diff --git a/modules/08-urban-networks-ii/lecture.ipynb b/modules/08-urban-networks-ii/lecture.ipynb index 7a07f6e..f1b4ed1 100644 --- a/modules/08-urban-networks-ii/lecture.ipynb +++ b/modules/08-urban-networks-ii/lecture.ipynb @@ -55,7 +55,7 @@ "source": [ "# create a study site: geocode city hall, convert coords to shapely geometry,\n", "# project geometry to UTM, buffer by 5km, project back to lat-lng\n", - "latlng_coords = ox.geocode(\"Los Angeles City Hall\")\n", + "latlng_coords = ox.geocoder.geocode(\"Los Angeles City Hall\")\n", "latlng_point = Point(latlng_coords[1], latlng_coords[0])\n", "latlng_point_proj, crs = ox.projection.project_geometry(latlng_point)\n", "polygon_proj = latlng_point_proj.buffer(5000)\n", @@ -71,8 +71,8 @@ "source": [ "# model the street network within study site\n", "# your parameterization makes assumptions about your interests here\n", - "G = ox.graph_from_polygon(polygon, network_type=\"drive\", truncate_by_edge=True)\n", - "fig, ax = ox.plot_graph(G, node_size=0, edge_color=\"w\", edge_linewidth=0.3)" + "G = ox.graph.graph_from_polygon(polygon, network_type=\"drive\", truncate_by_edge=True)\n", + "fig, ax = ox.plot.plot_graph(G, node_size=0, edge_color=\"w\", edge_linewidth=0.3)" ] }, { @@ -82,8 +82,8 @@ "outputs": [], "source": [ "# add speeds and travel times\n", - "G = ox.add_edge_speeds(G)\n", - "G = ox.add_edge_travel_times(G)" + "G = ox.speed.add_edge_speeds(G)\n", + "G = ox.speed.add_edge_travel_times(G)" ] }, { @@ -125,8 +125,8 @@ "outputs": [], "source": [ "# now clean up the intersections and re-calculate\n", - "clean_intersects = ox.consolidate_intersections(\n", - " ox.project_graph(G), rebuild_graph=False, tolerance=10\n", + "clean_intersects = ox.simplification.consolidate_intersections(\n", + " ox.projection.project_graph(G), rebuild_graph=False, tolerance=10\n", ")\n", "clean_intersect_count = len(clean_intersects)\n", "clean_intersect_count" @@ -177,8 +177,8 @@ "outputs": [], "source": [ "# get home/work network nodes\n", - "home_nodes = ox.nearest_nodes(G, X=od[\"home_lng\"], Y=od[\"home_lat\"])\n", - "work_nodes = ox.nearest_nodes(G, X=od[\"work_lng\"], Y=od[\"work_lat\"])" + "home_nodes = ox.distance.nearest_nodes(G, X=od[\"home_lng\"], Y=od[\"home_lat\"])\n", + "work_nodes = ox.distance.nearest_nodes(G, X=od[\"work_lng\"], Y=od[\"work_lat\"])" ] }, { @@ -191,7 +191,7 @@ "source": [ "# calculate each shortest path\n", "paths = [\n", - " ox.shortest_path(G, orig, dest, weight=\"travel_time\")\n", + " ox.routing.shortest_path(G, orig, dest, weight=\"travel_time\")\n", " for orig, dest in zip(home_nodes, work_nodes)\n", "]\n", "len(paths)" @@ -204,7 +204,7 @@ "outputs": [], "source": [ "# filter out any nulls (ie, not successfully solved)\n", - "paths = [path for path in paths if path is not None]\n", + "paths = [path for path in paths if path is not None and len(path) > 1]\n", "len(paths)" ] }, @@ -215,7 +215,7 @@ "outputs": [], "source": [ "# plot 100 routes\n", - "fig, ax = ox.plot_graph_routes(\n", + "fig, ax = ox.plot.plot_graph_routes(\n", " G,\n", " routes=paths[0:100],\n", " node_size=0,\n", @@ -255,13 +255,13 @@ "source": [ "def calc_efficiency(G, route, attr=\"length\"):\n", " # sum the edge lengths in the route\n", - " trip_distance = sum(ox.utils_graph.get_route_edge_attributes(G, route=route, attribute=attr))\n", + " trip_distance = sum(ox.utils_graph.route_to_gdf(G, route=route)[attr])\n", " # fast vectorized great-circle distance calculator\n", - " gc_distance = ox.distance.great_circle_vec(\n", + " gc_distance = ox.distance.great_circle(\n", " lat1=G.nodes[route[0]][\"y\"],\n", - " lng1=G.nodes[route[0]][\"x\"],\n", + " lon1=G.nodes[route[0]][\"x\"],\n", " lat2=G.nodes[route[-1]][\"y\"],\n", - " lng2=G.nodes[route[-1]][\"x\"],\n", + " lon2=G.nodes[route[-1]][\"x\"],\n", " )\n", " return gc_distance / trip_distance\n", "\n", @@ -331,13 +331,13 @@ "outputs": [], "source": [ "# get home/work network nodes again, calculate routes, drop nulls\n", - "home_nodes_per = ox.nearest_nodes(G_per, X=od[\"home_lng\"], Y=od[\"home_lat\"])\n", - "work_nodes_per = ox.nearest_nodes(G_per, X=od[\"work_lng\"], Y=od[\"work_lat\"])\n", + "home_nodes_per = ox.distance.nearest_nodes(G_per, X=od[\"home_lng\"], Y=od[\"home_lat\"])\n", + "work_nodes_per = ox.distance.nearest_nodes(G_per, X=od[\"work_lng\"], Y=od[\"work_lat\"])\n", "paths_per = [\n", - " ox.shortest_path(G_per, orig, dest, weight=\"travel_time\")\n", + " ox.routing.shortest_path(G_per, orig, dest, weight=\"travel_time\")\n", " for orig, dest in zip(home_nodes_per, work_nodes_per)\n", "]\n", - "paths_per = [path for path in paths_per if path is not None]\n", + "paths_per = [path for path in paths_per if path is not None and len(path) > 1]\n", "len(paths_per)" ] }, @@ -393,7 +393,7 @@ "# shuffle the order, so you don't just plot new atop old\n", "paths_colors = pd.DataFrame({\"path\": all_paths, \"color\": colors}).sample(frac=1)\n", "\n", - "fig, ax = ox.plot_graph_routes(\n", + "fig, ax = ox.plot.plot_graph_routes(\n", " G,\n", " routes=paths_colors[\"path\"],\n", " node_size=0,\n", @@ -445,7 +445,7 @@ "outputs": [], "source": [ "# study area within 1/2 mile of SF Civic Center\n", - "latlng_coords = ox.geocode(\"Civic Center, San Francisco, CA, USA\")\n", + "latlng_coords = ox.geocoder.geocode(\"Civic Center, San Francisco, CA, USA\")\n", "latlng_point = Point(latlng_coords[1], latlng_coords[0])\n", "latlng_point_proj, crs = ox.projection.project_geometry(latlng_point)\n", "polygon_proj = latlng_point_proj.buffer(800)\n", @@ -505,7 +505,7 @@ "outputs": [], "source": [ "# model the street network across all the study sub-sites\n", - "G_all = ox.graph_from_polygon(sf_tracts.unary_union, custom_filter=custom_filter)\n", + "G_all = ox.graph.graph_from_polygon(sf_tracts.unary_union, custom_filter=custom_filter)\n", "len(G_all.nodes)" ] }, @@ -519,8 +519,10 @@ "# calculate clean intersection counts per tract\n", "intersect_counts = {}\n", "for label, geom in zip(sf_tracts.index, sf_tracts[\"geometry\"]):\n", - " G_tmp = ox.graph_from_polygon(geom, custom_filter=custom_filter)\n", - " clean_intersects = ox.consolidate_intersections(ox.project_graph(G_tmp), rebuild_graph=False)\n", + " G_tmp = ox.graph.graph_from_polygon(geom, custom_filter=custom_filter)\n", + " clean_intersects = ox.simplification.consolidate_intersections(\n", + " ox.projection.project_graph(G_tmp), rebuild_graph=False\n", + " )\n", " intersect_counts[label] = len(clean_intersects)" ] }, @@ -550,7 +552,7 @@ "ax = sf_tracts.plot(\n", " ax=ax, column=\"intersect_density\", cmap=\"Reds_r\", legend=True, legend_kwds={\"shrink\": 0.8}\n", ")\n", - "fig, ax = ox.plot_graph(G_all, ax=ax, node_size=0, edge_color=\"#111111\")\n", + "fig, ax = ox.plot.plot_graph(G_all, ax=ax, node_size=0, edge_color=\"#111111\")\n", "fig.savefig(\"map.png\", dpi=300, facecolor=\"#111111\", bbox_inches=\"tight\")" ] }, @@ -603,8 +605,8 @@ "outputs": [], "source": [ "# model the walkable network within our original study site\n", - "G_walk = ox.graph_from_polygon(polygon, network_type=\"walk\")\n", - "fig, ax = ox.plot_graph(G_walk, node_size=0, edge_color=\"w\", edge_linewidth=0.3)" + "G_walk = ox.graph.graph_from_polygon(polygon, network_type=\"walk\")\n", + "fig, ax = ox.plot.plot_graph(G_walk, node_size=0, edge_color=\"w\", edge_linewidth=0.3)" ] }, { @@ -616,7 +618,7 @@ "# set a uniform walking speed on every edge\n", "for u, v, data in G_walk.edges(data=True):\n", " data[\"speed_kph\"] = walk_speed\n", - "G_walk = ox.add_edge_travel_times(G_walk)" + "G_walk = ox.speed.add_edge_travel_times(G_walk)" ] }, { @@ -626,8 +628,8 @@ "outputs": [], "source": [ "# extract node/edge GeoDataFrames, retaining only necessary columns (for pandana)\n", - "nodes = ox.graph_to_gdfs(G_walk, edges=False)[[\"x\", \"y\"]]\n", - "edges = ox.graph_to_gdfs(G_walk, nodes=False).reset_index()[[\"u\", \"v\", \"travel_time\"]]" + "nodes = ox.utils_graph.graph_to_gdfs(G_walk, edges=False)[[\"x\", \"y\"]]\n", + "edges = ox.utils_graph.graph_to_gdfs(G_walk, nodes=False).reset_index()[[\"u\", \"v\", \"travel_time\"]]" ] }, { @@ -639,7 +641,7 @@ "# get all the \"fresh food\" stores on OSM within the study site\n", "# you could load any amenities DataFrame, but we'll get ours from OSM\n", "tags = {\"shop\": [\"grocery\", \"greengrocer\", \"supermarket\"]}\n", - "amenities = ox.geometries_from_bbox(\n", + "amenities = ox.features.features_from_bbox(\n", " north=nodes[\"y\"].max(),\n", " south=nodes[\"y\"].min(),\n", " east=nodes[\"x\"].min(),\n", @@ -707,7 +709,7 @@ "outputs": [], "source": [ "# plot distance to nearest amenity\n", - "fig, ax = ox.plot_graph(\n", + "fig, ax = ox.plot.plot_graph(\n", " G_walk, node_size=0, edge_linewidth=0.1, edge_color=\"gray\", show=False, close=False\n", ")\n", "\n", @@ -750,7 +752,7 @@ "outputs": [], "source": [ "# plot amenity count within your walking horizon\n", - "fig, ax = ox.plot_graph(\n", + "fig, ax = ox.plot.plot_graph(\n", " G_walk, node_size=0, edge_linewidth=0.1, edge_color=\"gray\", show=False, close=False\n", ")\n", "\n",