forked from Andong-Li-speech/DARCN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolver.py
141 lines (124 loc) · 5.64 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch.nn as nn
import torch
import time
import os
from Backup import mse_loss_stage
import gc
import hdf5storage
tr_batch, tr_epoch, cv_epoch = [], [], []
class Solver(object):
def __init__(self, data, model, optimizer, args):
# load args parameters
self.tr_loader = data['tr_loader']
self.cv_loader = data['cv_loader']
self.loss_path = args.loss_path
self.model = model
self.optimizer = optimizer
self.epochs = args.epochs
self.half_lr = args.half_lr
self.early_stop = args.early_stop
self.save_path = args.save_path
self.checkpoint = args.checkpoint
self.continue_from = args.continue_from
self.best_path = args.best_path
self.tr_loss = torch.Tensor(self.epochs)
self.cv_loss = torch.Tensor(self.epochs)
self.print_freq = args.print_freq
self._reset()
def _reset(self):
# Reset
if self.continue_from:
print('Loading checkpoint model %s' % self.continue_from)
# package is the loading model
package = torch.load(self.continue_from)
self.model.load_state_dict(package['state_dict'])
self.optimizer.load_state_dict(package['optim_dict'])
self.start_epoch = int(package.get('epoch', 1))
self.tr_loss[self.start_epoch] = package['tr_loss'][:self.start_epoch]
self.cv_loss[self.start_epoch] = package['cv_loss'][:self.start_epoch]
else:
self.start_epoch = 0
os.makedirs(self.save_path, exist_ok=True)
self.prev_cv_loss = float("inf")
self.best_cv_loss = float("inf")
self.cv_no_impv = 0
self.having = False
def train(self):
for epoch in range(self.start_epoch, self.epochs):
print("Begin to train.....")
self.model.train()
start = time.time()
tr_avg_loss = self._run_one_epoch(epoch)
print('-' * 90)
print("End of Epoch %d, Time: %4f s, Train_Loss:%5f" % (int(epoch+1), time.time()-start, tr_avg_loss))
print('-' * 90)
# save model each epoch
if self.checkpoint:
file_path = os.path.join(
self.save_path, 'epoch%d.pth.tar' % (epoch + 1))
torch.save(self.model.serialize(self.model,
self.optimizer, epoch + 1,
tr_loss=self.tr_loss,
cv_loss=self.cv_loss),
file_path)
print('Saving checkpoint model to %s' % file_path)
# Cross cv
print("Begin Cross Validation....")
self.model.eval() # BN and Dropout is off
cv_avg_loss = self._run_one_epoch(epoch, cross_valid=True)
print('-' * 90)
print("Time: %4fs, CV_Loss:%5f" % (time.time() - start, cv_avg_loss))
print('-' * 90)
self.tr_loss[epoch] = tr_avg_loss
self.cv_loss[epoch] = cv_avg_loss
tr_epoch.append(tr_avg_loss)
cv_epoch.append(cv_avg_loss)
# save loss
loss = {}
loss['tr_loss'] = tr_epoch
loss['cv_loss'] = cv_epoch
hdf5storage.savemat(self.loss_path, loss)
# Adjust learning rate and early stop
if self.half_lr:
if cv_avg_loss >= self.prev_cv_loss:
self.cv_no_impv += 1
if self.cv_no_impv == 3:
self.having = True
if self.cv_no_impv >= 5 and self.early_stop == True:
print("No improvement and apply early stop")
break
else:
self.cv_no_impv = 0
if self.having == True:
optim_state = self.optimizer.state_dict()
optim_state['param_groups'][0]['lr'] = optim_state['param_groups'][0]['lr'] / 2.0
self.optimizer.load_state_dict(optim_state)
print('Learning rate adjusted to %5f' % (optim_state['param_groups'][0]['lr']))
self.having = False
self.prev_cv_loss = cv_avg_loss
if cv_avg_loss < self.best_cv_loss:
self.best_cv_loss = cv_avg_loss
torch.save(self.model.state_dict(), self.best_path)
print("Find better cv model, saving to %s" % os.path.split(self.best_path)[1])
def _run_one_epoch(self, epoch, cross_valid = False):
start1 = time.time()
total_loss = 0
data_loader = self.tr_loader if not cross_valid else self.cv_loader
for batch_id, batch_info in enumerate(data_loader.get_data_loader()):
batch_feat = batch_info.feats.cuda()
batch_label = batch_info.labels.cuda()
batch_frame_mask_list = batch_info.frame_mask_list
esti_out_list = self.model(batch_feat)
batch_loss = mse_loss_stage(esti_out_list, batch_label, batch_frame_mask_list)
tr_batch.append(batch_loss.item())
if not cross_valid:
self.optimizer.zero_grad()
batch_loss.backward()
self.optimizer.step()
total_loss += batch_loss.item()
gc.collect()
if batch_id % self.print_freq == 0:
print("Epoch:%d, Iter:%d, Average_loss:%5f, Current_loss:%5f, %d ms/batch."
% (int(epoch+1), int(batch_id), total_loss / (batch_id+1), batch_loss.item(),
1000 * (time.time() - start1) / (batch_id + 1)))
return total_loss / (batch_id + 1)