forked from nitsanw/javanetperf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
statistics.py
346 lines (287 loc) · 10.6 KB
/
statistics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
#!/usr/bin/python
"""Basic statistics utility functions.
The implementation of Student's t distribution inverse CDF was ported to Python
from JSci. The parameters are set to only be accurate to approximately 5
decimal places.
The JSci port comes frist. "New" code is near the bottom.
JSci information:
http://jsci.sourceforge.net/
Original Author: Mark Hale
Original Licence: LGPL
"""
import math
# Relative machine precision.
EPS = 2.22e-16
# The smallest positive floating-point number such that 1/xminin is machine representable.
XMININ = 2.23e-308
# Square root of 2 * pi
SQRT2PI = 2.5066282746310005024157652848110452530069867406099
LOGSQRT2PI = math.log(SQRT2PI);
# Rough estimate of the fourth root of logGamma_xBig
lg_frtbig = 2.25e76
pnt68 = 0.6796875
# lower value = higher precision
PRECISION = 4.0*EPS
def betaFraction(x, p, q):
"""Evaluates of continued fraction part of incomplete beta function.
Based on an idea from Numerical Recipes (W.H. Press et al, 1992)."""
sum_pq = p + q
p_plus = p + 1.0
p_minus = p - 1.0
h = 1.0-sum_pq*x/p_plus;
if abs(h) < XMININ:
h = XMININ
h = 1.0/h
frac = h
m = 1
delta = 0.0
c = 1.0
while m <= MAX_ITERATIONS and abs(delta-1.0) > PRECISION:
m2 = 2*m
# even index for d
d=m*(q-m)*x/((p_minus+m2)*(p+m2))
h=1.0+d*h
if abs(h) < XMININ: h=XMININ
h=1.0/h;
c=1.0+d/c;
if abs(c) < XMININ: c=XMININ
frac *= h*c;
# odd index for d
d = -(p+m)*(sum_pq+m)*x/((p+m2)*(p_plus+m2))
h=1.0+d*h
if abs(h) < XMININ: h=XMININ;
h=1.0/h
c=1.0+d/c
if abs(c) < XMININ: c = XMININ
delta=h*c
frac *= delta
m += 1
return frac
# The largest argument for which <code>logGamma(x)</code> is representable in the machine.
LOG_GAMMA_X_MAX_VALUE = 2.55e305
# Log Gamma related constants
lg_d1 = -0.5772156649015328605195174;
lg_d2 = 0.4227843350984671393993777;
lg_d4 = 1.791759469228055000094023;
lg_p1 = [ 4.945235359296727046734888,
201.8112620856775083915565, 2290.838373831346393026739,
11319.67205903380828685045, 28557.24635671635335736389,
38484.96228443793359990269, 26377.48787624195437963534,
7225.813979700288197698961 ]
lg_q1 = [ 67.48212550303777196073036,
1113.332393857199323513008, 7738.757056935398733233834,
27639.87074403340708898585, 54993.10206226157329794414,
61611.22180066002127833352, 36351.27591501940507276287,
8785.536302431013170870835 ]
lg_p2 = [ 4.974607845568932035012064,
542.4138599891070494101986, 15506.93864978364947665077,
184793.2904445632425417223, 1088204.76946882876749847,
3338152.967987029735917223, 5106661.678927352456275255,
3074109.054850539556250927 ]
lg_q2 = [ 183.0328399370592604055942,
7765.049321445005871323047, 133190.3827966074194402448,
1136705.821321969608938755, 5267964.117437946917577538,
13467014.54311101692290052, 17827365.30353274213975932,
9533095.591844353613395747 ]
lg_p4 = [ 14745.02166059939948905062,
2426813.369486704502836312, 121475557.4045093227939592,
2663432449.630976949898078, 29403789566.34553899906876,
170266573776.5398868392998, 492612579337.743088758812,
560625185622.3951465078242 ]
lg_q4 = [ 2690.530175870899333379843,
639388.5654300092398984238, 41355999.30241388052042842,
1120872109.61614794137657, 14886137286.78813811542398,
101680358627.2438228077304, 341747634550.7377132798597,
446315818741.9713286462081 ]
lg_c = [ -0.001910444077728,8.4171387781295e-4,
-5.952379913043012e-4, 7.93650793500350248e-4,
-0.002777777777777681622553, 0.08333333333333333331554247,
0.0057083835261 ]
def logGamma(x):
"""The natural logarithm of the gamma function.
