-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathita_cost.py
230 lines (206 loc) · 11.7 KB
/
ita_cost.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
#Author: Mahalia Miller
#Date: Jan. 21, 2013
#this code does iterative travel assignment.
import sys, util, pdb, math, time
import networkx as nx
import bd_test
iteration_vals = [0.4, 0.3, 0.2, 0.1] #assign od vals in this amount per iteration. These are recommeded values from the Nature paper, http://www.nature.com/srep/2012/121220/srep01001/pdf/srep01001.pdf
#iteration_vals = [1.0, 0, 0, 0]
# class ITA:
# def __init__(self, G, demand):
# #G is a networkx graph, it can be damaged. Edges need to have a free flow travel time, a capacity, a variable called flow (which we'll change to keep track of flows assigned to each link), and a variable called t_a (which we'll change based on the flows)
# self.G = G
# self.demand = demand
#
# def assign(self):
# #does 4 iterations in which it assigns od, updates t_a. find paths to minimize travel time and we record route for each od pair
# total_flow = 0
#
# # TEMPORARY GB ADDITIONS
# not_made = []
# not_made_od = []
# no_count_1 = 0
# no_count_2 = 0
# # origins = ['1000028', '1000029', '1000024', '1000025', '1000026', '1000027', '1000020', '1000021', '1000008', '1000009', '1000006', '1000007', '1000004', '1000005', '1000002', '1000003', '1000001', '1000022', '1000030', '1000034', '1000033', '1000032', '1000011', '1000010', '1000013', '1000012', '1000015', '1000014', '1000017', '1000016', '1000019', '1000018', '1000023', '1000031']
# # destinations = {}
# # for origin in origins:
# # destinations[origin] = self.demand[origin].keys()
#
# null_count = 0
# total_count = 0
# for edge in self.G.edges():
# if self.G[edge[0]][edge[1]]['capacity'] <= 0:
# null_count += 1
# total_count += 1
# print 'in ITA -- null count for graph self.G is = ', null_count, ' of ', total_count
#
# for i in range(4): #do 4 iterations
# #for origin in origins:
# for origin in self.demand.keys(): #origin is an actual A (one end of an actual edge in the graph)
# #find the shortest paths from this origin to each destination
# paths_dict = nx.single_source_dijkstra_path(self.G, origin, cutoff = None, weight = 't_a') #Compute shortest path between source and all other reachable nodes for a weighted graph. Returns dict keyed by by target with the value being a list of node ids of the shortest path
# for destination in self.demand[origin].keys(): #actual A or B (one end of an actual edge in the graph)
# # for destination in destinations[origin]:
# od_flow = iteration_vals[i] * self.demand[origin][destination] #to get morning flows, take 5.3% of daily driver values. 11.5/(4.5*6+11.5*10+14*4+4.5*4) from Figure S10 of http://www.nature.com/srep/2012/121220/srep01001/extref/srep01001-s1.pdf
#
# #get path
# path_list = paths_dict[destination] #list of nodes
#
# od_made = True # start off by assuming we can make the trip from origin to destination along the shortest path as described in path_list
# #increment flow on the paths and update t_a
# for index in range(0, len(path_list) - 1):
# u = path_list[index]
# v = path_list[index + 1]
#
# if self.G.is_multigraph():
# num_multi_edges = len(self.G[u][v]) #if not multigraph, this just returns the number of edge attributes
# if num_multi_edges >1: #multi-edge
# #identify multi edge with lowest t_a
# best = 0
# best_t_a = float('inf')
# for multi_edge in self.G[u][v].keys():
# new_t_a = self.G[u][v][multi_edge]['t_a'] #causes problems
# if (new_t_a < best_t_a) and (self.G[u][v][multi_edge]['capacity']>0):
# best = multi_edge
# best_t_a = new_t_a
# else:
# best = 0
# if (self.G[u][v][best]['capacity']>0): # if the edge capacity is greater than 0
# self.G[u][v][best]['flow'] += od_flow # assign the flow to the edge
# t = util.TravelTime(self.G[u][v][best]['t_0'], self.G[u][v][best]['capacity'])
# travel_time = t.get_new_travel_time(self.G[u][v]['flow']) # CHANGE PER JML
# self.G[u][v][best]['t_a'] = travel_time
# else:
# no_count_1 += 1
# else:
# try:
# if (self.G[u][v]['capacity']>0): # if the edge capacity is greater than 0
# self.G[u][v]['flow'] += od_flow # assign the flow to the edge
# t = util.TravelTime(self.G[u][v]['t_0'], self.G[u][v]['capacity'])
# travel_time= t.get_new_travel_time(self.G[u][v]['flow']) # CHANGE PER JML
# self.G[u][v]['t_a'] = travel_time #in seconds
# else:
# od_made = False # if we couldn't make the trip between node u and node v, change od_made to False
# not_made.append((u,v))
# not_made_od.append((origin,destination))
# no_count_2 += 1
# except KeyError as e:
# print('found key error: ', e)
# pdb.set_trace()
#
# total_flow += od_made*od_flow # if we manage to make it all the way from origin to destination along the path in path_list, add the od_flow to the total_flow
