forked from Xiaokang2022/Chess
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAI.py
119 lines (101 loc) · 3.51 KB
/
AI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
"""
电脑算法
"""
import ctypes
from random import choice
import alpha_beta_search
import min_max_search
import rule
from configure import config
from constants import EXIST_DICT
from rule import rule
from tools import virtual
# def intelligence(chesses: list[list], color: str, depth: int) -> tuple[tuple[tuple[int, int], tuple[bool, int, int]] | None, int]:
# """ 电脑算法 """
# if not depth: # 迭代终止条件
# return None, 0
# steps = {}
# color_ = '#FF0000' if color == '#000000' else '#000000'
# depth_ = depth-1
# for line in chesses:
# for chess in line:
# if chess and chess.color == color:
# for step in rule(chesses, chess, True):
# key = (chess.x, chess.y), step
# steps[key] = EXIST_DICT[chesses[chess.y+step[2]]
# [chess.x+step[1]].name] if step[0] else 0
# step_, score = virtual(
# chesses, chess, step, intelligence, color_, depth_)
# if step_:
# steps[key] -= score
# if steps:
# steps = sorted(steps.items(), key=lambda dic: dic[1], reverse=True)
# ind = 0
# for i, step in enumerate(steps):
# if step[1] != steps[0][1]:
# break
# ind = i
# return choice(steps[:ind+1])
# return None, 0
id: dict[str, int] = {
'将': -1,
'士': -2,
'象': -3,
'卒': -4,
'马': -6,
'炮': -7,
'车': -8,
'帥': 1,
'仕': 2,
'相': 3,
'兵': 4,
'馬': 6,
'砲': 7,
'車': 8,
}
def _lst_to_array(data: list[list[int]]) -> ctypes.Array[ctypes.Array[ctypes.c_int]]:
"""Python 二维棋局列表转换为 C 二维数组"""
arr = (ctypes.c_int * 9 * 10)()
for i in range(10):
for j in range(9):
arr[i][j] = data[i][j]
return arr
def choose_algo(data: list[list[int]], depth: int, reverse: bool) -> alpha_beta_search.Node:
""""""
match config["algo"]:
case 1:
# 极小极大搜索算法
node = min_max_search.min_max_search(
data, depth, reverse=reverse)
case 2:
# α-β 剪枝算法
node = alpha_beta_search.alpha_beta_search(
data, depth, reverse=reverse)
case _:
# α-β 剪枝算法(C++ 实现)
node = alpha_beta_search.Node(
ctypes.WinDLL('./PyDLL.dll').search(
_lst_to_array(data), depth, (result := (ctypes.c_int * 4)()), reverse),
((result[0], result[1]), (result[2], result[3])))
if node.operation[0][0] == -1:
node.operation = None
return node
def intelligence(chesses: list[list], color: str, depth: int) -> tuple[tuple[tuple[int, int], tuple[bool, int, int]] | None, int]:
""""""
data = [[0]*9 for _ in range(10)]
for i, lines in enumerate(chesses):
for j, chess in enumerate(lines):
if chess is not None:
data[i][j] = id[chess.name]
if data[i][j] == -4 and i >= 5: # 卒兵过河类型转变
data[i][j] = -5
elif data[i][j] == 4 and i <= 4:
data[i][j] = 5
node = choose_algo(data, depth, color != "#FF0000")
if node.operation is None:
return None, node.score
(ci, cj), (ti, tj) = node.operation
flag = data[ti][tj] != 0
ti -= ci
tj -= cj
return ((cj, ci), (flag, tj, ti)), node.score