-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
297 lines (238 loc) · 11.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import os
import argparse
import logging
import datetime
import torch
import torch.nn as nn
import torchtext
from collections import OrderedDict
from machine.trainer import SupervisedTrainer
from machine.models import EncoderRNN, Seq2seq
from machine.loss import NLLLoss
from machine.metrics import WordAccuracy, SequenceAccuracy, FinalTargetAccuracy
from machine.dataset import SourceField, TargetField
from machine.util.checkpoint import Checkpoint
from machine.dataset.get_standard_iter import get_standard_iter
from utils import generate_filename_from_options, TensorboardCallback, \
EarlyStoppingCallback, ReduceLRonPlateauCallback
from model import DecoderRNN
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# CONSTANTS
IGNORE_INDEX = -1
LOG_FORMAT = '%(asctime)s %(name)-12s %(levelname)-8s %(message)s'
# Prepare logging and data set
logging.basicConfig(format=LOG_FORMAT, level=getattr(logging, 'INFO'))
def init_argparser():
parser = argparse.ArgumentParser()
# Optimizer settings
parser.add_argument('--epochs', type=int,
help='Number of epochs (default, 100)', default=100)
parser.add_argument('--optim', type=str, help='Choose optimizer',
choices=['adam', 'adadelta', 'adagrad',
'adamax', 'rmsprop', 'sgd'],
default='sgd')
parser.add_argument('--param_init_glorot', action='store_true',
help="Initialize weights using Glorot/Xavier initialization")
parser.add_argument('--param_init', type=float,
help='Initialize parameters uniformly from (param_init, -param_init)', default=0.1)
parser.add_argument(
'--lr', type=float, help='Learning rate, recommended settings.\nrecommended \
settings: adam=0.001 adadelta=1.0 adamax=0.002 rmsprop=0.01 sgd=1.0', default=1.0)
# Model arguments
parser.add_argument('--max_len', type=int,
help='Maximum sequence length', default=50)
parser.add_argument(
'--rnn_cell', help="Chose type of rnn cell", default='lstm')
parser.add_argument('--bidirectional', action='store_true',
help="Flag for bidirectional encoder")
parser.add_argument('--embedding_size', type=int,
help='Embedding size', default=256)
parser.add_argument('--hidden_size', type=int,
help='Hidden layer size', default=256)
parser.add_argument('--n_layers', type=int,
help='Number of RNN layers in both encoder and decoder', default=2)
parser.add_argument('--src_vocab', type=int,
help='source vocabulary size', default=600)
parser.add_argument('--tgt_vocab', type=int,
help='target vocabulary size', default=600)
parser.add_argument('--dropout_p_encoder', type=float,
help='Dropout probability for the encoder', default=0.1)
parser.add_argument('--dropout_p_decoder', type=float,
help='Dropout probability for the decoder', default=0.1)
# Attention arguments
parser.add_argument(
'--attention', choices=['pre-rnn', 'post-rnn', 'none'], default='post-rnn')
parser.add_argument('--attention_method',
choices=['dot', 'mlp', 'concat', 'general'], default='dot')
# Positional Attention arguments
parser.add_argument('--positional_attention', action='store_true',
help="Use positional attention")
parser.add_argument('--positioning_generator_size', type=int,
help='Embedding size of the positional generator (default, 20)', default=20)
parser.add_argument(
'--attention_mixer', choices=['sum', 'mean', 'mixer'], default='sum',
help='Type of mixing used for mixing both types of attention')
# Data arguments
parser.add_argument('--batch_size', type=int,
help='Batch size', default=64)
parser.add_argument('--eval_batch_size', type=int,
help='Batch size', default=128)
# Data management
parser.add_argument('--load_checkpoint',
help='The name of the checkpoint to load, usually an encoded time string')
parser.add_argument('--save_every', type=int,
help='Every how many batches the model should be saved', default=1000)
parser.add_argument('--print_every', type=int,
help='Every how many batches to print results', default=1000)
parser.add_argument('--resume-training', action='store_true',
help='Indicates if training has to be resumed from the latest checkpoint')
parser.add_argument('--log-level', default='info', help='Logging level.')
parser.add_argument('--mini', action='store_true',
help="Flag for using mini dataset")
parser.add_argument('--write_logs', action='store_true',
help="Flag for writing logs after training")
parser.add_argument('--seed', type=int, default=123, metavar='S',
help='random seed (default: 123)')
return parser
def validate_options(parser, opt):
if opt.resume_training and not opt.load_checkpoint:
parser.error(
'load_checkpoint argument is required to resume training from checkpoint')
if not opt.attention and opt.attention_method:
parser.error(
"Attention method provided, but attention is not turned on")
if opt.attention == 'none':
opt.attention = False
if opt.attention and not opt.attention_method:
logging.info("No Attention method provided. Using DOT method.")
