forked from BethanyL/DeepKoopman
-
Notifications
You must be signed in to change notification settings - Fork 0
/
training.py
311 lines (252 loc) · 13.1 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import os
import time
import numpy as np
import tensorflow as tf
import helperfns
import networkarch as net
def define_loss(x, y, g_list, weights, biases, params):
"""Define the (unregularized) loss functions for the training.
Arguments:
x -- placeholder for input
y -- list of outputs of network for each shift (each prediction step)
g_list -- list of output of encoder for each shift (encoding each step in x)
weights -- dictionary of weights for all networks
biases -- dictionary of biases for all networks
params -- dictionary of parameters for experiment
Returns:
loss1 -- autoencoder loss function
loss2 -- dynamics/prediction loss function
loss3 -- linearity loss function
loss_Linf -- inf norm on autoencoder loss and one-step prediction loss
loss -- sum of above four losses
Side effects:
None
"""
# Minimize the mean squared errors.
# subtraction and squaring element-wise, then average over both dimensions
# n columns
# average of each row (across columns), then average the rows
denominator_nonzero = 10 ** (-5)
# autoencoder loss
if params['relative_loss']:
loss1_denominator = tf.reduce_mean(tf.reduce_mean(tf.square(tf.squeeze(x[0, :, :])), 1)) + denominator_nonzero
else:
loss1_denominator = tf.to_double(1.0)
mean_squared_error = tf.reduce_mean(tf.reduce_mean(tf.square(y[0] - tf.squeeze(x[0, :, :])), 1))
loss1 = params['recon_lam'] * tf.truediv(mean_squared_error, loss1_denominator)
# gets dynamics/prediction
loss2 = tf.zeros([1, ], dtype=tf.float64)
if params['num_shifts'] > 0:
for j in np.arange(params['num_shifts']):
# xk+1, xk+2, xk+3
shift = params['shifts'][j]
if params['relative_loss']:
loss2_denominator = tf.reduce_mean(
tf.reduce_mean(tf.square(tf.squeeze(x[shift, :, :])), 1)) + denominator_nonzero
else:
loss2_denominator = tf.to_double(1.0)
loss2 = loss2 + params['recon_lam'] * tf.truediv(
tf.reduce_mean(tf.reduce_mean(tf.square(y[j + 1] - tf.squeeze(x[shift, :, :])), 1)), loss2_denominator)
loss2 = loss2 / params['num_shifts']
# K linear
loss3 = tf.zeros([1, ], dtype=tf.float64)
count_shifts_middle = 0
if params['num_shifts_middle'] > 0:
# generalization of: next_step = tf.matmul(g_list[0], L_pow)
omegas = net.omega_net_apply(params, g_list[0], weights, biases)
next_step = net.varying_multiply(g_list[0], omegas, params['delta_t'], params['num_real'],
params['num_complex_pairs'])
# multiply g_list[0] by L (j+1) times
for j in np.arange(max(params['shifts_middle'])):
if (j + 1) in params['shifts_middle']:
if params['relative_loss']:
loss3_denominator = tf.reduce_mean(
tf.reduce_mean(tf.square(tf.squeeze(g_list[count_shifts_middle + 1])), 1)) + denominator_nonzero
else:
loss3_denominator = tf.to_double(1.0)
loss3 = loss3 + params['mid_shift_lam'] * tf.truediv(
tf.reduce_mean(tf.reduce_mean(tf.square(next_step - g_list[count_shifts_middle + 1]), 1)),
loss3_denominator)
count_shifts_middle += 1
omegas = net.omega_net_apply(params, next_step, weights, biases)
next_step = net.varying_multiply(next_step, omegas, params['delta_t'], params['num_real'],
params['num_complex_pairs'])
loss3 = loss3 / params['num_shifts_middle']
# inf norm on autoencoder error and one prediction step
if params['relative_loss']:
Linf1_den = tf.norm(tf.norm(tf.squeeze(x[0, :, :]), axis=1, ord=np.inf), ord=np.inf) + denominator_nonzero
Linf2_den = tf.norm(tf.norm(tf.squeeze(x[1, :, :]), axis=1, ord=np.inf), ord=np.inf) + denominator_nonzero
else:
Linf1_den = tf.to_double(1.0)
Linf2_den = tf.to_double(1.0)
Linf1_penalty = tf.truediv(
tf.norm(tf.norm(y[0] - tf.squeeze(x[0, :, :]), axis=1, ord=np.inf), ord=np.inf), Linf1_den)
Linf2_penalty = tf.truediv(
tf.norm(tf.norm(y[1] - tf.squeeze(x[1, :, :]), axis=1, ord=np.inf), ord=np.inf), Linf2_den)
loss_Linf = params['Linf_lam'] * (Linf1_penalty + Linf2_penalty)
loss = loss1 + loss2 + loss3 + loss_Linf
return loss1, loss2, loss3, loss_Linf, loss
def define_regularization(params, trainable_var, loss, loss1):
"""Define the regularization and add to loss.
