eul+Ovv/6Ch4cHEhISpI5FVCVYnIiIqNyGDx+Ow4cPw8rKCufOnUOnTp0QFRUldSyiSsfiREREFdKlSxeEh4fD2dkZd+/eRZcuXbB//36pYxFVKhYnIiKqMCcnJ5w6dQqenp5IS0tDv379sGbNGqljEVUaFiciInotFhYWOHDgAHx9fZGXl4eJEydi+vTpyMvLkzoakdqxOBER0WszMDBAUFAQFi5cCABYuXIl3nnnHZ5xRzUOixMREamFTCbDnDlzsGXLFpUz7u7duwctuGQgaQkWJyIiUqthw4bhyJEjyjPu7OzsYGBgAAsLCzRp0gT/+9//WKRIY7E4ERGR2rm7uyM8PBxt2rQBAOTm5uLJkyeIjo6Gv78//P39kZubK21IogpgcSIiokrh5OSE8+fPIyUlBXfv3sWVK1ewePFiyGQyrF69Gv3790dqaqrUMYnKRU/qAEREVHPJZDKYm5sr7xHWvHlzODs7Y+TIkdi/fz+6du2KPXv2oGHDhhInJSobbnEiIqIqNXjwYBw7dgzW1taIioqCvb09wsPDpY5FVCYsTkREVOU6dOiA7t27K1+/+eabePLkiYSJiMqGxYmIiCRhaGiofN6sWTMYGRlJmIaobFiciIhIEn5+fgAAU1NTHD16VKVIEVVXLE5ERCQJT09PNG3aFM+ePcOWLVukjkNUJixOREQkCZlMho8++ggA8OOPP0qchqhsWJyIiEgyvr6+MDAwwLlz5/Dll1/yiuJU7bE4ERGRZKysrDB79mwAwH//+198+umnyMvLkzgVUfFYnIiISFLz58/HypUrIZPJ8P333+Pdd99FRkaG1LGIisTiREREkps6dSq2bdsGuVyOnTt3olevXnj48KHUsYgKYXEiIqJqYciQIQgJCQEAhIeHo06dOoiJiZE4FZEqFiciIqo2unTpovJ64cKFEiUhKhqLExERVRs6Ojro2rWr8nXB5QqIqgsWJyIiqlbWrl0LfX19AMDdu3clTkOkisWJiIiqlTfeeAMzZ84EAPj7+/Pmv1StsDgREVG1M2fOHDRr1gxJSUn47LPPpI5DpFSpxWnRokVwd3eHsbExatWqVeQ0cXFx6N+/P0xMTGBlZYVPP/0U2dnZKtNERUXBw8MDRkZGqF+/PgIDA3l1WSKiGkwul2PdunUAgKCgIMTHx0uciOiFSi1O2dnZGDJkCCZMmFDk+Ly8PPTt2xfp6ek4efIktm7dij///BPTp09XTpOamgovLy/Y2trizJkzWLVqFVasWIGVK1dWZnQiIpJY165d0a1bN+Tl5WHDhg1SxyECAMhEFWy62bRpE6ZMmYKnT5+qDN+3bx/69euHu3fvwtbWFgCwdetW+Pn5ITk5Gebm5lizZg1mzZqFpKQkyOVyAMDSpUuxatUq3Lt3DzKZrNTPT01NhUKhQEpKCszNzdX+/YiIqHL8+uuvGDlyJOzs7BATEwNdXV2pI5GGUXcHkPQYp7CwMLRo0UJZmgDAx8cHWVlZOHfunHIaDw8PZWkqmCY+Ph6xsbFFzjcrKwupqakqDyIi0jzvvPMOLCwscPfuXezfv1/qOETSFqfExETUq1dPZVjt2rVhYGCAxMTEYqcpeF0wzauWLFkChUKhfNjZ2VVCeiIiqmyGhobw9fUFAPTr1w9r165Ffn6+xKlIm5W7OAUEBEAmk5X4OHv2bJnnV9SuNiGEyvBXpynYu1jcbrpZs2YhJSVF+eB1QIiINNeECRNgYGCgfO7u7o4LFy5InIq0lV553+Dv749hw4aVOI2Dg0OZ5mVtbY3Tp0+rDHvy5AlycnKUW5Wsra0LbVlKTk4GgEJbogrI5XKVXXtERKS5mjRpgps3b2L79u0IDAzE6dOn0b59e0ydOhUBAQEwMTGROiJpkXJvcbKyskKzZs1KfBgaGpZpXm5ubrh06RISEhKUww4ePAi5XI727dsrpzl+/LjKJQoOHjwIW1vbMhc0IiLSbA0bNsSMGTNw9epVvPvuu8jLy8OKFSvg4uKCPXv2SB2PtEilHuMUFxeHyMhIxMXFIS8vD5GRkYiMjMSzZ88AAN7e3nBxccGoUaMQERGBw4cPY8aMGRg3bpzyyPcRI0ZALpfDz88Ply5dQnBwMBYvXoxp06aV6Yw6IiKqOerXr4/ff/8de/bsgb29vfJagO+88w7u378vdTzSBqIS+fr6CgCFHkePHlVOc+fOHdG3b19hZGQkLCwshL+/v8jMzFSZz8WLF0W3bt2EXC4X1tbWIiAgQOTn55c5R0pKigAgUlJS1PXViIhIYs+ePROfffaZ0NXVFQCEmZmZuHjxotSxqJpRdweokus4SY3XcSIiqrkuXryIt99+G7GxsVi3bh3Gjh0rdSSqRmrUdZyIiIheV6tWreDk5AQAMDIykjgN1XQsTkREpPGeP38OADA2NpY4CdV0LE5ERKTxnjx5AoDFiSofixMREWm0S5cu4erVqwC4q44qH4sTERFptLy8POXzkJAQCZOQNmBxIiIijda6dWt8++23AICFCxfizz//lDgR1WQsTkREpPE+/fRT+Pv7AwBGjhyJf//9V+JEVFOxOBERUY3w9ddf46233kJmZib69++P2NhYqSNRDcTiRERENYKenh62bt2K1q1bIzk5GRMnTpQ6EtVALE5ERFRjmJmZ4b333gOAMt9wnqg8WJyIiKhGCQ0NBQD06NFD2iBUI7E4ERFRjZGdnY1//vkHAIsTVQ4WJyIiqjH+/fdfZGRkQEdHB3v27MGvv/6K7OxsqWNRDaIndQAiIiJ1iYuLAwDk5+dj1qxZAICcnBz4+flJmIpqEm5xIiKiGuPtt9/G8uXL4e/vD3NzcwCAqampxKmoJpEJIYTUISpbamoqFAoFUlJSlP+QiIio5srJyYGZmRmysrIQHR0NJycnqSORRNTdAbjFiYiIapxr164hKysL5ubmcHR0lDoO1SAsTkREVONEREQAANq0aQMdHf6pI/Xh2kRERDXO3bt3Aby4ICaROrE4ERFRjdO/f38AwN69e3HlyhWJ01BNwuJEREQ1TqtWrTB48GAIIfDFF19IHYdqEBYnIiKqkT7//HMAwLZt27jVidSGxYmIiGqk1q1bY9CgQRBCYNy4cXj+/LnUkagGYHEiIqIaq2Cr06lTp/DTTz9JnIZqAhYnIiKqsdq0aYP33nsPAHD27FmJ01BNwOJEREQ12rvvvgsAuHDhgsRJqCZgcSIiohqtdevWAIBLly4hLy9P4jSk6ViciIioRnNycoKxsTGeP3+OGzduSB2HNByLExER1Wi6urro2LEjAGD16tUSpyFNx+JEREQ1XsHZdWvWrOE1nei1sDgREVGN16NHDwwcOBB5eXmYPn261HFIg7E4ERGRVli+fDn09fWxf/9+7N27V+o4pKFYnIiISCs0btwYkydPBvDiJsB2dnZYtWoVhBASJyNNwuJERERaY+7cuXByckJ+fj7u3buHTz/9FB999BGys7OljkYagsWJiIi0hkKhwPXr13H//n0sX74cOjo6WL9+Pd588008ePBA6nikAViciIhIq+jq6sLW1hYzZszAnj17YG5ujhMnTqBjx46IioqSOh5VcyxORESktfr06YPw8HA4OTkhNjYW7u7u2LVrl9SxqBpjcSIiIq3WvHlz/PnnnwCAZ8+e4e2338a+ffskTkXVFYsTERFpvaNHj6q8Tk9PlygJVXcsTkREpPUK7mE3fvx4PHjwAO+++67Eiai6YnEiIiKtd/36dQBA586dYWVlJXEaqs5YnIiISOsVbHFq2rSpxEmoumNxIiIirZaRkYF79+4BAJydnSVOQ9UdixMREWm1jIwM5fNatWpJF4Q0AosTERFpNZlMpnzO+9ZRaViciIhIq71cnPLz8yVMQpqAxYmIiLQatzhRebA4ERGRVtPR+b8/hTk5ORImIU3A4kRERFrN3NwcdevWBQCcPXtW4jRU3bE4ERGRVpPJZOjVqxcA4NChQxKnoeqOxYmIiLSel5cXACAkJETiJFTdsTgREZHW8/T0BACcPn0aT58+lTQLVW8sTkREpPV+/vln5fPIyEjpglC1x+JERERar2fPnsrnCxYswPPnzyVMQ9UZixMREWm9rl274uDBgzAyMkJoaCj69euHZ8+eSR2LqqFKLU6LFi2Cu7s7jI2Ni7z/z4ULFzB8+HDY2dnByMgIzZs3x7fffqsyTWxsLGQyWaHH/v37KzM6ERFpGS8vLxw4cABmZmY4cuQIfHx8kJKSInUsqmYqtThlZ2djyJAhmDBhQpHjz507hzp16uCXX37B5cuXMWfOHMyaNQvff/99oWkPHTqEhIQE5ePlzapERETq0K1bNxw6dAi1atXCqVOn0KtXLzx+/FjqWFSNyEQVXF9+06ZNmDJlSpnOVJg0aRKuXr2KI0eOAHixxcnR0RERERFo06ZNhT4/NTUVCoUCKSkpMDc3r9A8iIhIe1y4cAFeXl548OABAgICMH/+fKkjUQWpuwNUu2OcUlJSYGFhUWj4gAEDULduXXTp0gV//PFHifPIyspCamqqyoOIiKisWrduja5duwIAateuLXEaqk6qVXEKCwvD9u3b8fHHHyuHmZqaYuXKlfjjjz+wd+9e9OrVC0OHDsUvv/xS7HyWLFkChUKhfNjZ2VVFfCIiqkFu3LgBAHB2dpY4CVUn5S5OAQEBRR6s/fKjIvf6uXz5Mt5++218/vnnyiu4AoCVlRWmTp2Kjh07wtXVFYGBgZg4cSK+/PLLYuc1a9YspKSkKB93794tdx4iItJeeXl5iI6OBgA0bdpU4jRUneiV9w3+/v4YNmxYidM4ODiUa55XrlxBz549MW7cOMydO7fU6Tt37oz169cXO14ul0Mul5crAxERUYG4uDhkZWVBJpMhIyND6jhUjZS7OFlZWcHKykptAS5fvoyePXvC19cXixYtKtN7IiIiYGNjo7YMREREL0tPTwcACCHQokULNG/eHIMHD8bgwYPRtm1byGQyiROSVMpdnMojLi4Ojx8/RlxcHPLy8pSXsW/cuDFMTU1x+fJl9OjRA97e3pg2bRoSExMBALq6uqhTpw4AYPPmzdDX10fbtm2ho6OD3bt347vvvsOyZcsqMzoREWmxN954A1u3bsVPP/2EkJAQXL16FYsWLcKiRYvg4OCgLFFubm7Q0alWhwtTJavUyxH4+flh8+bNhYYfPXoUnp6eCAgIwIIFCwqNt7e3R2xsLIAXxWnZsmW4c+cOdHV10bRpU0yZMgUjR44scw5ejoCIiCoqJSUFf//9N3bs2IF9+/ap7LqztrbGoEGDMHjwYHh4eEBfX1/CpFQUdXeAKrmOk9RYnIiISB0yMjJw4MAB7NixA7t371a5sriFhQUGDBiAwYMHw8vLC4aGhhImpQIsThXA4kREROqWnZ2NI0eOYMeOHdi5cycePHigHGdqaoq5c+fiv//9r4QJCWBxqhAWJyIiqkx5eXk4efIkduzYgR07duDevXuwtbXF/fv3pY6m9Wr8lcOJiIg0ja6uLjw8PPDtt9/i77//BgDk5+dLnIoqA4sTERERURmxOBERERGVEYsTERGRGvFK4zUbixMREZEa/fzzzwAAY2NjiZNQZWBxIiIiUqMTJ04AAMaPHy9xEqoMLE5ERERqkpiYiKioKADAhx9+KHEaqgwsTkRERGpy5MgRAEDbtm1hZWUlcRqqDCxOREREanLo0CEAwJtvvilxEqosLE5ERERqcu7cOQBA165dJU5ClYXFiYiISE1q1aoFAHj+/Lm0QajSsDgRERGpSf369QEA9+7dkzgJVRYWJyIiIjUpKE68uW/NxeJERESkJgXF6fbt2xInocrC4kRERKQmzZs3BwD89ddfGDp0KJKSkiROROrG4kRERKQm3t7emDVrFnR1dbF9+3Y0b94cGzduhBBC6mikJixOREREaiKTybB48WKcOXMG7dq1w5MnTzBmzBj06tULN2/elDoeqQGLExERkZq1bdsWp0+fxooVK2BkZISjR4+iVatWWLJkCXJycqSOR6+BxYmIiKgS6OnpYfr06bh06RK8vLyQmZmJ2bNnw9XVFdevX5c6HlUQixMREVElatSoEQ4cOID//e9/AICLFy9i8eLFEqeiimJxIiIiqmQPHjzAhg0bAACmpqb4+OOPJU5EFaUndQAiIqKa7M6dO/D29saNGzdgZWWFffv2wdXVVepYVEEsTkRERJXk8uXL8Pb2Rnx8PBo2bIiQkBA0bdpU6lj0GliciIiI1Oj27duIjIxEUlIS5syZgydPnsDFxQUHDx5UXlmcNBeLExERkZo8efIEzs7OyM3NVQ5zc3PDnj17YGFhIWEyUhceHE5ERKQm5ubm6Nixo/K1gYEBQkJCWJpqEBYnIiIiNdHV1cXhw4fh6+sLAMjOzsakSZOQmZkpcTJSFxYnIiIiNTI0NERQUBC+/vpr6OjoYPPmzfDw8EB8fLzU0UgNWJyIiIjUTCaTYcqUKThw4ABq166Nf//9F66urvj5558RFhamcgwUaRYWJyIiokry5ptv4syZM3jjjTeQkJCADz74AO7u7pg0aZLU0aiCWJyIiIgqkZOTE8LCwjB58mTo6b04mb127doSp6KKYnEiIiKqZGZmZhg+fDhyc3Ohr6+PTz75ROpIVEEsTkRERFVg+fLlAID333+fF8LUYCxORERElezGjRvYsWMHAGDGjBkSp6HXweJERERUyaZNmwYhBPr164c33nhD6jj0GliciIiIKlFKSgr27dsHAJg7d67Eaeh1sTgRERFVouPHjyM/Px9NmjRBp06dpI5Dr4nFiYiIqBIdPXoUANCjRw+Jk5A6sDgRERFVotDQUACAp6enpDlIPViciIiIKklqaioiIyMBANbW1tKGIbVgcSIiIqokBgYGaNSoEQCgX79++PXXXyVORK+LxYmIiKiSGBoaIjw8HF5eXsjIyMDIkSPxySefIDs7W+poVEEsTkRERJXIysoK+/btU16K4Pvvv4enpyfu3bsncTKqCBYnIiKiSqarq4svvvgCu3fvRq1atRAWFoZ27dopz7gjzcHiREREVAWCgoIwfPhwPH36FADw4MEDeHl54ebNm9IGo3JhcSIiIqoCBw8exLNnz5SvdXV10bRpU5iZmUmYisqLxYmIiKgKNGnSBAAwcuRIZGZmIicnB1euXOFlCjSMntQBiIiItEHz5s0BALGxsZDL5RKnoYriFiciIqIq0KxZMwDAtWvXJE5Cr4PFiYiIqAo8fPhQ+d+C56R5WJyIiIiqwP79+5XPTU1NJUxCr4PFiYiIqApYWVkBAIYMGQJDQ0OJ01BFVWpxWrRoEdzd3WFsbIxatWoVOY1MJiv0WLt2rco0UVFR8PDwgJGREerXr4/AwEAIISozOhERkVoVnD2XmpoqcRJ6HZV6Vl12djaGDBkCNzc3bNiwodjpgoKC0Lt3b+VrhUKhfJ6amgovLy/06NEDZ86cwY0bN+Dn5wcTExNMnz69