-
Notifications
You must be signed in to change notification settings - Fork 1
/
gmresm.m
578 lines (531 loc) · 18.9 KB
/
gmresm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
function [x,flag,relres,iter,resvec] = gmresm(A,b,restart,tol,maxit,M1,M2,x,varargin)
%GMRES Generalized Minimum Residual Method.
% X = GMRES(A,B) attempts to solve the system of linear equations A*X = B
% for X. The N-by-N coefficient matrix A must be square and the right
% hand side column vector B must have length N. This uses the unrestarted
% method with MIN(N,10) total iterations.
%
% X = GMRES(AFUN,B) accepts a function handle AFUN instead of the matrix
% A. AFUN(X) accepts a vector input X and returns the matrix-vector
% product A*X. In all of the following syntaxes, you can replace A by
% AFUN.
%
% X = GMRES(A,B,RESTART) restarts the method every RESTART iterations.
% If RESTART is N or [] then GMRES uses the unrestarted method as above.
%
% X = GMRES(A,B,RESTART,TOL) specifies the tolerance of the method. If
% TOL is [] then GMRES uses the default, 1e-6.
%
% X = GMRES(A,B,RESTART,TOL,MAXIT) specifies the maximum number of outer
% iterations. Note: the total number of iterations is RESTART*MAXIT. If
% MAXIT is [] then GMRES uses the default, MIN(N/RESTART,10). If RESTART
% is N or [] then the total number of iterations is MAXIT.
%
% X = GMRES(A,B,RESTART,TOL,MAXIT,M) and
% X = GMRES(A,B,RESTART,TOL,MAXIT,M1,M2) use preconditioner M or M=M1*M2
% and effectively solve the system inv(M)*A*X = inv(M)*B for X. If M is
% [] then a preconditioner is not applied. M may be a function handle
% returning M\X.
%
% X = GMRES(A,B,RESTART,TOL,MAXIT,M1,M2,X0) specifies the first initial
% guess. If X0 is [] then GMRES uses the default, an all zero vector.
%
% [X,FLAG] = GMRES(A,B,...) also returns a convergence FLAG:
% 0 GMRES converged to the desired tolerance TOL within MAXIT iterations.
% 1 GMRES iterated MAXIT times but did not converge.
% 2 preconditioner M was ill-conditioned.
% 3 GMRES stagnated (two consecutive iterates were the same).
%
% [X,FLAG,RELRES] = GMRES(A,B,...) also returns the relative residual
% NORM(B-A*X)/NORM(B). If FLAG is 0, then RELRES <= TOL. Note with
% preconditioners M1,M2, the residual is NORM(M2\(M1\(B-A*X))).
%
% [X,FLAG,RELRES,ITER] = GMRES(A,B,...) also returns both the outer and
% inner iteration numbers at which X was computed: 0 <= ITER(1) <= MAXIT
% and 0 <= ITER(2) <= RESTART.
%
% [X,FLAG,RELRES,ITER,RESVEC] = GMRES(A,B,...) also returns a vector of
% the residual norms at each inner iteration, including NORM(B-A*X0).
% Note with preconditioners M1,M2, the residual is NORM(M2\(M1\(B-A*X))).
%
% Example:
% n = 21; A = gallery('wilk',n); b = sum(A,2);
% tol = 1e-12; maxit = 15; M = diag([10:-1:1 1 1:10]);
% x = gmres(A,b,10,tol,maxit,M);
% Or, use this matrix-vector product function
% %-----------------------------------------------------------------%
% function y = afun(x,n)
% y = [0; x(1:n-1)] + [((n-1)/2:-1:0)'; (1:(n-1)/2)'].*x+[x(2:n); 0];
% %-----------------------------------------------------------------%
% and this preconditioner backsolve function
% %------------------------------------------%
% function y = mfun(r,n)
% y = r ./ [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)'];
% %------------------------------------------%
% as inputs to GMRES:
% x1 = gmres(@(x)afun(x,n),b,10,tol,maxit,@(x)mfun(x,n));
%
% Class support for inputs A,B,M1,M2,X0 and the output of AFUN:
% float: double
%
% See also BICG, BICGSTAB, BICGSTABL, CGS, LSQR, MINRES, PCG, QMR, SYMMLQ,
% TFQMR, ILU, FUNCTION_HANDLE.
