forked from maranasgroup/dGPredictor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdg_prediction.py
338 lines (280 loc) · 12.1 KB
/
dg_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import streamlit as st
import pandas as pd
import numpy as np
from PIL import Image
import webbrowser
import pickle
import joblib
from CC.chemaxon import *
from CC.compound import Compound
from CC.compound_cacher import CompoundCacher
from rdkit.Chem import rdChemReactions as Reactions
from rdkit.Chem import Draw
from rdkit import Chem
import json, sys, re, os
class dGPredictor:
def __init__(self, smiles_compounds_path=None, mol_sig_r1_path=None,
mol_sig_r2_path=None, model_file_path=None):
# load_smiles
smiles_compounds_path = smiles_compounds_path or os.path.join(
os.path.dirname(__file__), 'data/cache_compounds_20160818.csv')
db = pd.read_csv(smiles_compounds_path, index_col='compound_id')
self.db_smiles = db['smiles_pH7'].to_dict()
# load_molsig_rad1
mol_sig_r1_path = mol_sig_r1_path or os.path.join(
os.path.dirname(__file__), 'data/decompose_vector_ac.json')
self.mol_sig_r1 = json.load(open(mol_sig_r1_path))
# load_molsig_rad2
mol_sig_r2_path = mol_sig_r2_path or os.path.join(
os.path.dirname(__file__), 'data/decompose_vector_ac_r2_py3_indent_modified_manual.json')
self.mol_sig_r2 = json.load(open(mol_sig_r2_path))
# load_model
model_file_path = model_file_path or os.path.join(os.path.dirname(__file__), 'model/M12_model_BR.pkl')
self.model = joblib.load(open(model_file_path, 'rb'))
# load_compound_cache
self.ccache = CompoundCacher()
def predict(self, rxn_str, rxnID, pH, I, extra_info=None, draw=True, printing=True):
# parameterize novel contributions
novel_mets = dGPredictor.parse_novel_molecule(extra_info)
novel_smiles = dGPredictor.parse_novel_smiles(novel_mets)
novel_decomposed_r1 = dGPredictor.decompse_novel_mets_rad1(novel_smiles)
novel_decomposed_r2 = dGPredictor.decompse_novel_mets_rad2(novel_smiles)
# draw the simulated reaction
rxn_dict = dGPredictor.parse_formula(rxn_str)
if draw:
dGPredictor.draw_rxn_figure(rxn_dict, self.db_smiles, novel_smiles)
# estimate the dG for the reaction
mu, std, rule_df1, rule_df2 = dGPredictor.get_dG0(
rxn_dict, rxnID, pH, I, self.model, self.molsig_r1, self.molsig_r2,
novel_decomposed_r1, novel_decomposed_r2, novel_mets)
if printing:
print(f"{rxnID}:\tdG = {mu:.2f} ± {std:.2f} kJ/mol")
return mu, std, rule_df1, rule_df2
def bulk_prediction(self, RXNs, pH, I, extra_info=None, draw=True, printing=True):
return {rxnID: self.predict(rxn_str, rxnID, pH, I, extra_info, draw, printing)
for rxnID, rxn_str in RXNs.items()}
@staticmethod
def count_substructures(radius, molecule):
"""Helper function for get the information of molecular signature of a
metabolite. The relaxed signature requires the number of each substructure
to construct a matrix for each molecule.
Parameters
----------
radius : int
the radius is bond-distance that defines how many neighbor atoms should
be considered in a reaction center.