MuMTERGpjY2NDQAgMTFR4iT0Oiq1OC1YsAAAsGnTphKnq1WrVrHXsfj111+RmZmJTZs2QS6Xo0WLFrhx4wZWrlyJadOmQSaTqTs2ERGR2hX8nbtw4QJCQ0Ph6ekpbSCqkGpxjJO/vz+srKzQoUMHrF27Fvn5+cpxYWFh8PDwULnmhY+PD+Lj4xEbGytBWiIiovJr3Lix8vkPP/wgYRJ6HZIXpy+++AK///47Dh06hGHDhmH69OlYvHixcnxiYiLq1aun8p6C18Vt7szKykJqaqrKg4iISEqmpqaYMGECAKB27doSp6GKKndxCggIKPKA7pcfZ8+eLfP85s6dCzc3N7Rp0wbTp09HYGAgli9frjLNq7vjCg4ML2433ZIlS6BQKJQPOzu7cn5LIiIi9cvJyQHwf8c7keYp9zFO/v7+GDZsWInTODg4VDQPOnfujNTUVCQlJaFevXqwtrYutGUpOTkZAAptiSowa9YsTJs2Tfk6NTWV5YmIiCRX8PeM96fTXOUuTlZWVsprUVSGiIgIGBoaKi9f4ObmhtmzZyM7OxsGBgYAXtxh2tbWttiCJpfLeR8gIiKqdhISEgCwOGmySj3GKS4uDpGRkYiLi0NeXh4iIyMRGRmJZ8+eAQB2796NdevW4dKlS7h16xbWr1+POXPm4KOPPlIWnxEjRkAul8PPzw+XLl1CcHAwFi9ezDPqiIhI4xRc+PKnn37i9Qg1lExU4k/Oz88PmzdvLjT86NGj8PT0xP79+zFr1ixER0cjPz8fjRo1wtixYzFp0iTo6f3fxrCoqChMmjQJ//77L2rXro3x48fj888/L3NxSk1NhUKhQEpKCszNzdX2/YiIiMrj1KlT8PT0RE5ODpYtW4bPPvtM6kg1nro7QKUWp+qCxYmIiKqLNWvWYOLEidDR0cH+/fvh5eUldaQaTd0dQPLLERAREWmT8ePH48MPP0R+fj6GDRvGaxJqGBYnIiKiKiSTybB69Wq4urri8ePHcHZ2xujRo1mgNASLExERURUzNDTEjh07ALy4r2tQUBC2b98ucSoqCxYnIiIiCVy6dEn53NLSEmPHjpUwDZUVixMREVEV++mnn9C/f38AL+6/GhsbCwsLC4lTUVmwOBEREVURIQSWL18OX19f5OXlYeTIkdi9ezdMTU2ljkZlVO4rhxMREVHZZWVlYfHixbh27Rri4+Nx8uRJAMCMGTOwbNky6OhwG4YmYXEiIiKqRCdOnEBgYKDKsBUrVmD69OkSJaLXweJERERUiQruhFGnTh2sWLECLVu2RNu2bSVORRXF4kRERFSJateuDeDF9Zs++OADidPQ6+KOVSIiokpUUJyePHnCG/vWACxORERElcjIyAgAkJOTg4yMDInT0OticSIiIqok2dnZ8PPzA/BiV11+fr60gei1sTgRERFVgtzcXIwcORJ79+6FkZERtm/fDjMzM6lj0WviweFERERqlp+fj3HjxuH333+HgYEBdu7cCW9vb6ljkRpwixMREZEaCSEwZcoUbNq0Cbq6uti6dStLUw3C4kRERKRGn3/+OVatWgUA2LRpEwYNGiRxIlInFiciIiI1uXXrFhYuXAgAWL16NUaOHClxIlI3FiciIiI12bNnDwDA09MTEyZMkDgNVQYWJyIiIjX5+++/AQD9+vWTOAlVFhYnIiIiNXj27BmOHTsGAOjbt6/Eaaiy8HIEREREr+Hq1asICQlBZGQksrOz4eTkBGdnZ6ljUSVhcSIiInoNvXv3RlxcnPJ1//79IZPJJExElYm76oiIiF7DsGHDlM89PDwwd+5cCdNQZWNxIiIieg1LlizBmDFjAAD//PMP/vnnH4kTUWVicSIiInoNOjo6+OGHHzBixAjk5uZiyJAhOHjwoNSxqJKwOBEREb0mXV1dbN68GYMHD0Z2djb69euH7777DllZWVJHIzVjcSIiIlIDPT09bNmyBc7OzsjJycHkyZMREBAgdSxSMxYnIiIiNRBC4KeffkJ0dLRyGK/nVPOwOBEREb2m5ORkDBw4EOPGjUNeXh48PDwQGxuLrl27Sh2N1IzFiYiI6DXs2bMHLVu2xK5du6Cvr48vv/wShw8fhr29vdTRqBLwAphEREQVcO3aNaxYsQIbNmwAALRo0QK//PILWrduLXEyqkwsTkREROV09OhReHt7Izc3FwAwbdo0LFq0CIaGhhIno8rG4kRERFQOeXl5mDx5MnJzc9GoUSOsW7cOPXv2lDoWVREWJyIionLYsGEDoqKiULt2bZw5cwYWFhZSR6IqxIPDiYiIyig1NRXz5s0DAAQEBLA0aSEWJyIiojJIS0vDRx99hOTkZDg7O2PChAlSRyIJcFcdERFRKTIzM9GkSRMkJSUBAPz8/KCvry9xKpICtzgRERGVQf369ZXPZ82ahc6dO2PDhg149uyZhKmoqrE4ERERlcLQ0BD//vsv9u3bh8GDB0NPTw+nT5/G2LFjYWNjg48//hhnz56FEELqqFTJZEILfsqpqalQKBRISUmBubm51HGIiEjDJSUlYdOmTVi/fr3KvenatGmDcePGYcSIEahVq5Z0AUlJ3R2AxYmIiKiChBAIDQ3F+vXr8eeffyIrKwsAYGRkhCFDhuCjjz5Cly5dJE6p3VicKoDFiYiIKtujR4/wyy+/YN26dbh8+bJy+CeffIJvvvkGOjo8OkYK6u4A/CkSERGpgaWlJSZPnoyoqCicOnUKfn5+AIBVq1ZhxIgRyq1RpNlYnIiIiNRIJpPBzc0NQUFB+O2336Cvr49t27ahX79+SEtLkzoevSYWJyIiokoyfPhw/P333zAxMcGhQ4fg6empvBYUaSYWJyIiokrk5eWF0NBQ1KlTB+fPn0fnzp1x+/ZtqWNRBbE4ERERVTJXV1ecPHkSABAbG4uePXsiJydH4lRUESxOREREVeDlW7RYWlpCV1dXwjRUUbxXHRERURW4evUqgBe3bjl79ixkMpnEiagiuMWJiIioChQUJ3d3d5YmDcbiREREVAWuXbsGAGjWrJnESeh1cFcdERFRJcnPz8eMGTNw5swZXLhwAQDQvHlziVPR62BxIiIiqiRJSUn4+uuvla8NDAzg7u4uYSJ6XdxVR0REVElsbGwwc+ZM5euNGzfC3t5ewkT0uiq1OC1atAju7u4wNjZGrVq1Co3ftGkTZDJZkY/k5GQAL653UdT4/fv3V2Z0IiIitVi0aBGGDRsGAJg4cSKioqIkTkSvo1J31WVnZ2PIkCFwc3PDhg0bCo0fOnQoevfurTLMz88PmZmZqFu3rsrwQ4cO4Y033lC+trCwqJzQREREaqSjo4NNmzYhPj4ex48fR9++fREeHg5bW1upo1EFVGpxWrBgAYAXW5aKYmRkBCMjI+XrBw8e4MiRI0WWLEtLS1hbW1dKTiIiosokl8sRHByMzp074+bNm+jTpw/CwsJgbGwsdTQqp2p1jNNPP/0EY2NjvPvuu4XGDRgwAHXr1kWXLl3wxx9/SJCOiIio4iwsLPDJJ58AAC5evIjjx49LnIgqolqdVbdx40aMGDFCZSuUqakpVq5ciS5dukBHRwe7du3C0KFDsXnzZowcObLI+WRlZSErK0v5OjU1tdKzExERleblw1B69OghYRKqqHJvcQoICCj2gO6Cx9mzZ8sdJCwsDFeuXMGYMWNUhltZWWHq1Kno2LEjXF1dERgYiIkTJ+LLL78sdl5LliyBQqFQPuzs7Mqdh4iISN0Kds117NgRcrlc4jRUEeXe4uTv7688O6A4Dg4O5Q6yfv16tGnTBu3bty912s6dO2P9+vXFjp81axamTZumfJ2amsryREREkisoThkZGRInoYoqd3GysrKClZWVWkM8e/YM27dvx5IlS8o0fUREBGxsbIodL5fL2eSJiKjaKShOjx49wvnz59GmTRvo6FSrw42pFJV6jFNcXBweP36MuLg45OXlITIyEgDQuHFjmJqaKqfbtm0bcnNz8f777xeax+bNm6Gvr4+2bdtCR0cHu3fvxnfffYdly5ZVZnQiIiK1MzMzAwAkJCSgffv28PDwwJ49e1T+JlL1VqnF6fPPP8fmzZuVr9u2bQsAOHr0KDw9PZXDN2zYgMGDB6N27dpFzmfhwoW4c+cOdHV10bRpU2zcuLHYA8OJiIiqKxcXF0ycOBHh4eG4evUqjh07ht69e2Pfvn3KUkXVm0wIIaQOUdlSU1OhUCiQkpICc3NzqeMQERHhzJkz8Pb2xtOnT+Hm5ob9+/fzb1QlUHcH4I5VIiIiCXTo0AGHDh1C7dq1ERYWBh8fH6SkpEgdi0rB4kRERCSR9u3b4/Dhw7CwsEB4eDi8vLzw9OlTqWNRCViciIiIJNS2bVscOXIEwIvdd61bt5Y4EZWExYmIiEhirVu3hpeXF4AXZ6Tfvn1b4kRUHBYnIiKiauD3339Ho0aNAADe3t5ISkqSOBEVhcWJiIioGlAoFDh58iQcHBxw69YtvPXWW0hLS5M6Fr2CxYmIiKiasLGxwcGDB1GnTh2cP38egwYNUrlpPUmPxYmIiKgaadKkCfbu3QsTExMcPnwYfn5+0IJLLmoMFiciIqJqxtXVFcHBwdDX18fWrVuxePFiqSPR/8fiREREVA15eXlh9erVAIB58+Zhz549EicigMWJiIio2ho7diwmTJgAIQTef/99XL9+XepIWo/FiYiIqBr75ptv0K1bN6SmpuLtt9/mbVkkxuJERERUjRkYGOD3339HgwYNcP36dfTt2xfR0dFSx9JaLE5ERETVXL169RAcHAy5XI5//vkHb7/9ttSRtBaLExERkQZwdXXFX3/9BQC4cuUKbt26JXEi7cTiREREpCF8fHzg6ekJANi3b5+0YbQUixMREZEGeeuttwAAe/fulTiJdmJxIiIi0iA+Pj4AgJCQEDx//lziNNqHxYmIiEhDZGVl4b333gMA5Obm4uzZsxIn0j4sTkRERBri5s2byotgdu/eHc7OzhIn0j56UgcgIiKisrl37x4AoGXLljh27JjEabQTtzgRERFpiPv37wMA6tevL3ES7cXiREREpCEKilODBg0kTqK9WJyIiIg0RHx8PABg06ZNsLGxweeffy5xIu3D4kRERKQhOnXqBF1dXeTm5iIxMRHLly9Hbm6u1LG0CosTERGRhvjwww+RkpKC2NhYmJiYIDMzkzf8rWIsTkRERBrExMQE9vb2aNmyJQDgwoULEifSLixOREREGqhVq1YAgIsXL0qcRLuwOBEREWkgFidpsDgRERFpIAcHBwD/d1FMqhosTkRERBro8ePHAAArKyuJk2gXFiciIiINlJSUBACoV6+exEm0C4sTERGRBkpOTgbA4lTVWJyIiIg0UMEWp6ioKKxatQp//vknsrOzJU5V8+lJHYCIiIjKr+CK4SEhIQgJCQEAbNiwAaNHj5YyVo3H4kRERKSBAgMDYWdnh/DwcBw7dgwymQyurq5Sx6rxuKuOiIhIAzk5OWHJkiXK3XMffvih8tpOVHlYnIiIiDTUH3/8gbCwMBgbG+OLL76QOo5WYHEiIiLSQFlZWfjvf/8LAPjss89ga2srcSLtwOJERESkgYKDgxETEwMAmDFjhsRptAeLExERkQaysbFRPjc2NpYwiXZhcSIiItJAL59Bl56eLmES7cLiREREpIGMjY2hr68PAHj69Km0YbQIixMREZEGkslkqFWrFgDgyZMn0obRIixOREREGqqgOA0ePBgZGRnShtESLE5EREQays3NDQAQHR2N6OhoidNoBxYnIiIiDTV79mwAgIGBAZydnSVOox14rzoiIiINcvToUdy4cQP5+fk4d+4cAKBjx46Qy+USJ9MOLE5EREQaJCgoCD///LPKsG7dukmURvuwOBEREWmQ9u3b49mzZ9DR0YGOjg4UCgU++eQTqWNpDZkQQkgdorKlpqZCoVAgJSUF5ubmUschIiKiKqLuDsCDw4mIiIjKiMWJiIiIqIxYnIiIiIjKiMWJiIiIqIwqrTjFxsZizJgxcHR0hJGREZycnDB//nxkZ2erTBcXF4f+/fvDxMQEVlZW+PTTTwtNExUVBQ8PDxgZGaF+/foIDAyEFhzTTkRERNVMpV2O4Nq1a8jPz8cPP/yAxo0b49KlSxg3bhzS09OxYsUKAEBeXh769u2LOnXq4OTJk3j06BF8fX0hhMCqVasAvDga3svLCz169MCZM2dw48YN+Pn5wcTEBNOnT6+s+ERERESFVOnlCJYvX441a9bg9u3bAIB9+/ahX79+uHv3LmxtbQEAW7duhZ+fH5KTk2Fubo41a9Zg1qxZSEpKUl4VdenSpVi1ahXu3bsHmUxW6ufycgRERETaSd0doEovgJmSkgILCwvl67CwMLRo0UJZmgDAx8cHWVlZOHfuHHr06IGwsDB4eHioXErex8cHs2bNQmxsLBwdHQt9TlZWFrKyslQ+F3ix8IiIiEh7FPztV9d2oiorTrdu3cKqVavw1VdfKYclJiaiXr16KtPVrl0bBgYGSExMVE7j4OCgMk3BexITE4ssTkuWLMGCBQsKDbezs3vdr0FEREQa6NGjR1AoFK89n3IXp4CAgCJLycvOnDkDV1dX5ev4+Hj07t0bQ4YMwdixY1WmLWpXmxBCZfir0xS0xuJ2082aNQvTpk1Tvn769Cns7e0RFxenloVWE6WmpsLOzg53797l7swScDmVjsuodFxGZcPlVDouo9KlpKSgYcOGKnu8Xke5i5O/vz+GDRtW4jQvbyGKj49Hjx494Obmhh9//FFlOmtra5w+fVpl2JMnT5CTk6PcqmRtba3c+lQgOTkZAAptrSogl8uLvEu0QqHgilUKc3NzLqMy4HIqHZdR6biMyobLqXRcRqXT0VHPhQTKXZysrKxgZWVVpmnv37+PHj16oH379ggKCioU2s3NDYsWLUJCQgJsbGwAAAcPHoRcLkf79u2V08yePRvZ2dkwMDBQTmNra1toFx4RERFRZaq06zjFx8fD09MTdnZ2WLFiBR48eIDExESVrUfe3t5wcXHBqFGjEBERgcOHD2PGjBkYN26csjmPGDECcrkcfn5+uHTpEoKDg7F48WJMmzatTGfUEREREalLpR0cfvDgQURHRyM6OhoNGjRQGVdwjJKuri7+/vtvTJw4EV26dIGRkRFGjBihvM4T8GL3WkhICCZNmgRXV1fUrl0b06ZNUzmGqTRyuRzz588vcvcdvcBlVDZcTqXjMiodl1HZcDmVjsuodOpeRlV6HSciIiIiTcZ71RERERGVEYsTERERURmxOBERERGVEYsTERERURnV+OK0evVqODo6wtDQEO3bt8eJEyekjlStBAQEQCaTqTysra2ljiWp48ePo3///rC1tYVMJsPOnTtVxgshEBAQAFtbWxgZGcHT0xOXL1+WJqyESltOfn5+hdatzp07SxNWAkuWLEGHDh1gZmaGunXrYuDAgbh+/brKNFyXyractH1dWrNmDVq1aqW8yKWbmxv27dunHM/1qPRlpM51qEYXp23btmHKlCmYM2cOIiIi0K1bN/Tp0wdxcXFSR6tW3njjDSQkJCgfUVFRUkeSVHp6Olq3bo3vv/++yPFffvklVq5cie+//x5nzpyBtbU1vLy8kJaWVsVJpVXacgKA3r17q6xbe/furcKE0jp27BgmTZqE8PBwhISEIDc3F97e3khPT1dOw3WpbMsJ0O51qUGDBli6dCnOnj2Ls2fPomfPnnj77beV5YjrUenLCFDjOiRqsI4dO4rx48erDGvWrJmYOXOmRImqn/nz54vWrVtLHaPaAiCCg4OVr/Pz84W1tbVYunSpclhmZqZQKBRi7dq1EiSsHl5dTkII4evrK95++21J8lRHycnJAoA4duyYEILrUnFeXU5CcF0qSu3atcX69eu5HpWgYBkJod51qMZuccrOzsa5c+fg7e2tMtzb2xunTp2SKFX1dPPmTdja2sLR0RHDhg3D7du3pY5UbcXExCAxMVFlvZLL5fDw8OB6VYTQ0FDUrVsXTZs2xbhx45T3mdRGKSkpAKC80SjXpaK9upwKcF16IS8vD1u3bkV6ejrc3Ny4HhXh1WVUQF3rUKVdOVxqDx8+RF5eXqEbAderV6/QTYO1WadOnfDTTz+hadOmSEpKwsKFC+Hu7o7Lly/D0tJS6njVTsG6U9R6defOHSkiVVt9+vTBkCFDYG9vj5iYGMybNw89e/bEuXPntO4qx0IITJs2DV27dkWLFi0AcF0qSlHLCeC6BABRUVFwc3NDZmYmTE1NERwcDBcXF2U54npU/DIC1LsO1djiVODV+9kJIXiPu5f06dNH+bxly5Zwc3ODk5MTNm/eXK7b2mgbrlelGzp0qPJ5ixYt4OrqCnt7e/z9998YPHiwhMmqnr+/Py5evIiTJ08WGsd16f8Ut5y4LgHOzs6IjIzE06dP8eeff8LX1xfHjh1Tjud6VPwycnFxUes6VGN31VlZWUFXV7fQ1qXk5ORCzZz+j4mJCVq2bImbN29KHaVaKjjjkOtV+dnY2MDe3l7r1q1PPvkEu3btwtGjR1Xu28l1SVVxy6ko2rguGRgYoHHjxnB1dcWSJUvQunVrfPvtt1yPXlLcMirK66xDNbY4GRgYoH379ggJCVEZHhISAnd3d4lSVX9ZWVm4evUqbGxspI5SLTk6OsLa2lplvcrOzsaxY8e4XpXi0aNHuHv3rtasW0II+Pv7Y8eOHThy5AgcHR1VxnNdeqG05VQUbVuXiiKEQFZWFtejEhQso6K81jqklkPMq6mtW7cKfX19sWHDBnHlyhUxZcoUYWJiImJjY6WOVm1Mnz5dhIaGitu3b4vw8HDRr18/YWZmptXLKC0tTURERIiIiAgBQKxcuVJERESIO3fuCCGEWLp0qVAoFGLHjh0iKipKDB8+XNjY2IjU1FSJk1etkpZTWlqamD59ujh16pSIiYkRR48eFW5ubqJ+/fpas5wmTJggFAqFCA0NFQkJCcpHRkaGchquS6UvJ65LQsyaNUscP35cxMTEiIsXL4rZs2cLHR0dcfDgQSEE1yMhSl5G6l6HanRxEkKI//3vf8Le3l4YGBiIdu3aqZziSkIMHTpU2NjYCH19fWFraysGDx4sLl++LHUsSR09elQAKPTw9fUVQrw4jXz+/PnC2tpayOVy0b17dxEVFSVtaAmUtJwyMjKEt7e3qFOnjtDX1xcNGzYUvr6+Ii4uTurYVaaoZQNABAUFKafhulT6cuK6JMTo0aOVf8fq1KkjevXqpSxNQnA9EqLkZaTudUgmhBDl305FREREpH1q7DFOREREROrG4kRERERURixORERERGXE4kRERERURixORERERGXE4kRERERURixORERERGXE4kRERERURixORERERGXE4kRERERURixORERERGXE4kRERERURv8P7/s/Ce5UY0kAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ @@ -1259,7 +1250,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 20, "id": "5b764c28-ae36-4066-9d3e-64873c13962a", "metadata": { "tags": [] @@ -1682,12 +1673,12 @@ " stream: velpt_velocity_data\n", " subsite: RS01SBPS\n", " summary: Dataset Generated by Stream Engine fr...\n", - " time_coverage_end: 2024-07-09T11:15:53.441897472\n", + " time_coverage_end: 2024-07-15T11:16:01.879897600\n", " time_coverage_start: 2014-10-06T23:32:22.570285568\n", - " title: Data produced by Stream Engine versio...