% References
% H.F. Walker, "Implementation of the GMRES Method Using Householder
% Transformations", SIAM J. Sci. Comp. Vol 9. No 1. January 1988.
% Copyright 1984-2013 The MathWorks, Inc.
if (nargin < 2)
error(message('MATLAB:gmres:NumInputs'));
end
% Determine whether A is a matrix or a function.
[atype,afun,afcnstr] = iterchk2(A);
if strcmp(atype,'matrix')
% Check matrix and right hand side vector inputs have appropriate sizes
[m,n] = size(A);
if (m ~= n)
error(message('MATLAB:gmres:SquareMatrix'));
end
if ~isequal(size(b(:,1)),[m,1])
error(message('MATLAB:gmres:VectorSize', m));
end
else
m = size(b,1);
n = m;
if ~iscolumn(b)
error(message('MATLAB:gmres:Vector'));
end
end
k = size(b, 2); % number of columns
% Assign default values to unspecified parameters
if (nargin < 3) || isempty(restart) || (restart == n)
restarted = false;
else
restarted = true;
end
if (nargin < 4) || isempty(tol)
tol = 1e-6;
end
warned = 0;
if tol < eps
warning(message('MATLAB:gmres:tooSmallTolerance'));
warned = 1;
tol = eps;
elseif tol >= 1
warning(message('MATLAB:gmres:tooBigTolerance'));
warned = 1;
tol = 1-eps;
end
if (nargin < 5) || isempty(maxit)
if restarted
maxit = min(ceil(n/restart),10);
else
maxit = min(n,10);
end
end
if restarted
outer = maxit;
if restart > n
warning(message('MATLAB:gmres:tooManyInnerItsRestart',restart, n));
restart = n;
end
inner = restart;
else
outer = 1;
if maxit > n
warning(message('MATLAB:gmres:tooManyInnerItsMaxit',maxit, n));
maxit = n;
end
inner = maxit;
end
% Check for all zero right hand side vector => all zero solution
n2b = sqrt(sum(b.^2)); % Norm of rhs vector, b
if (max(n2b) == 0) % if rhs vector is all zeros
x = zeros(n,k); % then solution is all zeros
flag = 0; % a valid solution has been obtained
relres = 0; % the relative residual is actually 0/0
iter = [0 0]; % no iterations need be performed
resvec = 0; % resvec(1) = norm(b-A*x) = norm(0)
if (nargout < 2)
itermsg2('gmres',tol,maxit,0,flag,iter,NaN);
end
return
end
if ((nargin >= 6) && ~isempty(M1))
existM1 = 1;
[m1type,m1fun,m1fcnstr] = iterchk2(M1);
if strcmp(m1type,'matrix')
if ~isequal(size(M1),[m,m])
error(message('MATLAB:gmres:PreConditioner1Size', m));
end
end
else
existM1 = 0;
m1type = 'matrix';
end
if ((nargin >= 7) && ~isempty(M2))
existM2 = 1;
[m2type,m2fun,m2fcnstr] = iterchk2(M2);
if strcmp(m2type,'matrix')
if ~isequal(size(M2),[m,m])
error(message('MATLAB:gmres:PreConditioner2Size', m));
end
end
else
existM2 = 0;
m2type = 'matrix';
end
if ((nargin >= 8) && ~isempty(x))
if ~isequal(size(x),[n,k])
error(message('MATLAB:gmres:XoSize', n));
end
else
x = zeros(n,k);
end
if ((nargin > 8) && strcmp(atype,'matrix') && ...