opt.attention_method = 'dot'
return opt
def prepare_iters(opt):
src = SourceField(batch_first=True)
tgt = TargetField(batch_first=True, include_eos=True)
tabular_data_fields = [('src', src), ('tgt', tgt)]
max_len = opt.max_len
def len_filter(example):
return len(example.src) <= max_len and len(example.tgt) <= max_len
ds = '100K'
if opt.mini:
ds = '10K'
# generate training and testing data
train = get_standard_iter(torchtext.data.TabularDataset(
path='data/pcfg_set/{}/train.tsv'.format(ds), format='tsv',
fields=tabular_data_fields,
filter_pred=len_filter), batch_size=opt.batch_size)
dev = get_standard_iter(torchtext.data.TabularDataset(
path='data/pcfg_set/{}/dev.tsv'.format(ds), format='tsv',
fields=tabular_data_fields,
filter_pred=len_filter), batch_size=opt.eval_batch_size)
monitor_data = OrderedDict()
m = get_standard_iter(torchtext.data.TabularDataset(
path='data/pcfg_set/{}/test.tsv'.format(ds), format='tsv',
fields=tabular_data_fields,
filter_pred=len_filter), batch_size=opt.eval_batch_size)
monitor_data['Test'] = m
return src, tgt, train, dev, monitor_data
def initialize_model(opt, src, tgt, train):
# build vocabulary
src.build_vocab(train.dataset, max_size=opt.src_vocab)
tgt.build_vocab(train.dataset, max_size=opt.tgt_vocab)
input_vocab = src.vocab
output_vocab = tgt.vocab
# Initialize model
hidden_size = opt.hidden_size
decoder_hidden_size = hidden_size * 2 if opt.bidirectional else hidden_size
encoder = EncoderRNN(len(src.vocab), opt.max_len, hidden_size, opt.embedding_size,
dropout_p=opt.dropout_p_encoder,
n_layers=opt.n_layers,
bidirectional=opt.bidirectional,
rnn_cell=opt.rnn_cell,
variable_lengths=True)
decoder = DecoderRNN(len(tgt.vocab), opt.max_len, decoder_hidden_size,
dropout_p=opt.dropout_p_decoder,
n_layers=opt.n_layers,
use_attention=opt.attention,
attention_method=opt.attention_method,
use_positional_attention=opt.positional_attention,
bidirectional=opt.bidirectional,
rnn_cell=opt.rnn_cell,
eos_id=tgt.eos_id, sos_id=tgt.sos_id,
positioning_generator_size=opt.positioning_generator_size,
attention_mixer=opt.attention_mixer)
# initialize weights using uniform distribution
def uniform_weights_init(m):
if isinstance(m, nn.LSTM):
for name, param in m.named_parameters():
if 'bias' in name:
nn.init.constant_(param, 0.0)
elif 'weight' in name:
nn.init.uniform_(param, -opt.param_init, opt.param_init)
if isinstance(m, nn.Linear) or isinstance(m, nn.Embedding):
nn.init.uniform_(m.weight, -opt.param_init, opt.param_init)
if opt.param_init > 0.0:
encoder.apply(uniform_weights_init)
decoder.apply(uniform_weights_init)
seq2seq = Seq2seq(encoder, decoder)
if torch.cuda.device_count() > 1:
logging.info("Using {} GPUs".format(torch.cuda.device_count()))
seq2seq = nn.DataParallel(seq2seq)
# xavier initialization if flag
if opt.param_init_glorot:
for p in seq2seq.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
seq2seq.to(device)
return seq2seq, input_vocab, output_vocab
def prepare_losses_and_metrics(pad, eos):
# Prepare loss and metrics
losses = [NLLLoss(ignore_index=pad)]
loss_weights = [1.]
for loss in losses:
loss.to(device)
metrics = []
metrics.append(WordAccuracy(ignore_index=pad))
metrics.append(SequenceAccuracy(ignore_index=pad))
return losses, loss_weights, metrics
def train_pcfg_model():
# Create command line argument parser and validate chosen options
parser = init_argparser()
opt = parser.parse_args()
opt = validate_options(parser, opt)
opt.file_name = generate_filename_from_options(opt)
# Seed
torch.manual_seed(opt.seed)
torch.cuda.manual_seed_all(opt.seed)
# Prepare data
src, tgt, train, dev, monitor_data = prepare_iters(opt)
# Prepare model
seq2seq, _, output_vocab = initialize_model(opt, src, tgt, train)
pad = output_vocab.stoi[tgt.pad_token]
eos = tgt.eos_id
# timestamp for tensorboard run
now = datetime.datetime.now()
timestamp = now.strftime("%m-%d_%H-%M-%S")
# Prepare training
losses, loss_weights, metrics = prepare_losses_and_metrics(pad, eos)
run_folder = 'runs/' + opt.file_name+'/'+timestamp
model_folder = 'models/'+opt.file_name
trainer = SupervisedTrainer(expt_dir=model_folder)
checkpoint_path = os.path.join(model_folder, opt.load_checkpoint
) if opt.resume_training else None
early_stop = EarlyStoppingCallback(patience=100)
reduce_lr = ReduceLRonPlateauCallback(factor=0.5, patience=50)
# custom callbacks to log to tensorboard and do early stopping
custom_cbs = [TensorboardCallback(run_folder), early_stop, reduce_lr]
# Train
seq2seq, logs = trainer.train(seq2seq, train,
num_epochs=opt.epochs, dev_data=dev,
monitor_data=monitor_data, optimizer=opt.optim,
learning_rate=opt.lr,
resume_training=opt.resume_training,
checkpoint_path=checkpoint_path,
losses=losses, metrics=metrics, loss_weights=loss_weights,
checkpoint_every=opt.save_every, print_every=opt.print_every,
custom_callbacks=custom_cbs)
if opt.write_logs:
logs.write_to_file(run_folder+'/logs')
if __name__ == "__main__":
train_pcfg_model()