-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_test.py
282 lines (219 loc) · 13.5 KB
/
evaluate_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
from kge.model import KgeModel
from kge.util.io import load_checkpoint
import torch
import sys
import pandas as pd
import sklearn.preprocessing as preprocessing
import numpy as np
import os
from evaluator import Evaluator
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("-p","--path",type=str, default="", help="path to the directory where checkpoint_best.pt is stored.")
parser.add_argument("-d","--disease",type=str, default="", help="query only for this disease identifier")
parser.add_argument("-c","--compound",type=str, default="", help="query only for this compound identifier")
args = parser.parse_args()
prefix = ""
suffix = "checkpoint_best.pt"
if args.path != "":
run = args.path
best_model = os.path.join(prefix, run, suffix)
if "hetionet" in run:
evaluation_relation_whitelist = ['CtD',"CtD_inv"]
elif "drkg" in run:
evaluation_relation_whitelist = ['union::treats::Compound:Disease', 'union::treats::Compound:Disease_inv']
else:
raise ValueError(best_model)
checkpoint = load_checkpoint(best_model)
if "full" in best_model:
dataset_version = "full"
elif "subset" in best_model:
dataset_version = "subset"
elif "noana" in best_model:
dataset_version = "noana"
elif "nogene" in best_model:
dataset_version = "nogene"
elif "nosymp" in best_model:
dataset_version = "nosymp"
elif "noside" in best_model:
dataset_version = "noside"
elif "nopc" in best_model:
dataset_version = "nopc"
else:
raise ValueError(best_model)
#if "inverse" in best_model:
dataset_version += "-with-inverse"
if "hetionet" in best_model:
dataset = "hetionet"
elif "drkg" in best_model:
dataset = "drkg"
if "hetionet" in best_model:
if "fold1" in best_model:
fold = 1
elif "fold2" in best_model:
fold = 2
elif "fold3" in best_model:
fold = 3
elif "fold4" in best_model:
fold = 4
else:
raise ValueError(best_model)
if "hetionet" in best_model:
checkpoint["config"].set("dataset.name","{}-fold{}-{}".format(dataset,fold,dataset_version))
elif "drkg" in best_model:
checkpoint["config"].set("dataset.name","{}-{}".format(dataset,dataset_version))
else:
raise ValueError(best_model)
model = KgeModel.create_from(checkpoint)
model = model
base_path= "./kge"
if "hetionet" in best_model:
evaluator = Evaluator(ground_truth_train=os.path.join(base_path, "truth_hetionet/ground_truth_train_fold{}.npz".format(fold)),
ground_truth_val=os.path.join(base_path, "truth_hetionet/ground_truth_val_fold{}.npz".format(fold)),
ground_truth_test=os.path.join(base_path, "truth_hetionet/ground_truth_test_fold{}.npz".format(fold)))
elif "drkg" in best_model:
evaluator = Evaluator(ground_truth_train=os.path.join(base_path,"truth_drkg/ground_truth_train.npz"),
ground_truth_val=os.path.join(base_path,"truth_drkg/ground_truth_val.npz"),
ground_truth_test=os.path.join(base_path,"truth_drkg/ground_truth_test.npz"))
if "hetionet" in best_model:
if dataset_version != "":
entity_ids_df = pd.read_csv(os.path.join(base_path,"data/hetionet-fold{}-{}/entity_ids.del".format(fold, dataset_version)),sep="\t",names=['id', 'name'])
relation_ids_df = pd.read_csv(os.path.join(base_path,"data/hetionet-fold{}-{}/relation_ids.del".format(fold, dataset_version)),sep="\t",names=['id', 'name'])
else:
entity_ids_df = pd.read_csv("/home/fratajczak/kge/data/hetionet-{}/entity_ids.del".format(fold),sep="\t",names=['id', 'name'])
relation_ids_df = pd.read_csv("/home/fratajczak/kge/data/hetionet-{}/relation_ids.del".format(fold),sep="\t",names=['id', 'name'])
elif "drkg" in best_model:
entity_ids_df = pd.read_csv(os.path.join(base_path,"data/drkg-{}/entity_ids.del".format(dataset_version)),sep="\t",names=['id', 'name'])
relation_ids_df = pd.read_csv(os.path.join(base_path,"data/drkg-{}/relation_ids.del".format(dataset_version)),sep="\t",names=['id', 'name'])
entity_ids = {x["name"]: x["id"] for _, x in entity_ids_df.iterrows()}
relation_ids = {x["name"]: x["id"] for _, x in relation_ids_df.iterrows()}
disease_encoder = preprocessing.LabelEncoder()
compound_encoder = preprocessing.LabelEncoder()
