forked from dmarnerides/hdr-expandnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
106 lines (95 loc) · 3.81 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
class ExpandNet(nn.Module):
def __init__(self):
super(ExpandNet, self).__init__()
def layer(nIn, nOut, k, s, p, d=1):
return nn.Sequential(
nn.Conv2d(nIn, nOut, k, s, p, d), nn.SELU(inplace=True)
)
self.nf = 64
self.local_net = nn.Sequential(
layer(3, 64, 3, 1, 1), layer(64, 128, 3, 1, 1)
)
self.mid_net = nn.Sequential(
layer(3, 64, 3, 1, 2, 2),
layer(64, 64, 3, 1, 2, 2),
layer(64, 64, 3, 1, 2, 2),
nn.Conv2d(64, 64, 3, 1, 2, 2),
)
self.glob_net = nn.Sequential(
layer(3, 64, 3, 2, 1),
layer(64, 64, 3, 2, 1),
layer(64, 64, 3, 2, 1),
layer(64, 64, 3, 2, 1),
layer(64, 64, 3, 2, 1),
layer(64, 64, 3, 2, 1),
nn.Conv2d(64, 64, 4, 1, 0),
)
self.end_net = nn.Sequential(
layer(256, 64, 1, 1, 0), nn.Conv2d(64, 3, 1, 1, 0), nn.Sigmoid()
)
def forward(self, x):
local = self.local_net(x)
mid = self.mid_net(x)
resized = F.interpolate(
x, (256, 256), mode='bilinear', align_corners=False
)
b, c, h, w = local.shape
glob = self.glob_net(resized).expand(b, 64, h, w)
fuse = torch.cat((local, mid, glob), -3)
return self.end_net(fuse)
# This uses stitching is for low memory usage
def predict(self, x, patch_size):
with torch.no_grad():
if x.dim() == 3:
x = x.unsqueeze(0)
if x.size(-3) == 1:
# For grey images
x = x.expand(1, 3, *x.size()[-2:])
# Evaluate global features
resized = F.interpolate(
x, (256, 256), mode='bilinear', align_corners=False
)
glob = self.glob_net(resized)
overlap = 20
skip = int(overlap / 2)
result = x.clone()
x = F.pad(x, (skip, skip, skip, skip))
padded_height, padded_width = x.size(-2), x.size(-1)
num_h = int(np.ceil(padded_height / (patch_size - overlap)))
num_w = int(np.ceil(padded_width / (patch_size - overlap)))
for h_index in range(num_h):
for w_index in range(num_w):
h_start = h_index * (patch_size - overlap)
w_start = w_index * (patch_size - overlap)
h_end = min(h_start + patch_size, padded_height)
w_end = min(w_start + patch_size, padded_width)
x_slice = x[:, :, h_start:h_end, w_start:w_end]
loc = self.local_net(x_slice)
mid = self.mid_net(x_slice)
exp_glob = glob.expand(
1, 64, h_end - h_start, w_end - w_start
)
fuse = torch.cat((loc, mid, exp_glob), 1)
res = self.end_net(fuse).data
# stitch
h_start_stitch = h_index * (patch_size - overlap)
w_start_stitch = w_index * (patch_size - overlap)
h_end_stitch = min(
h_start + patch_size - overlap, padded_height
)
w_end_stitch = min(
w_start + patch_size - overlap, padded_width
)
res_slice = res[:, :, skip:-skip, skip:-skip]
result[
:,
:,
h_start_stitch:h_end_stitch,
w_start_stitch:w_end_stitch,
].copy_(res_slice)
del fuse, loc, mid, res
return result[0]