molecule : Molecule
a molecule object create by RDkit (e.g. Chem.MolFromInchi(inchi_code)
or Chem.MolToSmiles(smiles_code))
Returns
-------
dict
dictionary of molecular signature for a molecule,
{smiles: molecular_signature}
"""
m = molecule
smi_count = dict()
atomList = [atom for atom in m.GetAtoms()]
for i in range(len(atomList)):
env = Chem.FindAtomEnvironmentOfRadiusN(m, radius, i)
atoms = set()
for bidx in env:
atoms.add(m.GetBondWithIdx(bidx).GetBeginAtomIdx())
atoms.add(m.GetBondWithIdx(bidx).GetEndAtomIdx())
# only one atom is in this environment, such as O in H2O
if len(atoms) == 0:
atoms = {i}
smi = Chem.MolFragmentToSmiles(m, atomsToUse=list(atoms),
bondsToUse=env, canonical=True)
if smi in smi_count:
smi_count[smi] = smi_count[smi] + 1
else:
smi_count[smi] = 1
return smi_count
@staticmethod
def decompse_novel_mets_rad1(novel_smiles, radius=1):
decompose_vector = dict()
for cid, smiles_pH7 in novel_smiles.items():
mol = Chem.MolFromSmiles(smiles_pH7)
mol = Chem.RemoveHs(mol)
# Chem.RemoveStereochemistry(mol)
smi_count = dGPredictor.count_substructures(radius, mol)
decompose_vector[cid] = smi_count
return decompose_vector
@staticmethod
def decompse_novel_mets_rad2(novel_smiles, radius=2):
decompose_vector = dict()
for cid, smiles_pH7 in novel_smiles.items():
mol = Chem.MolFromSmiles(smiles_pH7)
mol = Chem.RemoveHs(mol)
# Chem.RemoveStereochemistry(mol)
smi_count = dGPredictor.count_substructures(radius, mol)
decompose_vector[cid] = smi_count
return decompose_vector
@staticmethod
def parse_reaction_formula_side(s):
"""
Parses the side formula, e.g. '2 C00001 + C00002 + 3 C00003'
Ignores stoichiometry.
Returns:
The set of CIDs.
"""
if s.strip() == "null":
return {}
compound_bag = {}
for member in re.split('\s+\+\s+', s):
tokens = member.split(None, 1)
if len(tokens) == 0:
continue
if len(tokens) == 1:
amount = 1
key = member
else:
amount = float(tokens[0])
key = tokens[1]
compound_bag[key] = compound_bag.get(key, 0) + amount
return compound_bag
@staticmethod
def parse_formula(formula, arrow='<=>', rid=None):
"""
Parses a two-sided formula such as: 2 C00001 => C00002 + C00003
Return:
The set of substrates, products and the direction of the reaction
"""
tokens = formula.split(arrow)
if len(tokens) < 2:
print(('Reaction does not contain the arrow sign (%s): %s'
% (arrow, formula)))
if len(tokens) > 2:
print(('Reaction contains more than one arrow sign (%s): %s'
% (arrow, formula)))
left = tokens[0].strip()
right = tokens[1].strip()
sparse_reaction = {}
for cid, count in dGPredictor.parse_reaction_formula_side(left).items():
sparse_reaction[cid] = sparse_reaction.get(cid, 0) - count
for cid, count in dGPredictor.parse_reaction_formula_side(right).items():
sparse_reaction[cid] = sparse_reaction.get(cid, 0) + count
return sparse_reaction
@staticmethod
def draw_rxn_figure(rxn_dict, db_smiles, novel_smiles):
# db_smiles = load_smiles()
left = ''
right = ''
for met, stoic in rxn_dict.items():
if met == "C00080" or met == "C00282":
continue # hydogen is not considered
if stoic > 0:
if met in db_smiles:
right = right + db_smiles[met] + '.'
else:
right = right + novel_smiles[met] + '.'
else:
if met in db_smiles:
left = left + db_smiles[met] + '.'
else:
left = left + novel_smiles[met] + '.'