if "hetionet" in best_model:
disease_encoder.classes_ = np.load(os.path.join(base_path, 'truth_hetionet/disease_classes_fold{}.npy'.format(fold)),allow_pickle = True)
compound_encoder.classes_ = np.load(os.path.join(base_path, 'truth_hetionet/compound_classes_fold{}.npy'.format(fold)),allow_pickle = True)
elif "drkg" in best_model:
disease_encoder.classes_ = np.load(os.path.join(base_path, 'truth_drkg/disease_classes.npy'),allow_pickle = True)
compound_encoder.classes_ = np.load(os.path.join(base_path, 'truth_drkg/compound_classes.npy'),allow_pickle = True)
if args.disease == "":
disease_indices = torch.LongTensor([entity_ids[x] if x in entity_ids.keys() else -1 for x in disease_encoder.classes_])
else:
disease_indices = torch.LongTensor([entity_ids[x] if x in entity_ids.keys() else -1 for x in [args.disease]])
evaluator.truth_test_matrix = evaluator.truth_test_matrix[:,disease_encoder.transform([args.disease])]
evaluator.truth_train_matrix = evaluator.truth_train_matrix[:,disease_encoder.transform([args.disease])]
evaluator.truth_val_matrix = evaluator.truth_val_matrix[:,disease_encoder.transform([args.disease])]
if args.compound == "":
compound_indices = torch.LongTensor([entity_ids[x] if x in entity_ids.keys() else -1 for x in compound_encoder.classes_])
else:
compound_indices = torch.LongTensor([entity_ids[x] if x in entity_ids.keys() else -1 for x in [args.compound]])
evaluator.truth_test_matrix = evaluator.truth_test_matrix[compound_encoder.transform([args.compound]),:]
evaluator.truth_train_matrix = evaluator.truth_train_matrix[compound_encoder.transform([args.compound]),:]
evaluator.truth_val_matrix = evaluator.truth_val_matrix[compound_encoder.transform([args.compound]),:]
relation_indices = torch.LongTensor([relation_ids[x] if x in relation_ids.keys() else -1 for x in evaluation_relation_whitelist])
missing_diseases = torch.sum(torch.where(disease_indices == -1, 1, 0))
missing_compounds = torch.sum(torch.where(compound_indices == -1, 1, 0))
missing_relations = torch.sum(torch.where(relation_indices == -1, 1, 0))
print("Evaluation Dataset contains {} diseases, {} of which are not in the Training Set.".format(disease_indices.shape[0],missing_diseases))
print("Evaluation Dataset contains {} compounds, {} of which are not in the Training Set.".format(compound_indices.shape[0],missing_compounds))
print("Evaluation Dataset contains {} treats-edge(s), {} of which are not in the Training Set.".format(relation_indices.shape[0],missing_relations))
random_entity = model.get_s_embedder().embed(disease_indices[0])
entity_dim = random_entity.shape[0]
random_relation = model.get_p_embedder().embed(relation_indices[0])
relation_dim = random_relation.shape[0]
if "conve" not in best_model and "rescal" not in best_model:
disease_embeddings = torch.stack([model.get_s_embedder().embed(x) if x != -1 else torch.zeros(entity_dim) for x in disease_indices])
compound_embeddings = torch.stack([model.get_s_embedder().embed(x) if x != -1 else torch.zeros(entity_dim) for x in compound_indices])
relation_embeddings = torch.stack([model.get_p_embedder().embed(x) if x != -1 else torch.zeros(relation_dim) for x in relation_indices])
num_diseases = disease_indices.shape[0]
num_compounds = compound_indices.shape[0]
num_relations = relation_indices.shape[0]
metrics = {}
for i in range(num_relations):
if evaluation_relation_whitelist[i] in ["CtD", 'union::treats::Compound:Disease']:
if "conve" in best_model or "rescal" in best_model:
scores = torch.empty((num_compounds,num_diseases))
relation = relation_indices[i]
for j, s in enumerate(compound_indices):
for k, o in enumerate(disease_indices):
scores[j,k] = model.score_sp(s.unsqueeze(0),
relation.unsqueeze(0),
o.unsqueeze(0))
else:
scores = model._scorer.score_emb(compound_embeddings, relation_embeddings[i].unsqueeze(0), disease_embeddings, combine= "sp_")
scores = scores.reshape((num_compounds,num_diseases))
else:
if "conve" in best_model or "rescal" in best_model:
scores = torch.empty((num_diseases,num_compounds))
relation = relation_indices[i]
for j, s in enumerate(disease_indices):
