-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalc33-limits.tex
342 lines (309 loc) · 11.7 KB
/
calc33-limits.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
%%%%%%%%%%%%%%%%%%%%
%
% DIRECTIONS
% Students count off 1, 2, 3, ..., 7, do the one question,
% then explain their answer to their neighbor.
% Perhaps volunteers fill out answer key (+doc camera).
%
% TO PRINT SOLUTIONS
% Typeset with class option "answers",
% ie, \documentclass[10pt, answers]{exam}
%
%%%%%%%%%%%%%%%%%%%%
\RequirePackage{luatex85}
\documentclass[10pt, answers]{exam}
\usepackage{tikz, pgfplots, amsmath, mathtools, multicol, xargs, setspace}
%\pgfplotsset{compat=1.15}
\usepackage[letterpaper, margin=0.5in, column sep=1in]{geometry}
\setlength\parindent{0mm}
% define macro \Repeat{integer}{content}
\usepackage{expl3}
\ExplSyntaxOn
\cs_new_eq:NN \Repeat \prg_replicate:nn
\ExplSyntaxOff
\usepackage{hyperref}
\setlength\fillinlinelength{0.7in}
\setlength\answerclearance{0.7ex}
\CorrectChoiceEmphasis{\bfseries\color{red}}
% diagram for questions on pages 1 and 3
\def\yscaleone{2.6} % = amount to shrink diagram in y direction
\newcommand\diagram{
\fullwidth{
\vspace{-1em}
\begin{center}
\begin{tikzpicture}
[very thick, yscale=1/\yscaleone]
% grid
% \draw[gray, semithick, ystep=100, xstep=2, xshift=-1cm] (1,0) grid (12,20.5);
\draw[gray, semithick, xstep=100, ystep=2, xshift=-1cm] (0,0) grid (15.25,20.5);
% x- and y-axes
\draw[<->, semithick] (-1,21) -- node[pos=0.03, right] {$y$} (-1,0) -- node[pos=0.99, above] {$x$} (14.5,0);
% labels on y-axis
\foreach \y in {0,10,...,200}
\draw (-1,\y/10) node[left] {\y};
% labels on x-axis
\foreach \x in {1,...,12}
\draw (\x,0) node[below] {\x};
% vertical asymptotes
\foreach \x in {8,...,12}
\draw[dashed] (\x,0) -- (\x,20.5);
% horizontal asymptotes
\foreach \y in {9,6}
\draw[dashed] (-1,\y) -- (14.25,\y);
% plot five curves on left half
\draw[smooth] plot coordinates{(-1,8.85) (0.2,8.6) (1,7) (2,2) (3.15,1.15) (4,5)};
\draw (4,8) -- (5,7);
\draw (5,16) to [bend right=10] (6,10);
\draw (6,14) -- (7,13);
\draw (7,17) to [bend left=10] (8,11);
% plot five asymptotic curves on right half
\draw[smooth] plot coordinates {(8.1,20.5) (8.2,15) (8.8,15) (8.9,20.5)};
\draw[smooth] plot coordinates {(9.1,20.5) (9.2,12) (9.8,8) (9.9,0)};
\draw[smooth] plot coordinates {(10.1,20.5) (10.2,13) (10.8,13) (10.9,20.5)};
\draw[smooth] plot coordinates {(11.1,0) (11.2,10.5) (11.8,10.5) (11.9,0)};
\draw[smooth] plot coordinates {(12.1,0) (12.4,5) (14.25,5.85)};
% open circles
\foreach \x/\y in {2/2, 3/1, 4/5, 4/8, 5/7, 5/16, 6/10, 7/17, 8/11}
\draw[black, fill=white, yscale=\yscaleone] (\x,\y/\yscaleone) circle (3pt);
% closed circles
\foreach \x/\y in {1/7, 3/4, 5/19, 6/14, 7/13, 8/3, 11/15, 12/18}
\draw[black, fill=black, yscale=\yscaleone] (\x,\y/\yscaleone) circle (2.5pt);
% f(x) label
\draw (1.5,15) node[fill,white] {\color{black} \huge$f(x)$};
\end{tikzpicture}
\end{center}