  • AssetManagementRecordLastModified :
    2024-07-04T16:24:19.204000
    AssetUniqueID :
    ATAPL-70114-00004
    Conventions :
    CF-1.6
    Description :
    Single Point Velocity Meter: VELPT Series D
    FirmwareVersion :
    Not specified.
    Manufacturer :
    Nortek
    Metadata_Conventions :
    Unidata Dataset Discovery v1.0
    Mobile :
    False
    ModelNumber :
    Aquadopp
    Notes :
    This netCDF product is a copy of the data on the University of Washington AWS Cloud Infrastructure.
    Owner :
    University of Washington Cabled Array Value Add Team.
    RemoteResources :
    []
    SerialNumber :
    AQS-6802/AQD 11930
    ShelfLifeExpirationDate :
    Not specified.
    SoftwareVersion :
    Not specified.
    cdm_data_type :
    Point
    collection_method :
    streamed
    comment :
    Some of the metadata of this dataset has been modified to be CF-1.6 compliant.
    creator_name :
    Ocean Observatories Initiative
    creator_url :
    http://oceanobservatories.org/
    date_created :
    2024-07-15T11:16:34.808110
    date_downloaded :
    2024-07-15T11:16:03.656504
    date_modified :
    2024-07-15T11:16:34.808112
    date_processed :
    2024-07-15T11:21:11.506568
    featureType :
    point
    geospatial_lat_max :
    44.515161
    geospatial_lat_min :
    44.515161
    geospatial_lat_resolution :
    0.1
    geospatial_lat_units :
    degrees_north
    geospatial_lon_max :
    -125.389899
    geospatial_lon_min :
    -125.389899
    geospatial_lon_resolution :
    0.1
    geospatial_lon_units :
    degrees_east
    geospatial_vertical_positive :
    down
    geospatial_vertical_resolution :
    0.1
    geospatial_vertical_units :
    meters
    history :
    2024-07-15T11:16:34.808076 generated from Stream Engine
    id :
    RS01SBPS-SF01A-4B-VELPTD102-streamed-velpt_velocity_data
    infoUrl :
    http://oceanobservatories.org/
    institution :
    Ocean Observatories Initiative
    keywords :
    keywords_vocabulary :
    license :
    naming_authority :
    org.oceanobservatories
    nodc_template_version :
    NODC_NetCDF_TimeSeries_Orthogonal_Template_v1.1
    node :
    SF01A
    processing_level :
    L2
    project :
    Ocean Observatories Initiative
    publisher_email :
    publisher_name :
    Ocean Observatories Initiative
    publisher_url :
    http://oceanobservatories.org/
    references :
    More information can be found at http://oceanobservatories.org/
    sensor :
    4B-VELPTD102
    source :
    RS01SBPS-SF01A-4B-VELPTD102-streamed-velpt_velocity_data
    sourceUrl :
    http://oceanobservatories.org/
    standard_name_vocabulary :
    NetCDF Climate and Forecast (CF) Metadata Convention Standard Name Table 29
    stream :
    velpt_velocity_data
    subsite :
    RS01SBPS
    summary :
    Dataset Generated by Stream Engine from Ocean Observatories Initiative
    time_coverage_end :
    2024-07-15T11:16:01.879897600
    time_coverage_start :
    2014-10-06T23:32:22.570285568
    title :
    Data produced by Stream Engine version 1.20.8 for RS01SBPS-SF01A-4B-VELPTD102-streamed-velpt_velocity_data
  • " ], "text/plain": [ "\n", @@ -1740,12 +1731,12 @@ " stream: velpt_velocity_data\n", " subsite: RS01SBPS\n", " summary: Dataset Generated by Stream Engine fr...\n", - " time_coverage_end: 2024-07-09T11:15:53.441897472\n", + " time_coverage_end: 2024-07-15T11:16:01.879897600\n", " time_coverage_start: 2014-10-06T23:32:22.570285568\n", " title: Data produced by Stream Engine versio..." ] }, - "execution_count": 15, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -1777,7 +1768,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 21, "id": "065f320a-a80c-420b-8440-cfef842a599a", "metadata": {}, "outputs": [ @@ -1855,7 +1846,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 22, "id": "129d7553-1fbc-4bd3-aed5-a21583f02e29", "metadata": { "tags": [] @@ -1910,7 +1901,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 23, "id": "b0346a35-7345-4da8-822a-fe1bcdbb6f76", "metadata": {}, "outputs": [