-
Notifications
You must be signed in to change notification settings - Fork 0
/
VGGAN.py
460 lines (341 loc) · 17.4 KB
/
VGGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
# -*- coding: utf-8 -*-
"""Copy of dcgan.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1IbgUFX0Wf14kcu2_eajOhKEBKX3DUcpF
### Import TensorFlow and other libraries
"""
from __future__ import absolute_import, division, print_function, unicode_literals
import tensorflow as tf
import glob
import imageio
import matplotlib.pyplot as plt
import numpy as np
import os
import PIL
from tensorflow.keras import layers, Model
import tensorlayer as tl
import time
import pathlib
"""### Load and prepare the dataset
You will use the MNIST dataset to train the generator and the discriminator. The generator will generate handwritten digits resembling the MNIST data.
"""
from preprocessing import train_dataset
# Import the images into the file
str_data_dir = './dataset/train'
AUTOTUNE = tf.data.experimental.AUTOTUNE
data_dir = pathlib.Path(str_data_dir)
image_count = len(list(data_dir.glob('*.jpg')))
print("There are {} images".format(image_count))
BATCH_SIZE = 16
HR_IMG_HEIGHT = 96
HR_IMG_WIDTH = 96
DOWNSAMPLING_FACTOR = 4
LR_IMG_HEIGHT = HR_IMG_HEIGHT/DOWNSAMPLING_FACTOR
LR_IMG_WIDTH = HR_IMG_WIDTH/DOWNSAMPLING_FACTOR
STEPS_PER_EPOCH = np.ceil(image_count/BATCH_SIZE)
NUM_CHANNELS = 3
EPOCHS = 100
noise_dim = 100
num_examples_to_generate = 16
import time
loss_filename = "losses_vgg_{}.txt".format(time.time())
def generate_gaussian_kernel(shape=(3,3),sigma=0.5):
"""
2D gaussian mask - should give the same result as MATLAB's
fspecial('gaussian',[shape],[sigma])
"""
m,n = [(ss-1.)/2. for ss in shape]
y,x = np.ogrid[-m:m+1,-n:n+1]
h = np.exp( -(x*x + y*y) / (2.*sigma*sigma) )
h[ h < np.finfo(h.dtype).eps*h.max() ] = 0
sumh = h.sum()
if sumh != 0:
h /= sumh
return h
"""## Create the models
Both the generator and discriminator are defined using the [Keras Sequential API](https://www.tensorflow.org/guide/keras#sequential_model).
### The Generator
The generator uses `tf.keras.layers.Conv2DTranspose` (upsampling) layers to produce an image from a seed (random noise). Start with a `Dense` layer that takes this seed as input, then upsample several times until you reach the desired image size of 28x28x1. Notice the `tf.keras.layers.LeakyReLU` activation for each layer, except the output layer which uses tanh.
"""
B = 4 # Number of generator residual blocks
# Subpixel Conv will upsample from (h, w, c) to (h/r, w/r, c/r^2)
# Implementation by Shi et al. (https://github.com/twairball/keras-subpixel-conv)
from subpixel import SubpixelConv2D, Subpixel
############################################# BLUR AND DOWNSAMPLE LAYERS #############################################
# Gaussian Blur Setup
BLUR_KERNEL_SIZE = 3
kernel_weights = generate_gaussian_kernel()
# Size compatibility code
kernel_weights = np.expand_dims(kernel_weights, axis=-1)
kernel_weights = np.repeat(kernel_weights, NUM_CHANNELS, axis=-1) # apply the same filter on all the input channels
kernel_weights = np.expand_dims(kernel_weights, axis=-1) # for shape compatibility reasons
# Blur
blur_layer = layers.DepthwiseConv2D(BLUR_KERNEL_SIZE, use_bias=False, padding='same')
# Downsample
downsample_layer = layers.AveragePooling2D(pool_size=(DOWNSAMPLING_FACTOR, DOWNSAMPLING_FACTOR))
############################################# BLUR AND DOWNSAMPLE LAYERS #############################################
################################################### MODEL CREATION ###################################################
def make_downsampler_model():
hr_img = layers.Input(shape=(HR_IMG_WIDTH, HR_IMG_HEIGHT, NUM_CHANNELS))
lr_img = blur_layer(hr_img)
lr_img = downsample_layer(lr_img)
return Model(inputs=hr_img, outputs=lr_img, name='downsampler')
downsampler = make_downsampler_model()
blur_layer.set_weights([kernel_weights])
blur_layer.trainable = False # the weights should not change during training
def make_sr_generator_model():