}
\vspace{-1em}
}
\newcommandx\myfillin[6][1=\relax,2=black,3=white,usedefault]{
\\[-0.7ex]
\color{#2}
{#1 \lim_{x\to\mathrlap{\mathbf{#4}}\phantom{0^+}}{}}
\smash{#5}
&\color{#2}=\color{white}
\rlap{\hspace{0.5\fillinlinelength}\clap{\color{#3}\bfseries\text{#6}}}
\color{white}
\fillin[#6]
}
% template for questions 1 through 12 on page 1
\newcommandx\threelim[4]{
\question $\left\{\begin{aligned}
\\[-6ex]
\myfillin[\color{white}]{}{f(\arabic{question})}{#1}
\myfillin{\arabic{question}^-}{f(x)}{#2}
\myfillin{\arabic{question}^+}{f(x)}{#3}
\myfillin{\arabic{question}}{f(x)}{#4}
\end{aligned}\right.$
}
% template for questions 15 through 26 on page 2
\newcommandx\fivelim[6][
1={{grid=none, ticks=none}}, 2=\relax, 3=black, usedefault
]{
\def\displayfx{#4}
\def\displayfzero{#5}
\def\axisfunction{#6}
\def\axisstyleoptions{#1}
\def\axisoptions{#2}
\def\colordoublelimit{#3}
\fivelimcontinued
}
\newcommandx\fivelimcontinued[9][
1=\relax, 2=\relax, 3=\relax, 4=\relax, 5=\relax, 6=\relax,
7=white, 8=white, 9=white, usedefault
]{
\question
\(\begin{matrix}
\begin{tikzpicture}
\begin{axis}[
every axis/.append style={font=\tiny},
xmin=-3.1, xmax=3.1,
ymin=-2.4, ymax=2.4,
samples=99,
major tick length={0},
line width=1pt,
axis lines=center, height=1.6in, width=2in, grid=major,
restrict y to domain=-2.4:2.4,
% title={\normalsize{\unboldmath$\displaystyle f(x) = #1$}},
extra y tick style={y tick label style={right}},
\axisstyleoptions,
% samples=59 % speed up compile for testing
]
\addplot [black, smooth, thick, domain=-3:3] {\axisfunction};
\axisoptions
\end{axis}
\end{tikzpicture}
\end{matrix}\)
\vspace{-3mm}
\fullwidth{\(\begin{aligned}
\myfillin[\color{white}][][#7]{}{\displayfzero}{#1}
\myfillin[][][#8]{0^-}{\displayfx}{#2}
\myfillin[][][#8]{0^+}{\displayfx}{#3}
\myfillin[][\colordoublelimit][#8]{0}{\displayfx}{#4}
\myfillin[][][#9]{-\infty}{\displayfx}{#5}
\myfillin[][][#9]{+\infty}{\displayfx}{#6}
\end{aligned}\)}
}
\newcommand\opencircle[1]{
\draw[black, fill=white, thick](axis cs:{#1}) circle [radius=2pt];
}
\newcommand\closecircle[1]{
\fill[black] (axis cs:{#1}) circle [radius=2pt];
}
\newcommand\asymptote[2]{
\draw[dashed, blue, line width=0.8mm]
(axis cs: #1) -- (axis cs: #2);
}
\thispagestyle{empty}
\pagestyle{empty}
\begin{document}
\diagram
\begin{questions}
\section{Find Limits Graphically}
\begin{multicols}3
\threelim{70}{70}{70}{70}
\threelim{undefined}{20}{20}{20}
\threelim{40}{10}{10}{10}
\threelim{undefined}{50}{80}{DNE}
\threelim{190}{70}{160}{DNE}
\threelim{140}{100}{140}{DNE}
\threelim{130}{130}{170}{DNE}
\end{multicols}
\section{Find Limits Involving Infinity Graphically}
\begin{multicols}3
\threelim{30}{110}{$+\infty$}{DNE}
\threelim{undefined}{$+\infty$}{$+\infty$}{$+\infty$}
\threelim{undefined}{$-\infty$}{$+\infty$}{DNE}
\threelim{150}{$+\infty$}{$-\infty$}{DNE}
\threelim{180}{$-\infty$}{$-\infty$}{$-\infty$}
\bigskip