strcmp(m1type,'matrix') && strcmp(m2type,'matrix'))
error(message('MATLAB:gmres:TooManyInputs'));
end
% Set up for the method
flag = 1;
xmin = x; % Iterate which has minimal residual so far
imin = zeros(1, k); % "Outer" iteration at which xmin was computed
jmin = zeros(1, k); % "Inner" iteration at which xmin was computed
tolb = tol * n2b; % Relative tolerance
evalxm = 0;
stag = 0;
moresteps = 0;
maxmsteps = min([floor(n/50),5,n-maxit]);
maxstagsteps = 3;
minupdated = false(1, k);
x0iszero = (sqrt(sum(x.^2)) == 0);
r = b - customAfun(afun, atype, afcnstr, x, varargin{:});
normr = sqrt(sum(r.^2)); % Norm of initial residual
if (all(normr <= tolb)) % Initial guess is a good enough solution
flag = 0;
relres = normr ./ n2b;
iter = [0 0];
resvec = normr;
if (nargout < 2)
itermsg2('gmres',tol,maxit,[0 0],flag,iter,relres);
end
return
end
minv_b = b;
if existM1
r = iterapp2('mldivide',m1fun,m1type,m1fcnstr,r,varargin{:});
if ~all(x0iszero)
minv_b = iterapp2('mldivide',m1fun,m1type,m1fcnstr,b,varargin{:});
else
minv_b = r;
end
if ~all(isfinite(r(:))) || ~all(isfinite(minv_b(:)))
flag = 2;
x = xmin;
relres = normr ./ n2b;
iter = [0 0];
resvec = normr;
return
end
end
if existM2
r = iterapp2('mldivide',m2fun,m2type,m2fcnstr,r,varargin{:});
if ~all(x0iszero)
minv_b = iterapp2('mldivide',m2fun,m2type,m2fcnstr,minv_b,varargin{:});
else
minv_b = r;
end
if ~all(isfinite(r(:))) || ~all(isfinite(minv_b(:)))
flag = 2;
x = xmin;
relres = normr ./ n2b;
iter = [0 0];
resvec = normr;
return
end
end
normr = sqrt(sum(r.^2)); % norm of the preconditioned residual
n2minv_b = sqrt(sum(minv_b.^2)); % norm of the preconditioned rhs
clear minv_b;
tolb = tol * n2minv_b;
if (all(normr <= tolb)) % Initial guess is a good enough solution
flag = 0;
relres = normr ./ n2minv_b;
iter = [0 0];
resvec = n2minv_b;
if (nargout < 2)
itermsg2('gmres',tol,maxit,[0 0],flag,iter,relres);
end
return
end
resvec = zeros(inner*outer+1,k); % Preallocate vector for norm of residuals
resvec(1, :) = normr; % resvec(1) = norm(b-A*x0)
normrmin = normr; % Norm of residual from xmin
% Preallocate J to hold the Given's rotation constants.
J = zeros(2,k,inner);
U = zeros(n,k,inner);
R = zeros(inner,inner,k);
w = zeros(inner+1,k);
for outiter = 1 : outer
% Construct u for Householder reflector.
% u = r + sign(r(1))*||r||*e1
u = r;
normr = sqrt(sum(r.^2));
beta = scalarsign(r(1,:)).*normr;
u(1,:) = u(1,:) + beta;
u = bsxfun(@times, u, 1./sqrt(sum(u.^2)));
U(:,:,1) = u;
% Apply Householder projection to r.
% w = r - 2*u*u'*r;
w(1,:) = -beta;
for initer = 1 : inner
% Form P1*P2*P3...Pj*ej.
% v = Pj*ej = ej - 2*u*u'*ej
v = bsxfun(@times, u, -2*u(initer, :));
v(initer, :) = v(initer, :) + 1;
% v = P1*P2*...Pjm1*(Pj*ej)
for h = (initer-1):-1:1
v = v - bsxfun(@times, U(:,:,h), 2*sum(U(:,:,h) .* v));
end
% Explicitly normalize v to reduce the effects of round-off.
v = bsxfun(@times, v, 1./sqrt(sum(v.^2)));
% Apply A to v.
v = customAfun(afun, atype, afcnstr, v, varargin{:});
% Apply Preconditioner.
if existM1
v = iterapp2('mldivide',m1fun,m1type,m1fcnstr,v,varargin{:});
if ~all(isfinite(v(:)))
flag = 2;
break
end
end
if existM2
v = iterapp2('mldivide',m2fun,m2type,m2fcnstr,v,varargin{:});
if ~all(isfinite(v(:)))
flag = 2;
break
end
end
% Form Pj*Pj-1*...P1*Av.
for h = 1:initer
v = v - bsxfun(@times, U(:,:,h), 2*sum(U(:,:,h) .* v));
end
% Determine Pj+1.
if (initer ~= size(v, 1))
% Construct u for Householder reflector Pj+1.
