-
Notifications
You must be signed in to change notification settings - Fork 0
/
hahn-banach.tex
136 lines (115 loc) · 11.2 KB
/
hahn-banach.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
\subsection{Hahn-Banach Theorem}
In this subsection, we will state and prove \nameref{thm:funct:hahn-banach}.
\begin{theorem}[Hahn-Banach Theorem]
\label{thm:funct:hahn-banach}
Let $X$ be a real vector space, with a sublinear functional $\rho$ defined on $X$.
Suppose that $W$ is a linear subspace of $X$ and $f_W$ a linear functional on $W$ satisfying
\begin{equation}
f_W(w) \leq \rho(w), w \in W.
\end{equation}
Then $f_W$ has an extension $f$ on $X$ such that
\begin{equation}
f(x) \leq \rho(x), x \in X.
\end{equation}
\end{theorem}
\begin{proof-idea*}
The proof of this theorem relies on the \nameref{lemma:set:zorn}. It is divided in two parts. The first part is to show that it is possible to perform an extension along a 'single dimension'. The second part is a careful construction of the set of all possible extensions and the application of the \nameref{lemma:set:zorn} to produce the desired extension.
\end{proof-idea*}
\begin{lemma}[Single dimension extension lemma]
\label{lemma:hb:singledimensext}
Let $X$ be a real vector space and $W \subset X$ its proper linear subspace. Suppose that $f_{W}$ is a linear functional on $W$ and let $\rho$ be a sublinear functional on $X$.
Furthermore, suppose that
\begin{align}
\label{ineqn:funct:singledimens:ass1}
f_W(w) \leq p(w), \text{ for every $w \in W$}.
\end{align}
Suppose that $z \in X \setminus W$. Define $W_z$ by
\begin{align*}
W_z = \{ w + \alpha z : \alpha \in \R, w \in W \}.
\end{align*}
$W_z$ is a vector subspace of $X$. There exists a linear functional $f_{W_z} : W_z \to \R$ such that \[ f_{W_z}(w) = f_W(w), \text{ for every $w \in W$.} \]
Furthermore, for every $w \in W_z, f_{W_z}(w) \leq p(w)$.
\end{lemma}
\clearpage
\begin{proof}
We begin by showing that $W_z$ is indeed a vector subspace of $X$.
Suppose $\omega_1, \omega_2 \in W_z$, $\lambda \in \R$. Then $\omega_1 = w_1 + \alpha_1 z, \omega_2 = w_2 + \alpha_2 z$ for $\alpha_1, \alpha_2 \in \R, w_1, w_2 \in W$.
Since $W$ is linear, $0 \in W$ so $0 \in W_z$. Since $W$ is linear, $\lambda w_1 \in W$ so $\lambda \omega_1 \in W_z$. Since $W$ is linear, $w_1 + w_2 \in W$ so $\omega_1 + \omega_2 = (w_1 + w_2) + (\alpha_1 + \alpha_2) z \in W_z$.
Moreover, we claim that the representation of each element in $W_z$ is unique.
Suppose that $\omega = w_1 + \alpha_1 z = w_2 + \alpha_2 z$ for $\alpha_1, \alpha_2 \in \R, w_1, w_2 \in W$. This implies $(w_1 - w_2) = (\alpha_2 - \alpha_1) z$. Since $z \not \in W$ and $w_1 - w_2 \in W$, the equality holds if and only if $\alpha_2 = \alpha_1$. But then $w_1 = w_2$.
By linearity of $f_W$ on $W$, sublinearity of $\rho$ on X and \ref{ineqn:funct:singledimens:ass1}, for every $w_1, w_2 \in W$,
\begin{align*}
f_W(w_1) + f_W(w_2) = f_W(w_1 + w_2) &\leq \rho (w_1 + w_2) = \rho(w_1 - z + z + w_2) \\
&\leq \rho(w_1 - z) + \rho(w_2 + z),
\end{align*} which implies
\begin{align}
\label{ineqn:funct:singledimens:ineqntoinfsup}
f_W(w_1) - \rho(w_1 - z) &\leq \rho(w_2 + z) - f_W(w_2), \text{ for every $w_1, w_2 \in W$.}
\end{align}
By \ref{ineqn:funct:singledimens:ineqntoinfsup}, $\sup \{ f_W(w) - \rho(w - z) : w \in W \} \leq \inf \{ \rho(w + z) - f_W(w) : w \in W \}$.
