Skip to content

Latest commit

 

History

History
107 lines (85 loc) · 3.51 KB

README.md

File metadata and controls

107 lines (85 loc) · 3.51 KB

133. Clone Graph

Given a reference of a node in a connected undirected graph.

Return a deep copy (clone) of the graph.

Each node in the graph contains a val (int) and a list (List[Node]) of its neighbors.

class Node {
    public int val;
    public List<Node> neighbors;
}

Test case format:

For simplicity sake, each node's value is the same as the node's index (1-indexed). For example, the first node with val = 1, the second node with val = 2, and so on. The graph is represented in the test case using an adjacency list.

Adjacency list is a collection of unordered lists used to represent a finite graph. Each list describes the set of neighbors of a node in the graph.

The given node will always be the first node with val = 1. You must return the copy of the given node as a reference to the cloned graph.

Example 1:

Input: adjList = [[2,4],[1,3],[2,4],[1,3]]
Output: [[2,4],[1,3],[2,4],[1,3]]
Explanation: There are 4 nodes in the graph.
1st node (val = 1)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
2nd node (val = 2)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).
3rd node (val = 3)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
4th node (val = 4)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).

Example 2:

Input: adjList = [[]]
Output: [[]]
Explanation: Note that the input contains one empty list. The graph consists of only one node with val = 1 and it does not have any neighbors.

Example 3:

Input: adjList = []
Output: []
Explanation: This an empty graph, it does not have any nodes.

Example 4:

Input: adjList = [[2],[1]]
Output: [[2],[1]]

Constraints:

  • 1 <= Node.val <= 100
  • Node.val is unique for each node.
  • Number of Nodes will not exceed 100.
  • There is no repeated edges and no self-loops in the graph.
  • The Graph is connected and all nodes can be visited starting from the given node.

Solutions (Python)

1. Solution

"""
# Definition for a Node.
class Node:
    def __init__(self, val = 0, neighbors = None):
        self.val = val
        self.neighbors = neighbors if neighbors is not None else []
"""

class Solution:
    def cloneGraph(self, node: 'Node') -> 'Node':
        if not node:
            return None

        nodes = [node]
        visited = [False] * 101
        visited[node.val] = True
        i = 0

        while i < len(nodes):
            node = nodes[i]

            for neighbor in node.neighbors:
                if not visited[neighbor.val]:
                    visited[neighbor.val] = True
                    nodes.append(neighbor)
            node.neighbors.append(Node(node.val))

            i += 1

        for node in nodes:
            copy = node.neighbors[-1]
            for neighbor in node.neighbors[:-1]:
                copy.neighbors.append(neighbor.neighbors[-1])

        copy = nodes[0].neighbors[-1]

        for node in nodes:
            node.neighbors.pop()

        return copy