#
# print 'not made: ', len(list(set(not_made))), list(set(not_made))
# print 'no counts = ', no_count_1, no_count_2
# #print 'not made OD: ', len(list(set(not_made_od))), list(set(not_made_od))
#
# return self.G, total_flow #, total_dem, lost_flow, od_pairs_lost
#
#
# def test():
# #create graph info
# G = nx.MultiDiGraph()
# G.add_node(1)
# G.add_node(2)
# G.add_node(3)
# G.add_edge(1,2,capacity_0=1000,capacity=1000,t_0=15,t_a=15,flow=0, distance=10)
# G.add_edge(1,2,capacity_0=3000,capacity=3000,t_0=20,t_a=20,flow=0, distance=10)
# G.add_edge(2,3, capacity_0=0, capacity=0, t_0 = 10, t_a = 10, flow = 0, distance = 10)
# #get od info. This is in format of a dict keyed by od, like demand[sd1][sd2] = 200000.
# demand = {}
# demand[1] = {}
# demand[1][2] = 8000 #divide by 0.053 since that is what we multiply by above
# demand[2] = {}
# demand[2][3] = 4000
#
# #call ita
# it = ITA(G,demand)
# newG, total_flow, total_demand, lost_flow, od_pairs_lost = it.assign()
# print(newG)
# print('total flow:', total_flow)
# print('total demand:', total_demand)
# print('proportion of demand met:', (total_flow/total_demand))
# for n,nbrsdict in newG.adjacency_iter():
# for nbr,keydict in nbrsdict.items():
# for key,eattr in keydict.items():
# print (n, nbr, eattr['flow'])
# print('should have flow of 3200 and 4800')
class ITA:
def __init__(self, G, demand):
#G is a networkx graph, it can be damaged. Edges need to have a free flow travel time, a capacity, a variable called flow (which we'll change to keep track of flows assigned to each link), and a variable called t_a (which we'll change based on the flows)
self.G = G
self.demand = demand
def assign(self):
#does 4 iterations in which it assigns od, updates t_a. find paths to minimize travel time and we record route for each od pair
trips_made = 0 # tracker for number of trips made on the whole network
lost_trips = 0 # tracker for number of trips that don't get made
# GB BUG FIX #1: sort OD pairs to fix inconsistency across different runs of the traffic assignment
origins = [int(i) for i in self.demand.keys()] # get SD node IDs as integers
origins.sort() # sort them
origins = [str(i) for i in origins] # make them strings again
od_dict = bd_test.build_od(self.demand) # GB BUG FIX #1, continued: sort OD pairs to fix inconsistency across different runs of the traffic assignment
for i in range(len(iteration_vals)): #do 4 iterations
for origin in origins:
paths_dict = nx.single_source_dijkstra_path(self.G, origin, cutoff = None, weight = 't_a') #Compute shortest path between source and all other reachable nodes for a weighted graph. Returns dict keyed by by target with the value being a list of node ids of the shortest path
for destination in od_dict[origin]:
od_flow = 0.053*iteration_vals[i] * self.demand[origin][destination] #to get morning flows, take 5.3% of daily driver values. 11.5/(4.5*6+11.5*10+14*4+4.5*4) from Figure S10 of http://www.nature.com/srep/2012/121220/srep01001/extref/srep01001-s1.pdf
try:
# GB NOTE: get shortest path from origin to destination, but note that it may not exist -- that's why this is in a "try/except" framework
path_list = paths_dict[destination] #list of nodes
od_made = True # start off by assuming we can make the trip from origin to destination along the shortest path as described in path_list
for index in range(0, len(path_list) - 1): # GB BUG FIX #2: before assigning flow to edges, check whether the trip between origin and destination can be completed -- if it can't, we assume people won't attempt to make it and get stuck partway
u = path_list[index]
v = path_list[index + 1]
if (self.G[u][v]['capacity'] < 0):
od_made = False
break
if od_made: # GB BUG FIX #2, continued: only assign flow to edges if the trip can be made (i.e. all edges have non-zero capacity)
for index in range(0, len(path_list) - 1):
u = path_list[index]
v = path_list[index + 1]
try:
if (self.G[u][v]['capacity']>0): # if the edge capacity is greater than 0
self.G[u][v]['flow'] += od_flow # assign the flow to the edge
t = util.TravelTime(self.G[u][v]['t_0'], self.G[u][v]['capacity']) # GB QUESTION -- does t_0 never get updated???
travel_time= t.get_new_travel_time(self.G[u][v]['flow']) # GB BUG FIX #3 -- CHANGE PER JML
self.G[u][v]['t_a'] = travel_time #in seconds
else:
od_made = False # if we couldn't make the trip between node u and node v, change od_made to False
break # GB ADDITION -- we should not continue assigning traffic to edges between origin and destination if destination is not reachable from origin!
except KeyError as e:
print('found key error: ', e)
pdb.set_trace()
trips_made += od_made*od_flow # if we manage to make it all the way from origin to destination along the path in path_list, add the od_flow to the total_flow
except:
lost_trips += od_flow
pass
return self.G, trips_made
def test():
#create graph info
G = nx.MultiDiGraph()
G.add_node(1)
G.add_node(2)
G.add_node(3)
G.add_edge(1,2,capacity_0=1000,capacity=1000,t_0=15,t_a=15,flow=0, distance=10)
G.add_edge(1,2,capacity_0=3000,capacity=3000,t_0=20,t_a=20,flow=0, distance=10)
G.add_edge(2,3, capacity_0=0, capacity=0, t_0 = 10, t_a = 10, flow = 0, distance = 10)
#get od info. This is in format of a dict keyed by od, like demand[sd1][sd2] = 200000.
demand = {}
demand[1] = {}
demand[1][2] = 8000 #divide by 0.053 since that is what we multiply by above
demand[2] = {}
demand[2][3] = 4000
#call ita
it = ITA(G,demand)
newG, total_flow, total_demand, lost_flow, od_pairs_lost = it.assign()
print(newG)
print('total flow:', total_flow)
print('total demand:', total_demand)
print('proportion of demand met:', (total_flow/total_demand))
for n,nbrsdict in newG.adjacency_iter():
for nbr,keydict in nbrsdict.items():
for key,eattr in keydict.items():
print (n, nbr, eattr['flow'])
print('should have flow of 3200 and 4800')
if __name__ == '__main__':
test()