Based on public domain NETLIB (Fortran) code by W. J. Cody and L. Stoltz<BR>
Applied Mathematics Division<BR>
Argonne National Laboratory<BR>
Argonne, IL 60439<BR>
<P>
References:
<OL>
<LI>W. J. Cody and K. E. Hillstrom, 'Chebyshev Approximations for the Natural Logarithm of the Gamma Function,' Math. Comp. 21, 1967, pp. 198-203.
<LI>K. E. Hillstrom, ANL/AMD Program ANLC366S, DGAMMA/DLGAMA, May, 1969.
<LI>Hart, Et. Al., Computer Approximations, Wiley and sons, New York, 1968.
</OL></P><P>
From the original documentation:
</P><P>
This routine calculates the LOG(GAMMA) function for a positive real argument X.
Computation is based on an algorithm outlined in references 1 and 2.
The program uses rational functions that theoretically approximate LOG(GAMMA)
to at least 18 significant decimal digits. The approximation for X > 12 is from reference 3,
while approximations for X < 12.0 are similar to those in reference 1, but are unpublished.
The accuracy achieved depends on the arithmetic system, the compiler, the intrinsic functions,
and proper selection of the machine-dependent constants.
</P><P>
Error returns:<BR>
The program returns the value XINF for X .LE. 0.0 or when overflow would occur.
The computation is believed to be free of underflow and overflow."""
y = x
if y < 0.0 or y > LOG_GAMMA_X_MAX_VALUE:
# Bad arguments
return float("inf")
if y <= EPS:
return -math.log(y)
if y <= 1.5:
if (y < pnt68):
corr = -math.log(y)
xm1 = y
else:
corr = 0.0;
xm1 = y - 1.0;
if y <= 0.5 or y >= pnt68:
xden = 1.0;
xnum = 0.0;
for i in xrange(8):
xnum = xnum * xm1 + lg_p1[i];
xden = xden * xm1 + lg_q1[i];
return corr + xm1 * (lg_d1 + xm1 * (xnum / xden));
else:
xm2 = y - 1.0;
xden = 1.0;
xnum = 0.0;
for i in xrange(8):
xnum = xnum * xm2 + lg_p2[i];
xden = xden * xm2 + lg_q2[i];
return corr + xm2 * (lg_d2 + xm2 * (xnum / xden));
if (y <= 4.0):
xm2 = y - 2.0;
xden = 1.0;
xnum = 0.0;
for i in xrange(8):
xnum = xnum * xm2 + lg_p2[i];
xden = xden * xm2 + lg_q2[i];
return xm2 * (lg_d2 + xm2 * (xnum / xden));
if y <= 12.0:
xm4 = y - 4.0;
xden = -1.0;
xnum = 0.0;
for i in xrange(8):
xnum = xnum * xm4 + lg_p4[i];
xden = xden * xm4 + lg_q4[i];
return lg_d4 + xm4 * (xnum / xden);
assert y <= lg_frtbig
res = lg_c[6];
ysq = y * y;
for i in xrange(6):
res = res / ysq + lg_c[i];
res /= y;
corr = math.log(y);
res = res + LOGSQRT2PI - 0.5 * corr;
res += y * (corr - 1.0);
return res
def logBeta(p, q):
"""The natural logarithm of the beta function."""
assert p > 0
assert q > 0
if p <= 0 or q <= 0 or p + q > LOG_GAMMA_X_MAX_VALUE:
return 0
return logGamma(p)+logGamma(q)-logGamma(p+q)
def incompleteBeta(x, p, q):
"""Incomplete beta function.