\question $\lim\limits_{x\to \mathbf{-\infty}}f(x) = \color{white}\fillin[90]$
\question $\lim\limits_{x\to \mathbf{+\infty}}f(x) = \color{white}\fillin[60]$
\end{multicols}
\clearpage
\section{Famous Functions}
\setlength\columnsep{8mm}
\raggedcolumns
\begin{multicols}4
\fivelim[][\asymptote{-3,0}{3,0}\asymptote{0,-2}{0,2}]
{1/x}{1/0}{1/x}
[undefined][$-\infty$][$+\infty$][DNE][0][0]
\fivelim[samples={501}, xtick={0}, ytick={0}][][white]
{\sqrt x}{\sqrt0}{sqrt(x)}
[0][DNE][0][][DNE][$+\infty$]
\fivelim[ytick={1}, xtick={0}][asymptote{-3,0}{3,0}]
{e^x}{e^0}{e^x}
[1][1][1][1][0][$+\infty$]
\fivelim[][\asymptote{0,-2}{0,2}][white]
{\ln x}{\ln0}{ln(x)}
[undefined][DNE][$-\infty$][][DNE][$+\infty$]
\end{multicols}
\vfill
\begin{multicols}4
\fivelim[][\asymptote{-3,0}{3,0}\asymptote{0,-2}{0,2}]
{1/x^2}{1/0^2}{1/abs(x)}
[undefined][$+\infty$][$+\infty$][$+\infty$][0][0]
\fivelim[][{\addplot[black, smooth, thick, domain=-3:3] (x^3,x);}]
{\sqrt[3]x}{\sqrt[3]0}{0}
[0][0][0][0][$-\infty$][$+\infty$]
\fivelim{|x|}{|0|}{abs(x)}
[0][0][0][0][$+\infty$][$+\infty$]
\fivelim[ytick={1}, extra y ticks={-1}, xtick={0}, samples={501}]
[\opencircle{0,1} \opencircle{0,-1}]
{|x|/x}{|0|/0}{floor(x/10)*2+1}
[undefined][$-1$][1][DNE][$-1$][1]
\end{multicols}
\vfill
\begin{multicols}4
\fivelim{\sin x}{\sin 0}{sin(deg(x)*2)}
[0][0][0][0][DNE][DNE][][][red]
\fivelim[ytick={-1,1},xtick={0}][\opencircle{0,1}\asymptote{-3,0}{3,0}]
{\sin(x)/x}{\sin(0)/0}{cos(deg(x*6))*exp(-abs(x/1.25))}
[undefined][1][1][1][0][0]
\fivelim[ytick={-1,1},xtick={0},samples={720}][\asymptote{-3,0}{3,0}]
{\sin(1/x)}{\sin(1/0)}{sin(deg(1/x*1.5))}
[undefined][DNE][DNE][DNE][0][0][red][red]
\fivelim[ytick={-2,-1,1,2},xtick={-2,-1,1,2}][
{\draw[black,thick] (axis cs:-2,-2) edge[-] (axis cs:-1,-2);}
{\draw[black,thick] (axis cs:-1,-1) edge[-] (axis cs:0,-1);}
{\draw[black,thick] (axis cs:0,0) edge[-] (axis cs:1,0);}
{\draw[black,thick] (axis cs:1,1) edge[-] (axis cs:2,1);}
{\draw[black,thick] (axis cs:2,2) edge[-] (axis cs:3,2);}
\closecircle{-2,-2} \closecircle{-1,-1} \closecircle{0,0}
\closecircle{1,1} \closecircle{2,2} \opencircle{-1,-2}
\opencircle{0,-1} \opencircle{1,0} \opencircle{2,1}
]{\lfloor x\rfloor}{\lfloor0\rfloor}{0}[0][$-1$][0][DNE][$-\infty$][$+\infty$]
%%% OMIT, BUT PRETTY: x*sin(1/x)
%\fivelim[ytick={-1,1},xtick={0},samples={720}][\opencircle{0,0}]{x\sin(1/x)}{0\sin(1/0)}{x/6*sin(deg(6/x)) * 0.7*(6-1.2*abs(x))}[undefined][0][0][0][1][1]
\end{multicols}
\newpage
\setstretch{0.1}
\diagram
\vspace{-4mm}
\setlength\columnsep{0.5in}
\section{Identify Infinite, Jump, Removable Discontinuities Graphically}
\vspace{-1mm}
\setlength\fillinlinelength{0.8in}
\question We say $f$
\rlap{is \fillin[continuous][1in] \textbf{at} $\pmb{x=a}$ if}%
\phantom{has a \fillin[\textbf{removable}][0.8in] \textbf{discontinuity at} $\pmb{x=a}$ if}
${f(a) ={}} \lim\limits_{\mathclap{x\to a^-}}f(x) = \lim\limits_{\mathclap{x\to a^+}}f(x)$
and all three exist and are finite.
