-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtraintest.py
186 lines (151 loc) · 8.13 KB
/
traintest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import pandas as pd
import numpy as np
from matplotlib import pyplot
from sklearn.decomposition import PCA
from sklearn.preprocessing import MinMaxScaler
from sklearn.cluster import MiniBatchKMeans
from sklearn.model_selection import train_test_split
import csv
import argparse
import pickle
def get_distances(point, points):
sP = points
pA = point
return np.linalg.norm(sP - pA, ord=2, axis=1.) # 'distances' is a list
def indexlist_to_points(lst,dataset):
points = np.empty([len(lst),dataset.shape[1]])
for index, val in enumerate(lst):
points[index] = dataset[val]
return points
def train_1(X, k_pca = 130, save_result = False):
#Fitting the PCA algorithm with our Data
try:
pca_model = pickle.load(open("./data/pca_model"+str(k_pca)+".pickle","rb"))
scaler = pickle.load(open('./data/scaler.pickle', 'rb'))
pca_arr = pickle.load(open('./data/dataset/finalX'+str(k_pca)+'.pickle', 'rb'))
print("REDUCED DATASET LOADED")
except IOError:
print("PCA AND SCALER NOT FOUND")
scaler = MinMaxScaler(feature_range=[0, 1])
data_rescaled = scaler.fit_transform(X)
print("DATASET NORMALIZED")
pca_model = PCA(n_components=k_pca).fit(data_rescaled)
pca_arr = pca_model.transform(data_rescaled)
print("DATASET REDUCED")
pickle.dump(scaler,open('./data/scaler.pickle', 'wb'))
pickle.dump(pca_model,open('./data/pca_model'+str(k_pca)+'.pickle', 'wb'))
pickle.dump(pca_arr,open('./data/dataset/finalX'+str(k_pca)+'.pickle', 'wb'))
pca_arr = pca_arr.astype('float32')
return scaler, pca_model, pca_arr
def train_2(X_pca, k = 169, clust = "kmcuda", save_result = True):
if clust == "kmcuda":
from libKMCUDA import kmeans_cuda
centroids, assignments = kmeans_cuda(pca_arr, k, metric="L2", verbosity=1, seed=3)
points_centroids_map = {x: [] for x in range(0,169)}
for index, item in enumerate(assignments):
points_centroids_map[item].append(index)
elif clust == "minibatch":
mbk = MiniBatchKMeans(init='k-means++', n_clusters=k, batch_size=100,n_init=3, max_no_improvement=10, verbose=0, random_state=42)
mbk.fit(X_pca)
points_centroids_map = {x: [] for x in range(0,k+1)}
for index, item in enumerate(mbk.labels_):
points_centroids_map[item].append(index)
centroids = mbk.cluster_centers_
else:
print("UNIMPLEMENTED CLUSTERING METHOD; " + clust)
return
if save_result:
pickle.dump(centroids, open('./data/'+clust+'/centroids'+str(k)+'.pickle', 'wb'))
pickle.dump(points_centroids_map, open('./data/'+clust+'/points_centroids_map'+str(k)+'.pickle', 'wb'))
return centroids, points_centroids_map
def getTags(sample,k,v,centroids, points_centroids_map, train_arr, hashtags):
closest_centroid = np.nanargmin(get_distances(sample, centroids))
#print("closest centroid:",closest_centroid)
centroid_points = indexlist_to_points(points_centroids_map[closest_centroid], train_arr)
distances = get_distances(sample,centroid_points)
inverse_distances = np.power(distances, -1)
#print(distances)
if k == -1:
nearest_k_images = range(len(distances))
else:
nearest_k_images = np.argsort(distances)[:k]
hash_dict = {}
for n in nearest_k_images:
nearest_sample = points_centroids_map[closest_centroid][n]
for h in hashtags[nearest_sample]:
try:
hash_dict[h] = hash_dict[h] + inverse_distances[n]
except KeyError:
hash_dict[h] = inverse_distances[n]
sorted_tags = sorted(hash_dict.items(), key=lambda kv: kv[1], reverse=True)
#print(sorted_tags)
return sorted_tags[:v]
def compareResults(predict, groundtruth):
#print(predict, groundtruth)
#Calculate presision@1 first
top_hp = predict[:1]
precision_1 = len(np.intersect1d(top_hp,groundtruth)) / len(top_hp)
#precision = len(np.intersect1d(predict,groundtruth)) / len(predict)
recall = len(np.intersect1d(predict,groundtruth)) / len(groundtruth)
accuracy = 1 if len(np.intersect1d(predict,groundtruth)) != 0 else 0
return precision_1, recall, accuracy
def test(X,y,k,v,scaler, pca_model, centroids, points_centroids_map, train_arr, hashtags):
avg_precision = []
avg_recall = []
avg_accuracy = []
X_norm = scaler.transform(X)
X_pca = pca_model.transform(X_norm)
for index, val in enumerate(X_pca):
val = val.reshape(1,-1)
#sv = scaler.transform(val)
#pcav = pca_model.transform(sv)
result = getTags(val, k,v, centroids, points_centroids_map, train_arr, hashtags)
precision, recall, accuracy = compareResults(result, y[index])
avg_precision.append(precision)
avg_recall.append(recall)
avg_accuracy.append(accuracy)
avg_precision = np.mean(avg_precision)
avg_recall = np.mean(avg_recall)
avg_accuracy = np.mean(avg_accuracy)
return avg_precision , avg_recall , avg_accuracy
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='A hashtag recommender system based on k-means, mini-batch fast k-means and a deep learning feature extraction phase.')