lr_img = layers.Input(shape=(None, None, NUM_CHANNELS))
################################################################################
## Now that we have a low res image, we can start the actual generator ResNet ##
################################################################################
x = layers.Convolution2D(64, (9,9), (1,1), padding='same')(lr_img)
x = layers.ReLU()(x)
b_prev = x
#####################
## Residual Blocks ##
#####################
for i in range(B):
b_curr = layers.Convolution2D(64, (3,3), (1,1), padding='same')(b_prev)
b_curr = layers.BatchNormalization()(b_curr)
b_curr = layers.ReLU()(b_curr)
b_curr = layers.Convolution2D(64, (3,3), (1,1), padding='same')(b_curr)
b_curr = layers.BatchNormalization()(b_curr)
b_curr = layers.Add()([b_prev, b_curr]) #skip connection
b_prev = b_curr
res_out = b_curr # Output of residual blocks
x2 = layers.Convolution2D(64, (3,3), (1,1), padding='same')(res_out)
x2 = layers.BatchNormalization()(x2)
x = layers.Add()([x, x2]) #skip connection
#######################################################
## Resolution-enhancing sub-pixel convolution layers ##
#######################################################
# Layer 1 (Half of the upsampling)
x = layers.Convolution2D(256, (3,3), (1,1), padding='same')(res_out)
x = SubpixelConv2D(input_shape=(None, None, None, NUM_CHANNELS), scale=DOWNSAMPLING_FACTOR/2, idx=0)(x)
#x = Subpixel(256, kernel_size=(3,3), r=DOWNSAMPLING_FACTOR/2, padding='same', strides=(1,1))
x = layers.ReLU()(x)
# Layer 2 (Second half of the upsampling)
x = layers.Convolution2D(256, (3,3), (1,1), padding='same')(x)
x = SubpixelConv2D(input_shape=(None, None, None, NUM_CHANNELS/((DOWNSAMPLING_FACTOR/2) ** 2)), scale=(DOWNSAMPLING_FACTOR/2), idx=1)(x)
#x = Subpixel(256, kernel_size=(3,3), r=DOWNSAMPLING_FACTOR/2, padding='same', strides=(1,1))
x = layers.ReLU()(x)
generated_sr_image = layers.Convolution2D(3, (9,9), (1,1), padding='same')(x)
output_shape = generated_sr_image.get_shape().as_list()
#assert output_shape == [None, HR_IMG_HEIGHT, HR_IMG_WIDTH, NUM_CHANNELS]
return Model(inputs=lr_img, outputs=generated_sr_image, name='generator')
generator = make_sr_generator_model()
generator.summary()
def make_sr_discriminator_model():
inputs = layers.Input(shape=(HR_IMG_HEIGHT, HR_IMG_WIDTH, NUM_CHANNELS))
# k3n64s1
x = layers.Convolution2D(64, (3,3), (1,1), padding='same')(inputs)
x = layers.LeakyReLU(alpha=0.2)(x)
#################
## Conv Blocks ##
#################
# k3n64s2
x = layers.Convolution2D(64, (3,3), (2,2), padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.LeakyReLU(alpha=0.2)(x)
# k3n128s1
x = layers.Convolution2D(128, (3,3), (1,1), padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.LeakyReLU(alpha=0.2)(x)
# k3n128s2
x = layers.Convolution2D(128, (3,3), (2,2), padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.LeakyReLU(alpha=0.2)(x)
# k3n256s1
x = layers.Convolution2D(256, (3,3), (1,1), padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.LeakyReLU(alpha=0.2)(x)
# k3n256s2
x = layers.Convolution2D(256, (3,3), (2,2), padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.LeakyReLU(alpha=0.2)(x)
# k3n512s1
x = layers.Convolution2D(512, (3,3), (1,1), padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.LeakyReLU(alpha=0.2)(x)
# k3n512s2
x = layers.Convolution2D(512, (3,3), (2,2), padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.LeakyReLU(alpha=0.2)(x)
################
## Dense Tail ##
################
x = layers.Dense(1024)(x)
x = layers.LeakyReLU(alpha=0.2)(x)
outputs = layers.Dense(1, activation='sigmoid')(x)
return Model(inputs=inputs, outputs=outputs, name='discriminator')
discriminator = make_sr_discriminator_model()
################################################### MODEL CREATION ###################################################
################################################### LOSS AND OPTIMIZER ###############################################
"""## Define the loss and optimizers
Define loss functions and optimizers for both models.