Now let $\xi$ be any real number satisfying
\begin{align}
\label{ineqn:funct:singledimens:ineqen_infsup}
\sup \{ f_W(w) - \rho(w - z) : w \in W \} \leq \xi \leq \inf \{ \rho(w + z) - f_W(w) : w \in W \}.
\end{align}
Define $f_{W_{z}} : W_{z} \to \R$ by $f(w + \alpha z) = f(w) + \alpha \xi$. By uniqueness of representation of elements in $W_{z}$, the map $f_{W_{z}} $ is well-defined. We claim that $f$ is a desired extension. It is clear that $f_{W_{z}}$ agrees with $f_W$ on $W$.
We begin by discussing linearity.
Let $\omega_1, \omega_2 \in W_z$, $\lambda \in \R$. Then write $\omega_1 = w_1 + \alpha_1 z, \omega_2 = w_2 + \alpha_2 z$ for $\alpha_1, \alpha_2 \in \R, w_1, w_2 \in W$.
By linearity of $f_W$, \begin{align*}
f_{W_{z}}(\omega_1 + \omega_2) &= f_{W} (w_1 + w_2) + (\alpha_1 + \alpha_2)\xi = f_{W_{z}}(\omega_1) + f_{W_{z}}(\omega_2), \\
f_{W_{z}}(\lambda \omega_1) &= f_{W_{z}} (\lambda w_1 + \lambda \alpha_1 z) = f(\lambda w_1) + \lambda \alpha \xi = \lambda f(w_1) + \lambda \alpha \xi \\
&= \lambda f_{W_{z}} (\omega_1).
\end{align*}
Since $f_{W_{z}}$ agrees with $f_W$ on $W$, for $w \in W$, $f_{W_{z}}(w) \leq \rho(w)$. It remains to verify that $f_{W_{z}}(\omega) \leq \rho(\omega)$ for $\omega \in W_{z}$. Let $\omega \in W_z$, so $\omega = w + \alpha z$, $\alpha \in \R$.
If $\alpha = 0, \omega \in W$ so the claim holds by \ref{ineqn:funct:singledimens:ass1}.
If $\alpha > 0$,
\begin{align*}
f_{W_{z}} (w + \alpha z) &= \alpha \left (f_{W} (\frac{1}{\alpha} w) + \xi \right ) & \text{by linearity of $f_{W}$} \\
&\leq \alpha \left ( f_{W} (\frac{1}{\alpha} w) + \rho (\frac{1}{\alpha} w + z) - f_{W} (\frac{1}{\alpha} w) \right ) & \text{by \ref{ineqn:funct:singledimens:ineqen_infsup}} \\
&\leq \rho (w + \alpha z). & \text{by sublinearity of $\rho$}
\end{align*}
If $\alpha < 0$, $\alpha = - \beta$, $\beta > 0$ and
\begin{align*}
f_{W_{z}} (w + \alpha z) &= \beta \left (f_{W} (\frac{1}{\beta} w) - \xi \right ) & \text{by linearity of $f_{W}$} \\
&\leq \beta \left ( f_{W} (\frac{1}{\beta} w) - (f_{W} (\frac{1}{\beta} w) - \rho (\frac{1}{\beta} w - z) ) \right ) & \text{by \ref{ineqn:funct:singledimens:ineqen_infsup}} \\
&\leq \rho (w - \beta z) = \rho (w + \alpha z). & \text{by sublinearity of $\rho$}
\end{align*}
\end{proof}
\begin{proof}[Proof of the \nameref{thm:funct:hahn-banach}]
Let $\Omega$ be the set of all pairs $(W_\alpha, f_{\alpha})$ where:
\begin{enumerate}[label=(\roman*), noitemsep]
\item \label{axiom:hb:inclusion} $W_\alpha \subseteq X$ is a vector subspace of $X$, $f_\alpha : W_\alpha \to \R$ a linear functional on $W_\alpha$;
\item \label{axiom:hb:extension} $f_\alpha(w) = f_{W}(w), w \in W$;
\item \label{axiom:hb:domination} $f(w) \leq \rho(w), w\in W_\alpha$.