Arguments:
params -- dictionary of parameters for experiment
trainable_var -- list of trainable TensorFlow variables
loss -- the unregularized loss
loss1 -- the autoenocder component of the loss
Returns:
loss_L1 -- L1 regularization on weights W and b
loss_L2 -- L2 regularization on weights W
regularized_loss -- loss + regularization
regularized_loss1 -- loss1 (autoencoder loss) + regularization
Side effects:
None
"""
if params['L1_lam']:
l1_regularizer = tf.contrib.layers.l1_regularizer(scale=params['L1_lam'], scope=None)
# TODO: don't include biases? use weights dict instead?
loss_L1 = tf.contrib.layers.apply_regularization(l1_regularizer, weights_list=trainable_var)
else:
loss_L1 = tf.zeros([1, ], dtype=tf.float64)
# tf.nn.l2_loss returns number
l2_regularizer = tf.add_n([tf.nn.l2_loss(v) for v in trainable_var if 'b' not in v.name])
loss_L2 = params['L2_lam'] * l2_regularizer
regularized_loss = loss + loss_L1 + loss_L2
regularized_loss1 = loss1 + loss_L1 + loss_L2
return loss_L1, loss_L2, regularized_loss, regularized_loss1
def try_net(data_val, params):
"""Run a random experiment for particular params and data.
Arguments:
data_val -- array containing validation dataset
params -- dictionary of parameters for experiment
Returns:
None
Side effects:
Changes params dict
Saves files
Builds TensorFlow graph (reset in main_exp)
"""
# SET UP NETWORK
x, y, g_list, weights, biases = net.create_koopman_net(params)
max_shifts_to_stack = helperfns.num_shifts_in_stack(params)
# DEFINE LOSS FUNCTION
trainable_var = tf.trainable_variables()
loss1, loss2, loss3, loss_Linf, loss = define_loss(x, y, g_list, weights, biases, params)
loss_L1, loss_L2, regularized_loss, regularized_loss1 = define_regularization(params, trainable_var, loss, loss1)
# CHOOSE OPTIMIZATION ALGORITHM
optimizer = helperfns.choose_optimizer(params, regularized_loss, trainable_var)
optimizer_autoencoder = helperfns.choose_optimizer(params, regularized_loss1, trainable_var)
# LAUNCH GRAPH AND INITIALIZE
sess = tf.Session()
saver = tf.train.Saver()
# Before starting, initialize the variables. We will 'run' this first.
init = tf.global_variables_initializer()
sess.run(init)
csv_path = params['model_path'].replace('model', 'error')
csv_path = csv_path.replace('ckpt', 'csv')
print(csv_path)
num_saved_per_file_pass = params['num_steps_per_file_pass'] / 20 + 1
num_saved = np.floor(num_saved_per_file_pass * params['data_train_len'] * params['num_passes_per_file']).astype(int)
train_val_error = np.zeros([num_saved, 16])
count = 0
best_error = 10000
data_val_tensor = helperfns.stack_data(data_val, max_shifts_to_stack, params['len_time'])
start = time.time()
finished = 0
saver.save(sess, params['model_path'])
# TRAINING
# loop over training data files
for f in range(params['data_train_len'] * params['num_passes_per_file']):
if finished:
break
file_num = (f % params['data_train_len']) + 1 # 1...data_train_len
if (params['data_train_len'] > 1) or (f == 0):
# don't keep reloading data if always same
data_train = np.loadtxt(('./data/%s_train%d_x.csv' % (params['data_name'], file_num)), delimiter=',',
dtype=np.float64)
data_train_tensor = helperfns.stack_data(data_train, max_shifts_to_stack, params['len_time'])
num_examples = data_train_tensor.shape[1]
num_batches = int(np.floor(num_examples / params['batch_size']))
ind = np.arange(num_examples)
np.random.shuffle(ind)
data_train_tensor = data_train_tensor[:, ind, :]
# loop over batches in this file
for step in range(params['num_steps_per_batch'] * num_batches):
if params['batch_size'] < data_train_tensor.shape[1]:
offset = (step * params['batch_size']) % (num_examples - params['batch_size'])
else:
offset = 0
batch_data_train = data_train_tensor[:, offset:(offset + params['batch_size']), :]
feed_dict_train = {x: batch_data_train}
feed_dict_train_loss = {x: batch_data_train}
feed_dict_val = {x: data_val_tensor}
if (not params['been5min']) and params['auto_first']:
sess.run(optimizer_autoencoder, feed_dict=feed_dict_train)
else:
sess.run(optimizer, feed_dict=feed_dict_train)
if step % 20 == 0:
train_error = sess.run(loss, feed_dict=feed_dict_train_loss)
val_error = sess.run(loss, feed_dict=feed_dict_val)
if val_error < (best_error - best_error * (10 ** (-5))):
best_error = val_error.copy()
saver.save(sess, params['model_path'])
reg_train_err = sess.run(regularized_loss, feed_dict=feed_dict_train_loss)
reg_val_err = sess.run(regularized_loss, feed_dict=feed_dict_val)
print("New best val error %f (with reg. train err %f and reg. val err %f)" % (
best_error, reg_train_err, reg_val_err))
train_val_error[count, 0] = train_error
train_val_error[count, 1] = val_error
train_val_error[count, 2] = sess.run(regularized_loss, feed_dict=feed_dict_train_loss)
train_val_error[count, 3] = sess.run(regularized_loss, feed_dict=feed_dict_val)
train_val_error[count, 4] = sess.run(loss1, feed_dict=feed_dict_train_loss)
train_val_error[count, 5] = sess.run(loss1, feed_dict=feed_dict_val)
train_val_error[count, 6] = sess.run(loss2, feed_dict=feed_dict_train_loss)
train_val_error[count, 7] = sess.run(loss2, feed_dict=feed_dict_val)
train_val_error[count, 8] = sess.run(loss3, feed_dict=feed_dict_train_loss)
train_val_error[count, 9] = sess.run(loss3, feed_dict=feed_dict_val)
train_val_error[count, 10] = sess.run(loss_Linf, feed_dict=feed_dict_train_loss)
train_val_error[count, 11] = sess.run(loss_Linf, feed_dict=feed_dict_val)
if np.isnan(train_val_error[count, 10]):
params['stop_condition'] = 'loss_Linf is nan'
finished = 1
break
train_val_error[count, 12] = sess.run(loss_L1, feed_dict=feed_dict_train_loss)
train_val_error[count, 13] = sess.run(loss_L1, feed_dict=feed_dict_val)
train_val_error[count, 14] = sess.run(loss_L2, feed_dict=feed_dict_train_loss)
train_val_error[count, 15] = sess.run(loss_L2, feed_dict=feed_dict_val)
np.savetxt(csv_path, train_val_error, delimiter=',')
finished, save_now = helperfns.check_progress(start, best_error, params)
count = count + 1
if save_now:
train_val_error_trunc = train_val_error[range(count), :]
helperfns.save_files(sess, csv_path, train_val_error_trunc, params, weights, biases)
if finished:
break
if step > params['num_steps_per_file_pass']:
params['stop_condition'] = 'reached num_steps_per_file_pass'
break
# SAVE RESULTS
train_val_error = train_val_error[range(count), :]
print(train_val_error)
params['time_exp'] = time.time() - start
saver.restore(sess, params['model_path'])
helperfns.save_files(sess, csv_path, train_val_error, params, weights, biases)
tf.reset_default_graph()
def main_exp(params):
"""Set up and run one random experiment.
Arguments:
params -- dictionary of parameters for experiment
Returns:
None
Side effects:
Changes params dict
If doesn't already exist, creates folder params['folder_name']
Saves files in that folder
"""
helperfns.set_defaults(params)
if not os.path.exists(params['folder_name']):
os.makedirs(params['folder_name'])
tf.set_random_seed(params['seed'])
np.random.seed(params['seed'])
# data is num_steps x num_examples x n but load flattened version (matrix instead of tensor)
data_val = np.loadtxt(('./data/%s_val_x.csv' % (params['data_name'])), delimiter=',', dtype=np.float64)
try_net(data_val, params)