forked from steveyx/trending-stories
-
Notifications
You must be signed in to change notification settings - Fork 0
/
keywords_post_process.py
119 lines (113 loc) · 5.21 KB
/
keywords_post_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from json_loader import JsonLoader
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib as mpl
mpl.rcParams['figure.dpi'] = 100
class KeywordsPostProcessor:
keywords_linking_table = {
"United States": "US",
"United Nations": "UN",
"European Union": "EU",
"United Kingdom": "UK",
"European Central Bank": "ECB",
"World Trade Organization": "WTO",
"initial public offering": "IPO",
"International Monetary Fund": "IMF",
"chief executive officer": "CEO",
"chief financial officer": "CFO",
"JP Morgan": "JPMorgan",
"Johnson & Johnson": "J&J",
"Federal Reserve": "Fed",
"Amazoncom Inc": "Amazon",
"Amazoncom": "Amazon",
"General Motors Co": "GM",
"General Motors": "GM",
"General Motor": "GM",
"Wall St": "Wall Street",
"Boeing Co": "Boeing",
"US Federal Reserve": "US Fed",
"Uber Technologies Inc": "Uber",
"chief executive": "CEO",
"Federal Aviation Administration": "FAA",
"Wall Street Journal": "WSJ",
"General Electric": "GE",
"General Electric Co": "GE",
"Federal Communications Commission": "FCC"
}
@classmethod
def get_top_keywords_from_articles(cls, filename="data/reuters_cleaned_with_keywords.json",
save_file="data/top_keywords.csv",
table_plot=True,
top_n=34):
_articles = JsonLoader.load_json(filename)
_article_keywords = [a['kwords'] for a in _articles if a.get('kwords')]
_all_keywords = [[w['keyword'], 1] for a in _article_keywords for w in a]
_df = pd.DataFrame(_all_keywords, columns=["Keyword", "Count"])
_df_g = _df.groupby(by="Keyword", as_index=False).agg(
{"Count": sum}
)
_df_g.sort_values(by="Count", inplace=True, ascending=False)
_df_g.reset_index(drop=True, inplace=True)
_df_g.to_csv(save_file, index=False)
if table_plot:
words_and_abbr = []
for k, v in cls.keywords_linking_table.items():
_df_t = _df_g.loc[:top_n * 3]
_found = _df_t[_df_t["Keyword"].isin([k, v])]
if len(_found) == 2:
_indices = _found.index.tolist()
words_and_abbr.append(_indices)
fig, axs = plt.subplots(1, 3, figsize=(8, 6))
tables = []
for i, ax in enumerate(axs):
ax.axis('off')
_s, _e = i * top_n, (i+1) * top_n
tab = ax.table(cellText=_df_g.iloc[_s:_e][["Keyword", "Count"]].values,
cellLoc='center', rowLoc='center',
colWidths=[0.7, 0.3],
colLabels=["Keyword", 'Count'], rowLabels=_df_g.index[_s:_e].tolist(), loc="center",
bbox=[0.05, 0.02, .9, 0.95])
tables.append(tab)
for tab in tables:
scalex, scaley = 1, 1
tab.scale(scalex, scaley)
tab.auto_set_font_size(False)
tab.set_fontsize(7)
for key, cell in tab.get_celld().items():
cell.set_linewidth(0)
for k, words in enumerate(words_and_abbr):
color = plt.cm.jet(7 * (k+1) * 0.02 % 1)
for w in words:
row, t_i = w % top_n, int(w/top_n)
tables[t_i][(row+1, 0)].set_facecolor(color)
plt.tight_layout(pad=0.2, w_pad=0.2, h_pad=0.2, rect=(0.05, 0.05, 0.95, 0.95))
plt.subplots_adjust(wspace=0.4)
plt.savefig("data/entities_linking.png", dpi=300)
else:
sns.set_theme(style="whitegrid")
ax = sns.barplot(y="Keyword", x="Count", data=_df_g.iloc[:top_n])
ax.xaxis.set_tick_params(labelsize=8)
ax.yaxis.set_tick_params(labelsize=8)
plt.show()
@classmethod
def post_process_article_keywords(cls, filename="data/reuters_cleaned_with_keywords.json"):
_articles = JsonLoader.load_json(filename)
for a in _articles:
kwords_dict = {_word['keyword']: _word['weight'] for _word in a.get('kwords', [])}
for k, v in cls.keywords_linking_table.items():
if k in kwords_dict or k.lower() in kwords_dict:
if v in kwords_dict:
kwords_dict[v] = kwords_dict[v] + kwords_dict[k]
else:
kwords_dict[v] = kwords_dict[k]
del kwords_dict[k]
a["kwords"] = [{"keyword": k, "weight": v} for k, v in kwords_dict.items()]
_file_name = filename.split(".json")[0] + "_post_processed.json"
JsonLoader.save_json(data=_articles, filename=_file_name)
if __name__ == "__main__":
KeywordsPostProcessor.get_top_keywords_from_articles()
KeywordsPostProcessor.post_process_article_keywords()
KeywordsPostProcessor.get_top_keywords_from_articles(
filename="data/reuters_cleaned_with_keywords_post_processed.json",
save_file="data/top_keywords_post_processed.csv")