forked from Varsha-1605/SocioSell
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvideo_processor.py
281 lines (234 loc) · 10 KB
/
video_processor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import cv2
import numpy as np
import torch
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import google.generativeai as genai
import librosa
from PIL import Image
import os
from tqdm import tqdm
import subprocess
import soundfile as sf
from pathlib import Path
import asyncio
import logging
import time
import yt_dlp as youtube_dl
import backoff
from functools import wraps
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
def handle_rate_limit(max_tries=5, initial_wait=5):
def decorator(func):
@wraps(func)
@backoff.on_exception(
backoff.expo,
Exception,
max_tries=max_tries,
giveup=lambda e: not (isinstance(e, Exception) and "429" in str(e)),
base=2,
factor=5
)
async def wrapper(*args, **kwargs):
return await func(*args, **kwargs)
return wrapper
return decorator
class TokenBucket:
def __init__(self, tokens_per_second=0.05, max_tokens=10):
self.tokens_per_second = tokens_per_second
self.max_tokens = max_tokens
self.tokens = max_tokens
self.last_update = time.time()
self.lock = asyncio.Lock()
self.waiting = False
async def acquire(self):
async with self.lock:
now = time.time()
time_passed = now - self.last_update
self.tokens = min(self.max_tokens, self.tokens + time_passed * self.tokens_per_second)
self.last_update = now
if self.tokens >= 1:
self.tokens -= 1
return True
return False
async def wait(self):
while not await self.acquire():
self.waiting = True
await asyncio.sleep(20)
self.waiting = False
class VideoProcessor:
def __init__(self, google_api_key):
self.api_key = google_api_key
self.rate_limiter = TokenBucket(tokens_per_second=0.05)
genai.configure(api_key=google_api_key)
self.model = genai.GenerativeModel('gemini-1.5-pro-latest')
self.ffmpeg_path = r"C:/ProgramData/chocolatey/lib/ffmpeg/tools/ffmpeg/bin/ffmpeg.exe"
if not os.path.exists(self.ffmpeg_path):
raise RuntimeError(f"FFmpeg not found at: {self.ffmpeg_path}")
self.audio_processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
self.audio_model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
self.temp_dir = Path("temp")
self.temp_dir.mkdir(exist_ok=True)
self.MAX_FRAMES_PER_VIDEO = 3
self.MAX_API_RETRIES = 3
self.API_RETRY_DELAY = 10
self.FRAME_ANALYSIS_DELAY = 5
async def download_video(self, video_url):
try:
temp_path = self.temp_dir / f"{abs(hash(video_url))}.mp4"
ydl_opts = {
'format': 'best',
'outtmpl': str(temp_path),
'quiet': True,
'no_warnings': True,
'extract_flat': True
}
loop = asyncio.get_event_loop()
success = await loop.run_in_executor(None,
lambda: self._download_with_ytdl(ydl_opts, video_url))
if success and temp_path.exists():
return temp_path
return None
except Exception as e:
logger.error(f"Error downloading video: {str(e)}")
return None
def _download_with_ytdl(self, ydl_opts, url):
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
try:
ydl.download([url])
return True
except Exception as e:
logger.error(f"YouTube-DL error: {str(e)}")
return False
async def _extract_audio(self, video_path):
try:
if not os.path.exists(str(video_path)):
raise FileNotFoundError(f"Video file not found: {video_path}")
temp_audio_path = self.temp_dir / "temp_audio.wav"
command = [
str(self.ffmpeg_path),
'-i', str(video_path),
'-ab', '160k',
'-ac', '2',
'-ar', '16000',
'-vn', str(temp_audio_path),
'-y'
]
process = await asyncio.create_subprocess_exec(
*command,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE
)
await process.communicate()
if not os.path.exists(str(temp_audio_path)):
return None, None
waveform, sample_rate = librosa.load(str(temp_audio_path), sr=16000)
os.remove(str(temp_audio_path))
return waveform, sample_rate
except Exception as e:
logger.error(f"Error extracting audio: {str(e)}")
return None, None
async def _transcribe_audio(self, waveform):
try:
inputs = self.audio_processor(waveform, sampling_rate=16000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = self.audio_model(inputs.input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
return self.audio_processor.batch_decode(predicted_ids)[0]
except Exception as e:
logger.error(f"Error transcribing audio: {str(e)}")
return ""
async def _extract_frames(self, video_path, num_frames=5):
frames = []
try:
cap = cv2.VideoCapture(str(video_path))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
if total_frames > 0:
frame_indices = np.linspace(0, total_frames-1, num_frames, dtype=int)
for idx in frame_indices:
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
ret, frame = cap.read()
if ret:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(Image.fromarray(frame))
except Exception as e:
logger.error(f"Error extracting frames: {str(e)}")
finally:
if 'cap' in locals():
cap.release()
return frames
@handle_rate_limit(max_tries=3, initial_wait=2)
async def _analyze_frame(self, frame):
await self.rate_limiter.wait()
prompt = """Analyze this product image and provide a detailed e-commerce style description.
Include:
1. Visual characteristics
2. Notable features
3. Potential uses
4. Any visible technical specifications
Keep the description professional and engaging."""
response = self.model.generate_content([prompt, frame])
return response.text
async def _analyze_frames(self, frames):
descriptions = []
frames = frames[:self.MAX_FRAMES_PER_VIDEO]
for frame in tqdm(frames, desc="Analyzing frames"):
try:
for attempt in range(self.MAX_API_RETRIES):
try:
await self.rate_limiter.wait()
description = await self._analyze_frame(frame)
if description:
descriptions.append(description)
break
await asyncio.sleep(2)
except Exception as e:
if "429" in str(e):
await asyncio.sleep(self.API_RETRY_DELAY * (attempt + 1))
continue
raise e
except Exception as e:
logger.error(f"Error analyzing frame: {str(e)}")
await asyncio.sleep(self.FRAME_ANALYSIS_DELAY)
return descriptions
@handle_rate_limit(max_tries=3, initial_wait=2)
async def _generate_description(self, frame_descriptions, audio_transcription=""):
await self.rate_limiter.wait()
prompt = f"""Based on the following frame descriptions and audio transcription, create a comprehensive
e-commerce product description:
Visual Descriptions:
{chr(10).join(frame_descriptions)}
Audio Transcription:
{audio_transcription}
Please provide a well-structured description that includes:
1. Product overview
2. Key features and benefits
3. Technical specifications
4. Recommended uses
5. Notable information from the audio narration"""
response = self.model.generate_content(prompt)
return response.text
async def process_video(self, video_url):
try:
video_path = await self.download_video(video_url)
if not video_path:
return {'status': 'error', 'message': 'Failed to download video'}
try:
waveform, sr = await self._extract_audio(video_path)
audio_transcription = await self._transcribe_audio(waveform) if waveform is not None else ""
frames = await self._extract_frames(video_path)
if not frames:
return {'status': 'error', 'message': 'Failed to extract frames from video'}
frame_descriptions = await self._analyze_frames(frames)
final_description = await self._generate_description(frame_descriptions, audio_transcription)
return {
'status': 'success',
'frame_descriptions': frame_descriptions,
'audio_transcription': audio_transcription,
'final_description': final_description
}
finally:
if os.path.exists(str(video_path)):
os.remove(str(video_path))
except Exception as e:
return {'status': 'error', 'message': str(e)}