u = [zeros(initer,k); v(initer+1:end,:)];
alpha = sqrt(sum(u.^2));
alphaisnot0 = find(alpha ~= 0);
alpha(alphaisnot0) = scalarsign(v(initer+1, alphaisnot0)).*alpha(alphaisnot0);
% u = v(initer+1:end) +
% sign(v(initer+1))*||v(initer+1:end)||*e_{initer+1)
u(initer+1, :) = u(initer+1, :) + alpha;
u(:, alphaisnot0) = bsxfun(@times, u(:, alphaisnot0), 1./sqrt(sum(u(:, alphaisnot0).^2)));
U(:,alphaisnot0,initer+1) = u(:, alphaisnot0);
% Apply Pj+1 to v.
% v = v - 2*u*(u'*v);
v(initer+2:end,alphaisnot0) = 0;
v(initer+1,alphaisnot0) = -alpha(alphaisnot0);
end
% Apply Given's rotations to the newly formed v.
for colJ = 1:initer-1
tmpv = v(colJ, :);
v(colJ, :) = conj(J(1,:,colJ)).*v(colJ, :) + conj(J(2,:,colJ)).*v(colJ+1, :);
v(colJ+1, :) = -J(2,:,colJ).*tmpv + J(1,:,colJ).*v(colJ+1, :);
end
% Compute Given's rotation Jm.
if ~(initer==size(v, 1))
rho = sqrt(sum(v(initer:initer+1, :).^2));
J(:,:,initer) = bsxfun(@times, v(initer:initer+1, :), 1./rho);
w(initer+1, :) = -J(2,:,initer).*w(initer, :);
w(initer, :) = conj(J(1,:,initer)).*w(initer, :);
v(initer, :) = rho;
v(initer+1, :) = 0;
end
for i = 1 : k
R(:,initer,i) = v(1:inner, i);
end
normr = abs(w(initer+1, :));
resvec((outiter-1)*inner+initer+1, :) = normr;
normr_act = normr;
if (all(normr <= tolb) || stag >= maxstagsteps || moresteps)
if evalxm == 0
ytmp = zeros(initer, k);
for i = 1 : k
ytmp(:, i) = R(1:initer,1:initer,i) \ w(1:initer, i);
end
additive = bsxfun(@times, U(:,:,initer), -2*ytmp(initer,:).*conj(U(initer, :, initer)));
additive(initer, :) = additive(initer, :) + ytmp(initer, :);
for h = initer-1 : -1 : 1
additive(h, :) = additive(h, :) + ytmp(h, :);
additive = additive - bsxfun(@times, U(:,:,h), 2*sum(U(:,:,h).*additive));
end
if all(sqrt(sum(additive.^2)) < eps*sqrt(sum(x.^2)))
stag = stag + 1;
else
stag = 0;
end
xm = x + additive;
evalxm = 1;
elseif evalxm == 1
addvc = zeros(initer, k);
for i = 1 : k
addvc(:, i) = [-(R(1:initer-1,1:initer-1,i)\R(1:initer-1,initer,i)) * (w(initer,i)/R(initer,initer,i)); w(initer,i)/R(initer,initer,i)];
end
if all(sqrt(sum(addvc.^2)) < eps*sqrt(sum(xm.^2)))
stag = stag + 1;
else
stag = 0;
end
additive = bsxfun(@times, U(:,:,initer), -2*addvc(initer,:).*conj(U(initer, :, initer)));
additive(initer, :) = additive(initer, :) + addvc(initer, :);
for h = initer-1 : -1 : 1
additive(h, :) = additive(h, :) + addvc(h, :);
additive = additive - bsxfun(@times, U(:,:,h), 2*sum(U(:,:,h).*additive));
end
xm = xm + additive;
end
r = b - customAfun(afun, atype, afcnstr, xm, varargin{:});
if all(sqrt(sum(r.^2)) <= tol*n2b)
x = xm;
flag = 0;
iter = [outiter, initer];
break
end
minv_r = r;
if existM1
minv_r = iterapp2('mldivide',m1fun,m1type,m1fcnstr,r,varargin{:});
if ~all(isfinite(minv_r(:)))
flag = 2;
break
end
end
if existM2
minv_r = iterapp2('mldivide',m2fun,m2type,m2fcnstr,minv_r,varargin{:});
if ~all(isfinite(minv_r(:)))
flag = 2;
break
end
end
normr_act = sqrt(sum(minv_r.^2));