"""
# This method returns a helper function to compute cross entropy loss
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
"""### Discriminator loss
This method quantifies how well the discriminator is able to distinguish real images from fakes. It compares the discriminator's predictions on real images to an array of 1s, and the discriminator's predictions on fake (generated) images to an array of 0s.
"""
def discriminator_loss(real_output, fake_output):
real_loss = cross_entropy(tf.ones_like(real_output), real_output)
fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
total_loss = real_loss + fake_loss
return total_loss
"""### Generator loss
The generator's loss quantifies how well it was able to trick the discriminator. Intuitively, if the generator is performing well, the discriminator will classify the fake images as real (or 1). Here, we will compare the discriminators decisions on the generated images to an array of 1s.
"""
def generator_loss(generated_images, hr_images, real_output=None, fake_output=None, VGG=None, VGG_1=None, VGG_2=None, pretraining=False):
if pretraining:
return tl.cost.mean_squared_error(generated_images, hr_images, is_mean=True)
else:
fake_image_features = VGG((generated_images+1)/2.) # the pre-trained VGG uses the input range of [0, 1]
real_image_features = VGG((hr_images+1)/2.)
fake_image_features_1 = VGG_1((generated_images+1)/2.) # the pre-trained VGG uses the input range of [0, 1]
real_image_features_1 = VGG_1((hr_images+1)/2.)
fake_image_features_2 = VGG_2((generated_images+1)/2.) # the pre-trained VGG uses the input range of [0, 1]
real_image_features_2 = VGG_2((hr_images+1)/2.)
g_gan_loss = 1e-3 * tl.cost.sigmoid_cross_entropy(fake_output, tf.ones_like(fake_output))
mse_loss = tl.cost.mean_squared_error(generated_images, hr_images, is_mean=True)
vgg_loss = 2e-6 * (tl.cost.mean_squared_error(fake_image_features, real_image_features, is_mean=True) + tl.cost.mean_squared_error(fake_image_features_1, real_image_features_1, is_mean=True) + tl.cost.mean_squared_error(fake_image_features_2, real_image_features_2, is_mean=True))
g_loss = mse_loss + vgg_loss + g_gan_loss
return g_loss
"""The discriminator and the generator optimizers are different since we will train two networks separately."""
generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)
"""### Save checkpoints
This notebook also demonstrates how to save and restore models, which can be helpful in case a long running training task is interrupted.
"""
checkpoint_dir = './vggan_training_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer,
discriminator_optimizer=discriminator_optimizer,
generator=generator,
discriminator=discriminator)
################################################### LOSS AND OPTIMIZER ###############################################
###################################################### TRAINING LOOP #################################################
"""The training loop begins with generator receiving a random seed as input. That seed is used to produce an image. The discriminator is then used to classify real images (drawn from the training set) and fakes images (produced by the generator). The loss is calculated for each of these models, and the gradients are used to update the generator and discriminator."""