\end{enumerate}
Since $(W, f_{W}) \in \Omega$, $\Omega$ is nonempty and we define a relation $\prec$ on $\Omega$ by
\begin{align}
\label{defn:funct:hb:porder}
(W_\alpha, f_\alpha) \prec (W_\beta, f_\beta) \iff W_\alpha \subseteq W_\beta \text{ and $\forall x \in W_\alpha$, } f_\alpha(x) = f_\beta(x).
\end{align}
We claim that $\prec$ is a \nameref{defn:set:porder} on $\Omega$. Clearly, $(W_\alpha, f_\alpha) \prec (W_\alpha, f_\alpha)$ so \ref{defn:set:porder:P1} holds. Suppose that $(W_\alpha, f_\alpha) \prec (W_\beta, f_\beta)$ and $(W_\beta, f_\beta) \prec (W_\alpha, f_\alpha)$. By \ref{defn:funct:hb:porder}, $W_\alpha \subseteq W_\beta$ and $W_\beta \subseteq W_\alpha$. Therefore $W_\alpha = W_\beta$ and $f_\alpha = f_\beta$. Hence $(W_\alpha, f_\alpha) = (W_\beta, f_\beta)$ so \ref{defn:set:porder:P2} holds. Suppose that $(W_\alpha, f_\alpha) \prec (W_\beta, f_\beta)$ and $(W_\beta, f_\beta) \prec (W_\gamma, f_\gamma)$. By \ref{defn:funct:hb:porder}, $W_\alpha \subseteq W_\beta$, $W_\beta \subseteq W_\gamma$ so $W_\alpha \subseteq W_\gamma$. By \ref{defn:funct:hb:porder}, $f_\alpha, f_\beta$ agree on $W_\alpha$ and $f_\beta, f_\gamma$ agree on $W_\beta$ and since $W_\alpha \subseteq W_\beta$, $f_\alpha$ and $f_\gamma$ agree on $W_\alpha$. Hence $(W_\alpha, f_\alpha) \prec (W_\gamma, f_\gamma)$. This establishes \ref{defn:set:porder:P3} and $\prec$ is indeed a \nameref{defn:set:porder} on $\Omega$.
Suppose that $\Omega' \subseteq \Omega$ is totally ordered. Then $\Omega'$ is of the form
\begin{align*}
\Omega' = \{ (W_\alpha, f_\alpha) : (W_\alpha, f_\alpha) \in \Omega, \alpha \in A \},
\end{align*} for some nonempty index set $A$.
We will construct an \nameref{defn:set:upperbnd} for $\Omega'$ in $\Omega$. Define
\begin{align}
\label{defn:funct:hb:W}
U = \bigcup_{\alpha \in A} W_\alpha.
\end{align}
We will show $U$ is a vector subspace of $X$. Since $A$ is nonempty, let $\alpha \in A$. Since $W_\alpha$ is a vector subspace of $X$, $0 \in W_\alpha$ so $0 \in U$. Let $w_1, w_2 \in U, \lambda \in \R$.
Since $w_1 \in U$, $w_1 \in W_\alpha$ for $\alpha \in A$.
Since $w_2 \in U$, $w_2 \in W_\beta$ for $\beta \in A$.
Since $W_\alpha$ is a vector subspace of $X$, $\lambda w_1 \in W_\alpha$ so $\lambda w_1 \in U$.
By the total ordering of $\Omega'$, either $W_\alpha \prec W_\beta$ or $W_\beta \prec W_\alpha$.
Without loss of generality, $W_\alpha \prec W_\beta$. Since $W_\alpha$ is a vector subspace of $X$, $w_1 + w_2 \in W_\alpha$ so $w_1 + w_2 \in U$.