\question We say $f$
has a \fillin[\textbf{removable}] \textbf{discontinuity at} $\pmb{x=a}$ if
${f(a) \ne{}} \lim\limits_{\mathclap{x\to a^-}}f(x) = \lim\limits_{\mathclap{x\to a^+}}f(x)$
and the last two exist and are \rlap{finite.}
\question We say $f$
has a \fillin[\textbf{jump}] \textbf{discontinuity at} $\pmb{x=a}$ if
$\phantom{f(a)={}}\lim\limits_{\mathclap{x\to a^-}}f(x) \ne \lim\limits_{\mathclap{x\to a^+}}f(x)$
and both exist and are finite.
\question We say $f$
has a \fillin[\textbf{infinite}] \textbf{discontinuity at} $\pmb{x=a}$ if
$\phantom{f(a)={}}\lim\limits_{\mathclap{x\to a^-}}f(x)$ or $ \lim\limits_{\mathclap{x\to a^+}}f(x)$
is infinite and both exist.
\setlength\fillinlinelength{1.5in}
\question The function $f$ above is continuous (cts) at the following integers between 1 and 12: \fillin[1].
\question The function $f$ above has removable discontinuities at the following integers: \fillin[2, 3].
\question The function $f$ above has jump discontinuities at the following integers: \fillin[4, 5, 6, 7].
\question The function $f$ above has infinite discontinuities at the following integers: \fillin[8, 9, 10, 11, 12].
\section{Continuity on an Interval}
\vspace{-4mm}
\question We say $f$ is
\textbf{continuous on the open interval
\boldmath $(a,b)$}
if $f$ is continuous at every $x$
in $(a,b)$.
\par Find the union of all open intervals
\textbf{on which $f$
is continuous}.
\\[3ex] (Set-builder notation) \fillin[\smash{\raisebox{2mm}{\pmb{$\{x\mid x\ne 2,3,4,\dots,12\}$}}}][5in]
\\[3ex] (Interval notation) \fillin[\smash{\raisebox{2mm}{\pmb{$
(-\infty,2)\cup(2,3)\cup(3,4)\cup\dots\cup(11,12)\cup(12,\infty)
$}}}][5in]
\question We say $f$ is \textbf{continuous everywhere}
if $f$ is continuous at every $x$ in \fillin[\pmb{$(-\infty,\infty)$}].
\question We say $f$ is
\textbf{a continuous function}
if $f$ is continuous at every
$x$ in its \fillin[domain].
\vspace{-1mm}
\section{Left and Right Continuity}
\vspace{-4mm}
\question We say $f$
is \fillin[left continuous] \textbf{at} $\pmb{x=a}$ if
${f(a) ={}} \smash{\lim\limits_{\mathclap{x\to a^-}}}f(x)$
and both exist and are finite.
\question We say $f$
is \fillin[right continuous] \textbf{at} $\pmb{x=a}$ if
${f(a) ={}} \smash{\lim\limits_{\mathclap{x\to a^+}}}f(x)$
and both exist and are finite.
\question The function $f$ above is left continuous at the following integers between 1 and 12: \fillin[1, 7].
\question The function $f$ above is right continuous at the following integers between 1 and 12: \fillin[1, 6].
\question We say $f$ is \textbf{continuous on the closed interval \boldmath $[a,b]$}
if $f$ is continuous at every $x$ in the \emph{open} interval $(a,b)$
\\[1ex]
and is \fillin[right continuous][2in] at $x=a$
and is \fillin[left continuous][2in] at $x=b$.
\question The function $f$ above is continuous on the closed interval [ \fillin[6][5mm],\fillin[7][5mm] ] with integer endpoints between 1 and 12.
%
\end{questions}
\end{document}