# Notice the use of `tf.function`
# This annotation causes the function to be "compiled".
@tf.function
def train_step(images, VGG, VGG_1, VGG_2, count, epoch_disc_loss, epoch_gen_loss):
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
#tf.print("Generating low res images")
lr_images = downsampler(images, training=False)
#tf.print("Generating new images")
generated_images = generator(lr_images, training=True)
#tf.print("Getting discriminator output on real and fake input")
real_output = discriminator(images, training=True)
fake_output = discriminator(generated_images, training=True)
#tf.print("Calculating discriminator loss")
disc_loss = discriminator_loss(real_output, fake_output)
#tf.print("Calculating generator loss")
gen_loss = generator_loss(generated_images, images, real_output, fake_output, VGG, VGG_1, VGG_2)
#tf.print("Discriminator Loss: {}, Generator Loss: {}".format(disc_loss, gen_loss))
#tf.print("Getting gradients")
gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
#tf.print("Applying gradients")
generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
#tf.print("Ended train step {}".format(count))
return disc_loss, gen_loss
def train(dataset, epochs, test_dataset=None):
print("Loading VGG model")
VGG = tl.models.vgg19(pretrained=True, end_with='pool4', mode='static')
VGG.eval()
VGG_1 = tl.models.vgg19(pretrained=True, end_with='pool1', mode='static')
VGG_1.eval()
VGG_2 = tl.models.vgg19(pretrained=True, end_with='pool2', mode='static')
VGG_2.eval()
checkpoint.save(file_prefix = checkpoint_prefix)
print("Starting main train loop")
for epoch in range(epochs):
start = time.time()
#print("Starting epoch {}/{}".format(epoch+1, epochs))
epoch_disc_loss = 0.
epoch_gen_loss = 0.
count = 0
for image_batch in dataset:
print("Training on Batch {}".format(count))
d_loss, g_loss = train_step(image_batch, VGG, VGG_1, VGG_2, tf.constant(count), epoch_disc_loss, epoch_gen_loss)
count += 1
epoch_disc_loss += d_loss
epoch_gen_loss += g_loss
print("Discriminator Loss: {} | Generator Loss: {}".format(epoch_disc_loss/count, epoch_gen_loss/count))
f = open(loss_filename,"a+")
f.write("Epoch [{}] Batch [{}] Disc Loss [{}] Gen Loss [{}]\n".format(epoch, count, epoch_disc_loss/count, epoch_gen_loss/count))
f.close()
# Produce images for the GIF as we go
if test_dataset:
generate_and_save_images(generator,
epoch + 1,
test_dataset)
# Save the model every 15 epochs
if (epoch + 1) % 1 == 0:
chpnt_txt = "Saving checkpoint for epoch {}".format(epoch+1)
checkpoint.save(file_prefix = checkpoint_prefix)
print(chpnt_txt)
f = open(loss_filename, "a+")
f.write(chpnt_txt)
f.close()
f = open(loss_filename, "a+")
time_string = 'Time for epoch {}/{} is {} sec\n'.format(epoch + 1, epochs, time.time()-start)
print(time_string)
f.write(time_string)
f.close()
# Generate after the final epoch
if test_dataset:
generate_and_save_images(generator,
epochs,
test_dataset)
"""**Generate and save images**"""
def generate_and_save_images(model, epoch, test_input):
# Notice `training` is set to False.
# This is so all layers run in inference mode (batchnorm).
predictions = model(test_input, training=False)
fig = plt.figure(figsize=(4,4))
for i in range(predictions.shape[0]):
plt.subplot(4, 4, i+1)
plt.imshow(predictions[i, :, :, :])
plt.axis('off')
plt.savefig('image_at_epoch_{:04d}.png'.format(epoch))
if (epoch % 50 == 0):
plt.show()
###################################################### TRAINING LOOP #################################################
"""## Train the model
Call the `train()` method defined above to train the generator and discriminator simultaneously. Note, training GANs can be tricky. It's important that the generator and discriminator do not overpower each other (e.g., that they train at a similar rate).
At the beginning of the training, the generated images look like random noise. As training progresses, the generated digits will look increasingly real. After about 50 epochs, they resemble MNIST digits. This may take about one minute / epoch with the default settings on Colab.
"""
# Commented out IPython magic to ensure Python compatibility.
# %%time
print("Starting to train")
train(train_dataset, EPOCHS)
"""Restore the latest checkpoint."""
checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir))
"""## Create a GIF"""
# Display a single image using the epoch number
def display_image(epoch_no):
return PIL.Image.open('image_at_epoch_{:04d}.png'.format(epoch_no))
"""
display_image(EPOCHS)
#Use `imageio` to create an animated gif using the images saved during training.
anim_file = 'dcgan.gif'
with imageio.get_writer(anim_file, mode='I') as writer:
filenames = glob.glob('image*.png')
filenames = sorted(filenames)
last = -1
for i,filename in enumerate(filenames):
frame = 2*(i**0.5)
if round(frame) > round(last):
last = frame
else:
continue
image = imageio.imread(filename)
writer.append_data(image)
image = imageio.imread(filename)
writer.append_data(image)
"""