for k, o in enumerate(compound_indices):
scores[j,k] = model.score_sp(s.unsqueeze(0),
relation.unsqueeze(0),
o.unsqueeze(0))
else:
scores = model._scorer.score_emb(disease_embeddings, relation_embeddings[i].unsqueeze(0), compound_embeddings, combine= "sp_")
scores = scores.reshape((num_diseases,num_compounds)).t()
if args.compound != "":
num_test_diseases = np.count_nonzero(evaluator.truth_test_matrix)
print("Number of diseases that are being treated by {} in the test set: {}".format(args.compound,num_test_diseases))
if args.disease != "":
num_test_compounds = np.count_nonzero(evaluator.truth_test_matrix)
print("Number of compounds that treat {} in the test set: {}".format(args.disease,num_test_compounds))
evaluator.evaluate(scores.detach().cpu().numpy(), use_testing=True)
if evaluation_relation_whitelist[i] in ["CtD", 'union::treats::Compound:Disease']:
metrics.update({"mrr_CxD_train": float(evaluator.mrrs_row_train[-1]),
"mrr_CxD_val": float(evaluator.mrrs_row_val[-1]),
"mrr_CxD_test": float(evaluator.mrrs_row_test[-1])})
metrics.update({"mean_rank_CxD_train": float(evaluator.mean_ranks_row_train[-1]),
"mean_rank_CxD_val": float(evaluator.mean_ranks_row_val[-1]),
"mean_rank_CxD_test": float(evaluator.mean_ranks_row_test[-1])})
metrics.update({"hat5_CxD_train": float(evaluator.hat5_row_train[-1]),
"hat5_CxD_val": float(evaluator.hat5_row_val[-1]),
"hat5_CxD_test": float(evaluator.hat5_row_test[-1])})
metrics.update({"hat10_CxD_train": float(evaluator.hat10_row_train[-1]),
"hat10_CxD_val": float(evaluator.hat10_row_val[-1]),
"hat10_CxD_test": float(evaluator.hat10_row_test[-1])})
metrics.update({"hat20_CxD_train": float(evaluator.hat20_row_train[-1]),
"hat20_CxD_val": float(evaluator.hat20_row_val[-1]),
"hat20_CxD_test": float(evaluator.hat20_row_test[-1])})
metrics.update({"hat50_CxD_train": float(evaluator.hat50_row_train[-1]),
"hat50_CxD_val": float(evaluator.hat50_row_val[-1]),
"hat50_CxD_test": float(evaluator.hat50_row_test[-1])})
else:
metrics.update({"mrr_DxC_train": float(evaluator.mrrs_col_train[-1]),
"mrr_DxC_val": float(evaluator.mrrs_col_val[-1]),
"mrr_DxC_test": float(evaluator.mrrs_col_test[-1])})
metrics.update({"mean_rank_DxC_train": float(evaluator.mean_ranks_col_train[-1]),
"mean_rank_DxC_val": float(evaluator.mean_ranks_col_val[-1]),
"mean_rank_DxC_test": float(evaluator.mean_ranks_col_test[-1])})
metrics.update({"hat5_DxC_train": float(evaluator.hat5_col_train[-1]),
"hat5_DxC_val": float(evaluator.hat5_col_val[-1]),
"hat5_DxC_test": float(evaluator.hat5_col_test[-1])})
metrics.update({"hat10_DxC_train": float(evaluator.hat10_col_train[-1]),
"hat10_DxC_val": float(evaluator.hat10_col_val[-1]),
"hat10_DxC_test": float(evaluator.hat10_col_test[-1])})
metrics.update({"hat20_DxC_train": float(evaluator.hat20_col_train[-1]),
"hat20_DxC_val": float(evaluator.hat20_col_val[-1]),
"hat20_DxC_test": float(evaluator.hat20_col_test[-1])})
metrics.update({"hat50_DxC_train": float(evaluator.hat50_col_train[-1]),
"hat50_DxC_val": float(evaluator.hat50_col_val[-1]),
"hat50_DxC_test": float(evaluator.hat50_col_test[-1])})
metric_keys = ["mrr","mean_rank","hat5","hat10","hat20","hat50"]
splits = ["train","val","test"]
for metric in metric_keys:
for split in splits:
CxD = metrics["{}_CxD_{}".format(metric, split)]
DxC = metrics["{}_DxC_{}".format(metric, split)]
mean = np.mean((CxD, DxC))
metrics.update({"{}_both_{}".format(metric, split): mean})
models = ["rescal","complex","transe","conve","distmult"]
for model in models:
if model in best_model:
actual_model = model
results = pd.DataFrame(data = metrics.values(), index=metrics.keys(), columns=["{}-{}-{}.csv".format(dataset,dataset_version,actual_model)])
if "hetionet" in best_model:
results.to_csv(os.path.join(base_path, "results", "{}-fold{}-{}-{}{}{}.csv".format(dataset,fold,dataset_version,actual_model,args.disease,args.compound)))
else:
results.to_csv(os.path.join(base_path, "results", "{}-{}-{}{}{}.csv".format(dataset,dataset_version,actual_model,args.disease,args.compound)))
print(metrics)
#evaluator.random(10,seed=1,proximity=scores.detach().cpu().numpy(), use_testing=True)