parser.add_argument('--train', dest='train', action='store_true', help="Computes the training using the chosen clustering algoritm, omit to just do the test phase")
parser.add_argument('--clustering', '-c', dest='clust', choices=['minibatch','kmcuda'], default='kmcuda')
parser.add_argument('--clusters', '-k_c', dest="k_clusters", default=162, type=int)
parser.add_argument('--n_pca',dest='k_pca',default=130, type=int)
parser.add_argument('--nearest_images', '-n_i', dest="n_images", default=-1, type=int)
parser.add_argument('--top_hashtags', '-k_ht', dest="top_hashtags", default=10, type=int)
parser.set_defaults(train=False)
args = parser.parse_args()
if args.train:
df = pickle.load(open("./data/dataset/full.pickle",'rb'))
hashtags = pickle.load(open('./data/dataset/ht.pickle','rb'))
print("DATASET LOADED")
X_train, X_test, y_train, y_test = train_test_split(df, hashtags, test_size=0.10, random_state=42)
print("DATASET SPLITTED")
scaler, pca_model, pca_arr = train_1(X_train.to_numpy(), k_pca=args.k_pca)
print("PCA APPLIED")
centroids, points_centroids_map = train_2(pca_arr,k=args.k_clusters, clust=args.clust)
print("CLUSTERING DONE")
#Testing after traing:
avg_precision, avg_recall, avg_accuracy = test(X_test.to_numpy(), y_test, args.n_images , args.top_hashtags, scaler, pca_model, centroids, points_centroids_map, pca_arr ,y_train)
print(f"Precision@1: {avg_precision*100}, Recall@{args.top_hashtags}: {avg_recall*100}, Accuracy@{args.top_hashtags}: {avg_accuracy*100}")
else:
try:
#Load test set
X_test = pickle.load(open('./data/dataset/X_test.pickle', 'rb'))
y_test = pickle.load(open('./data/dataset/y_test.pickle', 'rb'))
final_X = pickle.load(open('./data/dataset/finalX'+str(args.k_pca)+'.pickle', 'rb'))
final_Y = pickle.load(open('./data/dataset/y_train.pickle', 'rb'))
#Load scaler and pca_model
scaler = pickle.load(open('./data/scaler.pickle', 'rb'))
pca_model = pickle.load(open('./data/pca_model'+str(args.k_pca)+'.pickle', 'rb'))
#Load clusterings
centroids = pickle.load(open('./data/'+str(args.clust)+'/centroids'+str(args.k_clusters)+'.pickle', 'rb'))
points_centroids_map = pickle.load(open('./data/'+str(args.clust)+'/points_centroids_map'+str(args.k_clusters)+'.pickle', 'rb'))
print("Data Loading Complete, starting testing ... ")
avg_precision, avg_recall, avg_accuracy = test(X_test.to_numpy() ,y_test, args.n_images , args.top_hashtags , scaler, pca_model, centroids, points_centroids_map, final_X, final_Y)
print(f"Precision@1: {avg_precision*100}, Recall@{args.top_hashtags}: {avg_recall*100}, Accuracy@{args.top_hashtags}: {avg_accuracy*100}")
except IOError as e:
print("NEED TO TRAIN FIRST", e)