From 87dd13e954e60479eab966e437fc4b8a76d2a84f Mon Sep 17 00:00:00 2001 From: Anwar Nunez-Elizalde Date: Fri, 8 May 2020 23:00:39 +0100 Subject: [PATCH] EXA: batching. 99.99% of issue #1 --- examples/introduction/demo_batching.py | 83 ++++++++++++++++++++++++++ 1 file changed, 83 insertions(+) create mode 100644 examples/introduction/demo_batching.py diff --git a/examples/introduction/demo_batching.py b/examples/introduction/demo_batching.py new file mode 100644 index 0000000..3371199 --- /dev/null +++ b/examples/introduction/demo_batching.py @@ -0,0 +1,83 @@ +''' +=========================================== + Extracting features from stimulus batches +=========================================== + +This example shows how to use batches to extract motion-energy features from a video. + +When the stimulus is very high-resolution (e.g. 4K) or is multiple hours long, it might not be possible to fit the data in memory. In such situations, it is useful to load a small number of video frames and extract motion-energy features from that subset of frames alone. In order to do this properly, one must avoid edge effects. In this example we show how to batch +''' + + +# %% +# First, we'll specify the stimulus we want to load. + +import moten +import numpy as np +import matplotlib.pyplot as plt +stimulus_fps = 24 +video_file = 'http://anwarnunez.github.io/downloads/avsnr150s24fps_tiny.mp4' + +# %% +# Load the first 300 images and spatially downsample the video. +small_vhsize = (72, 128) # height x width +luminance_images = moten.io.video2luminance(video_file, size=small_vhsize, nimages=300) +nimages, vdim, hdim = luminance_images.shape +print(vdim, hdim) + +fig, ax = plt.subplots() +ax.matshow(luminance_images[200], vmin=0, vmax=100, cmap='inferno') +ax.set_xticks([]) +ax.set_yticks([]) + +# %% +# Next we need to construct the pyramid and extract the motion-energy features from the full stimulus. + +pyramid = moten.pyramids.MotionEnergyPyramid(stimulus_vhsize=(vdim, hdim), + stimulus_fps=stimulus_fps, + filter_temporal_width=16) + +moten_features = pyramid.project_stimulus(luminance_images) +print(moten_features.shape) + +# %% +# We have to include some padding to the batches in order to avoid convolution edge effects. The padding is determined by the temporal width of the motion-energy filter. By default, the temporal width is 2/3 of the stimulus frame rate (`int(fps*(2/3))`). This parameter can be specified when instantating a pyramid by passing e.g. ``filter_temporal_width=16``. Once the pyramid is defined, the parameter can also be accessed from the ``pyramid.definition`` dictionary. + +filter_temporal_width = pyramid.definition['filter_temporal_width'] + +# %% +# Finally, we define the padding window as half the temporal filter width. + +window = int(np.ceil((filter_temporal_width/2))) +print(filter_temporal_width, window) + +# %% +# Now we are ready to extract motion-energy features in batches: + +nbatches = 5 +batch_size = int(np.ceil(nimages/nbatches)) +batched_data = [] +for bdx in range(nbatches): + start_frame, end_frame = batch_size*bdx, batch_size*(bdx + 1) + print('Batch %i/%i [%i:%i]'%(bdx+1, nbatches, start_frame, end_frame)) + + # Padding + batch_start = max(start_frame - window, 0) + batch_end = end_frame + window + batched_responses = pyramid.project_stimulus( + luminance_images[batch_start:batch_end]) + + # Trim edges + if bdx == 0: + batched_responses = batched_responses[:-window] + elif bdx + 1 == nbatches: + batched_responses = batched_responses[window:] + else: + batched_responses = batched_responses[window:-window] + batched_data.append(batched_responses) + +batched_data = np.vstack(batched_data) + +# %% +# They are exactly the same. +assert np.allclose(moten_features, batched_data)