forked from alpa-projects/alpa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
161 lines (137 loc) · 5.11 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import glob
import os
import re
import shutil
import subprocess
import sys
from setuptools import setup, find_packages
IS_WINDOWS = sys.platform == "win32"
ROOT_DIR = os.path.dirname(__file__)
HAS_CUDA = os.system("nvidia-smi > /dev/null 2>&1") == 0
def get_cuda_version(cuda_home):
"""Locate the CUDA version."""
version_file = os.path.join(cuda_home, "version.txt")
try:
if os.path.isfile(version_file):
with open(version_file, "r") as f_version:
version_str = f_version.readline().replace("\n", "").replace(
"\r", "")
return version_str.split(" ")[2][:4]
else:
version_str = subprocess.check_output(
[os.path.join(cuda_home, "bin", "nvcc"), "--version"])
version_str = str(version_str).replace("\n", "").replace("\r", "")
idx = version_str.find("release")
return version_str[idx + len("release "):idx + len("release ") + 4]
except RuntimeError:
raise RuntimeError("Cannot read cuda version file")
def locate_cuda():
"""Locate the CUDA environment on the system."""
# Guess #1
cuda_home = os.environ.get("CUDA_HOME") or os.environ.get("CUDA_PATH")
if cuda_home is None:
# Guess #2
try:
which = "where" if IS_WINDOWS else "which"
nvcc = subprocess.check_output([which,
"nvcc"]).decode().rstrip("\r\n")
cuda_home = os.path.dirname(os.path.dirname(nvcc))
except subprocess.CalledProcessError:
# Guess #3
if IS_WINDOWS:
cuda_homes = glob.glob(
"C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v*.*")
if len(cuda_homes) == 0:
cuda_home = ""
else:
cuda_home = cuda_homes[0]
else:
cuda_home = "/usr/local/cuda"
if not os.path.exists(cuda_home):
cuda_home = None
version = get_cuda_version(cuda_home)
cudaconfig = {
"home":
cuda_home,
"include":
os.path.join(cuda_home, "include"),
"lib64":
os.path.join(cuda_home,
os.path.join("lib", "x64") if IS_WINDOWS else "lib64"),
}
if not all([os.path.exists(v) for v in cudaconfig.values()]):
raise EnvironmentError(
"The CUDA path could not be located in $PATH, $CUDA_HOME or $CUDA_PATH. "
"Either add it to your path, or set $CUDA_HOME or $CUDA_PATH.")
return cudaconfig, version
def get_cuda_version_str(no_dot=False):
"""Return the cuda version in the format of [x.x]."""
ver = locate_cuda()[1]
if no_dot:
ver = ver.replace(".", "")
return ver
install_require_list = [
"tqdm",
"ray==2.1.0",
"jax==0.3.22",
"chex==0.1.5",
"flax==0.6.2",
"pulp>=2.6.0",
"numpy>=1.20",
"numba",
]
dev_require_list = ["yapf==0.32.0", "pylint==2.14.0", "cmake", "pybind11"]
if HAS_CUDA:
dev_require_list += [
f"cupy-cuda{get_cuda_version_str(no_dot=True)}",
]
doc_require_list = [
"sphinx", "sphinx-rtd-theme", "sphinx-gallery", "matplotlib"
]
def get_alpa_version():
with open(os.path.join(ROOT_DIR, "alpa", "version.py")) as fp:
version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]",
fp.read(), re.M)
if version_match:
return version_match.group(1)
raise RuntimeError("Unable to find version string.")
if __name__ == "__main__":
import setuptools
from setuptools.command.install import install
class BinaryDistribution(setuptools.Distribution):
def has_ext_modules(self):
return False
class InstallPlatlib(install):
def finalize_options(self):
install.finalize_options(self)
if self.distribution.has_ext_modules():
self.install_lib = self.install_platlib
with open("README.md", encoding="utf-8") as f:
long_description = f.read()
setup(
name="alpa",
version=get_alpa_version(),
author="Alpa Developers",
author_email="",
description=
"Alpa automatically parallelizes large tensor computation graphs and "
"runs them on a distributed cluster.",
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/alpa-projects/alpa",
classifiers=[
'Programming Language :: Python :: 3',
'Topic :: Scientific/Engineering :: Artificial Intelligence'
],
keywords=("alpa distributed parallel machine-learning model-parallelism"
"gpt-3 deep-learning language-model python"),
packages=find_packages(
exclude=["benchmark", "examples", "playground", "tests"]),
python_requires='>=3.7',
cmdclass={"install": InstallPlatlib},
install_requires=install_require_list,
extras_require={
'dev': dev_require_list,
'doc': doc_require_list + dev_require_list,
},
)