resvec((outiter-1)*inner+initer+1, :) = normr_act;
tobeupdated = find(normr_act <= normrmin);
normrmin(tobeupdated) = normr_act(tobeupdated);
imin(tobeupdated) = outiter;
jmin(tobeupdated) = initer;
xmin(:, tobeupdated) = xm(:, tobeupdated);
minupdated(tobeupdated) = true;
if all(normr_act <= tolb)
x = xm;
flag = 0;
iter = [outiter, initer];
break
else
if stag >= maxstagsteps && moresteps == 0
stag = 0;
end
moresteps = moresteps + 1;
if moresteps >= maxmsteps
if ~warned
warning(message('MATLAB:gmres:tooSmallTolerance'));
end
flag = 3;
iter = [outiter, initer];
break;
end
end
end
tobeupdated = find(normr_act <= normrmin);
normrmin(tobeupdated) = normr_act(tobeupdated);
imin(tobeupdated) = outiter;
jmin(tobeupdated) = initer;
minupdated(tobeupdated) = true;
if stag >= maxstagsteps
flag = 3;
break;
end
end % ends inner loop
evalxm = 0;
if flag ~= 0
idx = zeros(1, k);
idx(minupdated) = jmin;
idx(~minupdated) = initer;
additive = zeros(n, k);
for i = 1 : k
y = R(1:idx(i),1:idx(i), i) \ w(1:idx(i), i);
additive(:, i) = U(:,i,idx(i))*(-2*y(idx(i))*conj(U(idx(i),i,idx(i))));
additive(idx(i), i) = additive(idx(i), i) + y(idx(i));
for h = idx(i)-1 : -1 : 1
additive(h, i) = additive(h, i) + y(h);
additive(:, i) = additive(:, i) - U(:,i,h)*(2*(U(:,i,h)'*additive(:, i)));
end
end
x = x + additive;
xmin = x;
r = b - customAfun(afun, atype, afcnstr, x, varargin{:});
minv_r = r;
if existM1
minv_r = iterapp2('mldivide',m1fun,m1type,m1fcnstr,r,varargin{:});
if ~all(isfinite(minv_r(:)))
flag = 2;
break
end
end
if existM2
minv_r = iterapp2('mldivide',m2fun,m2type,m2fcnstr,minv_r,varargin{:});
if ~all(isfinite(minv_r(:)))
flag = 2;
break
end
end
normr_act = sqrt(sum(minv_r.^2));
r = minv_r;
end
tobeupdated = find(normr_act <= normrmin);
xmin(:, tobeupdated) = x(:, tobeupdated);
normrmin(tobeupdated) = normr_act(tobeupdated);
imin(tobeupdated) = outiter;
jmin(tobeupdated) = initer;
if flag == 3
break;
end
if all(normr_act <= tolb)
flag = 0;
iter = [outiter, initer];
break;
end
minupdated = false(1, k);
end % ends outer loop
% returned solution is that with minimum residual
if flag == 0
relres = normr_act ./ n2minv_b;
else
x = xmin;
iter = [imin jmin];
relres = normr_act ./ n2minv_b;
end
% truncate the zeros from resvec
if flag <= 1 || flag == 3
resvec = resvec(1:(outiter-1)*inner+initer+1, :);
%indices = resvec==0;
%resvec = resvec(~indices);
else
if initer == 0
resvec = resvec(1:(outiter-1)*inner+1, :);
else
resvec = resvec(1:(outiter-1)*inner+initer, :);
end
end
% only display a message if the output flag is not used
if nargout < 2
if restarted
itermsg2(sprintf('gmres(%d)',restart),tol,maxit,[outiter initer],flag,iter,relres);
else
itermsg2(sprintf('gmres'),tol,maxit,initer,flag,iter(2),relres);
end
end
function sgn = scalarsign(d)
sgn = sign(d);
sgn(sgn == 0) = 1;
function Ax = customAfun(afun, atype, afcnstr, x, varargin)
[n, k] = size(x);
Ax = iterapp2('mtimes',afun,atype,afcnstr,x,varargin{:});