We define $f : U \to \R$ as follows. Let $w \in U$. By \ref{defn:funct:hb:W}, $w \in W_\alpha$ for some $\alpha \in A$. Then set $f(w) = f_\alpha(w)$. We will show that $f$ is well-defined. Suppose that $w \in W_\alpha \cap W_\beta$, $\alpha, \beta \in A$. By the total ordering of $\Omega'$, either $W_\alpha \prec W_\beta$ or $W_\beta \prec W_\alpha$. Without loss of generality, $W_\alpha \prec W_\beta$. By \ref{defn:funct:hb:porder}, $W_\alpha \subseteq W_\beta$ and $f_\alpha(w) = f_\beta(w)$ since $w \in W_\alpha$. Thus, $f$ is well-defined.
We will show $f$ is linear on $U$. Take $w_1, w_2 \in U$ and $\lambda \in \R$.
Since $w_1 \in U$, $w_1 \in W_\alpha$ for $\alpha \in A$.
Since $w_2 \in U$, $w_2 \in W_\beta$ for $\beta \in A$.
Since $f_\alpha$ is linear on $W_\alpha$, $f(\lambda w_1) = f_\alpha(\lambda w_1) = \lambda f_\alpha(w_1) = \lambda f(w_1)$. By the total ordering of $\Omega'$, either $W_\alpha \prec W_\beta$ or $W_\beta \prec W_\alpha$. Without loss of generality, $W_\alpha \prec W_\beta$. By \ref{defn:funct:hb:porder}, $W_\alpha \subseteq W_\beta$. Then $w_1, w_2 \in W_\beta$. Since $f_\beta$ is linear on $W_\beta$, $f(w_1 + w_2) = f_\beta (w_1 + w_2) = f_\beta(w_1) + f_\beta(w_2) = f(w_1) + f(w_2)$.
We will prove that $f$ is an extension of $f_W$ in the sense of \ref{axiom:hb:extension}. Let $w \in W$. Since for each $\alpha \in A$, $(W_\alpha, f_\alpha)$ in $\Omega$, by \ref{axiom:hb:extension}, $f_\alpha(w) = f_W(w)$. By definition of $f$, $f(w) = f_\alpha(w) = f_W(w)$.
Now we prove that $f$ is dominated by $\rho$ in the sense of \ref{axiom:hb:domination}.
Consider $w \in U$. By \ref{defn:funct:hb:W}, $w \in W_\alpha$ for some $\alpha \in A$. By \ref{axiom:hb:domination}, $f_\alpha(w)\leq \rho(w)$. By definition of $f$, $f(w) = f_\alpha(w) \leq \rho(w)$.
Hence $(U, f) \in \Omega$. We claim $(U, f)$ is an \nameref{defn:set:upperbnd} of $\Omega'$. Let $(W_\alpha, f_\alpha) \in \Omega'$. Clearly, $W_\alpha \subseteq U$. Consider $w \in W_\alpha$. By definition of $f$, $f(w) = f_\alpha(w)$. So $f$ and $f_\alpha$ agree on $W_\alpha$. Thus, $(W_\alpha, f_\alpha) \prec (U, f)$. By \nameref{lemma:set:zorn}, $\Omega$ contains a maximal element, say $(\widetilde{U}, \widetilde{f})$. To prove $\widetilde{f}$ is a desired extension of $f_W$, we will prove $\widetilde{U} = X$. Suppose not. Then $\widetilde{U} \subset X$ and there exists $z \in X \setminus \widetilde{U}$. By \nameref{lemma:hb:singledimensext}, $\widetilde{f}$ can be extended to $f_{\widetilde{U}_z}$ on ${\widetilde{U}_z}$ such that $(\widetilde{U}_z, f_{\widetilde{U}_z}) \in \Omega$ with $(\widetilde{U}, \widetilde{f}) \prec (\widetilde{U}_z, f_{\widetilde{U}_z})$, contradicting the maximality of $(\widetilde{U}, \widetilde{f})$. Hence $\widetilde{U} = X$.
\end{proof}