The computation is based on formulas from Numerical Recipes, Chapter 6.4 (W.H. Press et al, 1992).
Ported from Java: http://jsci.sourceforge.net/"""
assert 0 <= x <= 1
assert p > 0
assert q > 0
# Range checks to avoid numerical stability issues?
if x <= 0.0:
return 0.0
if x >= 1.0:
return 1.0
if p <= 0.0 or q <= 0.0 or (p+q) > LOG_GAMMA_X_MAX_VALUE:
return 0.0
beta_gam = math.exp(-logBeta(p,q) + p*math.log(x) + q*math.log(1.0-x))
if x < (p+1.0)/(p+q+2.0):
return beta_gam*betaFraction(x, p, q)/p
else:
return 1.0-(beta_gam*betaFraction(1.0-x,q,p)/q)
ACCURACY = 10**-7
MAX_ITERATIONS = 10000
def findRoot(value, x_low, x_high, function):
"""Use the bisection method to find root such that function(root) == value."""
guess = (x_high + x_low) / 2.0
v = function(guess)
difference = v - value
i = 0
while abs(difference) > ACCURACY and i < MAX_ITERATIONS:
i += 1
if difference > 0:
x_high = guess
else:
x_low = guess
guess = (x_high + x_low) / 2.0
v = function(guess)
difference = v - value
return guess
def StudentTCDF(degree_of_freedom, X):
"""Student's T distribution CDF. Returns probability that a value x < X.
Ported from Java: http://jsci.sourceforge.net/"""
A = 0.5 * incompleteBeta(degree_of_freedom/(degree_of_freedom+X*X), 0.5*degree_of_freedom, 0.5)
if X > 0:
return 1 - A
return A
def InverseStudentT(degree_of_freedom, probability):
"""Inverse of Student's T distribution CDF. Returns the value x such that CDF(x) = probability.
Ported from Java: http://jsci.sourceforge.net/
This is not the best algorithm in the world. SciPy has a Fortran version
(see special.stdtrit):
http://svn.scipy.org/svn/scipy/trunk/scipy/stats/distributions.py
http://svn.scipy.org/svn/scipy/trunk/scipy/special/cdflib/cdft.f
Very detailed information:
http://www.maths.ox.ac.uk/~shaww/finpapers/tdist.pdf
"""
assert 0 <= probability <= 1
if probability == 1:
return float("inf")
if probability == 0:
return float("-inf")
if probability == 0.5:
return 0.0
def f(x):
return StudentTCDF(degree_of_freedom, x)
return findRoot(probability, -10**4, 10**4, f)
def tinv(p, degree_of_freedom):
"""Similar to the TINV function in Excel
p: 1-confidence (eg. 0.05 = 95% confidence)"""
assert 0 <= p <= 1
confidence = 1 - p
return InverseStudentT(degree_of_freedom, (1+confidence)/2.0)
def memoize(function):
cache = {}
def closure(*args):
if args not in cache:
cache[args] = function(*args)
return cache[args]
return closure
# Cache tinv results, since we typically call it with the same args over and over
cached_tinv = memoize(tinv)
def stats(r, confidence_interval=0.05):
"""Returns statistics about a sequence of numbers.
By default it computes the 95% confidence interval.
Returns (average, median, standard deviation, min, max, confidence interval)"""
total = sum(r)
average = total/float(len(r))
sum_deviation_squared = sum([(i-average)**2 for i in r])
standard_deviation = math.sqrt(sum_deviation_squared/(len(r)-1 or 1))
s = list(r)
s.sort()
median = s[len(s)/2]
minimum = s[0]
maximum = s[-1]
# We must estimate both mean and standard deviation using the t distribution:
# http://davidmlane.com/hyperstat/B7483.html
# s_m = s / sqrt(N)
s_m = standard_deviation / math.sqrt(len(r))
# Degrees of freedom = n-1
# t = tinv(0.05, degrees_of_freedom)
# confidence = +/- t * s_m
confidence = cached_tinv(confidence_interval, len(r)-1) * s_m
return average, median, standard_deviation, minimum, maximum, confidence