smarts = left[:-1] + '>>' + right[:-1]
# print smarts
smarts = str(smarts)
rxn = Reactions.ReactionFromSmarts(smarts, useSmiles=True)
return Chem.Draw.ReactionToImage(rxn) # , subImgSize=(400, 400))
@staticmethod
def get_rule(rxn_dict, molsig1, molsig2, novel_decomposed1, novel_decomposed2):
if novel_decomposed1 != None:
for cid in novel_decomposed1:
molsig1[cid] = novel_decomposed1[cid]
if novel_decomposed2 != None:
for cid in novel_decomposed2:
molsig2[cid] = novel_decomposed2[cid]
molsigna_df1 = pd.DataFrame.from_dict(molsig1).fillna(0)
all_mets1 = molsigna_df1.columns.tolist()
all_mets1.append("C00080")
all_mets1.append("C00282")
molsigna_df2 = pd.DataFrame.from_dict(molsig2).fillna(0)
all_mets2 = molsigna_df2.columns.tolist()
all_mets2.append("C00080")
all_mets2.append("C00282")
moieties_r1 = open(os.path.join(os.path.dirname(__file__), 'data/group_names_r1.txt'))
moieties_r2 = open(os.path.join(os.path.dirname(__file__), 'data/group_names_r2_py3_modified_manual.txt'))
moie_r1 = moieties_r1.read().splitlines()
moie_r2 = moieties_r2.read().splitlines()
molsigna_df1 = molsigna_df1.reindex(moie_r1)
molsigna_df2 = molsigna_df2.reindex(moie_r2)
rule_df1 = pd.DataFrame(index=molsigna_df1.index)
rule_df2 = pd.DataFrame(index=molsigna_df2.index)
# for rid, value in reaction_dict.items():
# # skip the reactions with missing metabolites
# mets = value.keys()
# flag = False
# for met in mets:
# if met not in all_mets:
# flag = True
# break
# if flag: continue
rule_df1['change'] = 0
for met, stoic in rxn_dict.items():
if met == "C00080" or met == "C00282":
continue # hydogen is zero
rule_df1['change'] += molsigna_df1[met] * stoic
rule_df2['change'] = 0
for met, stoic in rxn_dict.items():
if met == "C00080" or met == "C00282":
continue # hydogen is zero
rule_df2['change'] += molsigna_df2[met] * stoic
rule_vec1 = rule_df1.to_numpy().T
rule_vec2 = rule_df2.to_numpy().T
m1, n1 = rule_vec1.shape
m2, n2 = rule_vec2.shape
zeros1 = np.zeros((m1, 44))
zeros2 = np.zeros((m2, 44))
X1 = np.concatenate((rule_vec1, zeros1), 1)
X2 = np.concatenate((rule_vec2, zeros2), 1)
rule_comb = np.concatenate((X1, X2), 1)
# rule_df_final = {}
# rule_df_final['rad1'] = rule_df1
# rule_df_final['rad2'] = rule_df2
return rule_comb, rule_df1, rule_df2
@staticmethod
def get_ddG0(rxn_dict, pH, I, novel_mets):
ccache = CompoundCacher()
# ddG0 = get_transform_ddG0(rxn_dict, ccache, pH, I, T)
T = 298.15
ddG0_forward = 0
for compound_id, coeff in rxn_dict.items():
if novel_mets != None and compound_id in novel_mets:
comp = novel_mets[compound_id]
else:
comp = ccache.get_compound(compound_id)
ddG0_forward += coeff * comp.transform_pH7(pH, I, T)
return ddG0_forward
@staticmethod
def get_dG0(rxn_dict, rid, pH, I, loaded_model, molsig_r1, molsig_r2, novel_decomposed_r1, novel_decomposed_r2,
novel_mets):
# rule_df = get_rxn_rule(rid)
rule_comb, rule_df1, rule_df2 = dGPredictor.get_rule(
rxn_dict, molsig_r1, molsig_r2, novel_decomposed_r1, novel_decomposed_r2)
X = rule_comb
ymean, ystd = loaded_model.predict(X, return_std=True)
result = {}
# result['dG0'] = ymean[0] + get_ddG0(rxn_dict, pH, I)
# result['standard deviation'] = ystd[0]
# result_df = pd.DataFrame([result])
# result_df.style.hide_index()
# return result_df
return ymean[0] + dGPredictor.get_ddG0(rxn_dict, pH, I, novel_mets), ystd[0], rule_df1, rule_df2
# return ymean[0],ystd[0]
@staticmethod
def parse_novel_molecule(add_info):
result = {}
for cid, InChI in add_info.items():
c = Compound.from_inchi('Test', cid, InChI)
result[cid] = c
return result
@staticmethod
def parse_novel_smiles(result):
novel_smiles = {}
for cid, c in result.items():
smiles = c.smiles_pH7
novel_smiles[cid] = smiles
return novel_smiles