forked from bbdamodaran/deepJDOT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dnn.py
119 lines (88 loc) · 3.21 KB
/
dnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# -*- coding: utf-8 -*-
"""
Created on Wed Sep 14 08:34:48 2016
@author: rflamary
"""
import numpy as np
import scipy as sp
np.random.seed(seed=42)
from keras import backend as K
from keras.models import Sequential, Model
from keras.layers import Dense, Activation, normalization, BatchNormalization
from keras.layers import Dropout,Flatten, Reshape, concatenate, GlobalAveragePooling2D
from keras.layers import Convolution2D, MaxPooling2D,UpSampling2D
from keras.utils import np_utils
from keras.layers import Input, Lambda
from keras.optimizers import SGD
import keras.callbacks
from keras.callbacks import ModelCheckpoint,EarlyStopping, LearningRateScheduler
from keras.models import model_from_json
from keras.engine.topology import Layer
#from keras.utils.visualize_util import plot
from keras.utils.np_utils import to_categorical
from keras.regularizers import l2
from keras import objectives
import time
__time_tic_toc=time.time()
def tic():
global __time_tic_toc
__time_tic_toc=time.time()
def toc(message='Elapsed time : {} s'):
t=time.time()
print(message.format(t-__time_tic_toc))
return t-__time_tic_toc
def toq():
t=time.time()
return t-__time_tic_toc
def save_model(model,fname='mymodel'):
model.save_weights(fname+'.h5',overwrite=True)
open(fname+'.json', 'w').write(model.to_json())
def load_model(fname):
model = model_from_json(open(fname+'.json').read())
model.load_weights(fname+'.h5')
return model
class GlobalAveragePooling0D(Layer):
"""Abstract class for different pooling 1D layers.
"""
def __init__(self,
border_mode='valid', **kwargs):
super(GlobalAveragePooling0D, self).__init__(**kwargs)
if border_mode not in {'valid', 'same'}:
raise ValueError('`border_mode` must be in {valid, same}.')
self.border_mode = border_mode
self.input_spec = [InputSpec(ndim=2)]
def get_output_shape_for(self, input_shape):
return (input_shape[0],1)
def _pooling_function(self):
raise NotImplementedError
def call(self, x, mask=None):
#x = K.expand_dims(x, 2) # add dummy last dimension
output = K.expand_dims(K.sum(x,axis=1),1)
return output#K.squeeze(output, 2) # remove dummy last dimension
def get_config(self):
config = {}
base_config = super(GlobalAveragePooling0D, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
class Clip(keras.constraints.Constraint):
def __init__(self, m=2):
self.m = m
def __call__(self, p):
desired = K.clip(p, -self.m, self.m)
return desired
def get_config(self):
return {'name': self.__class__.__name__,
'm': self.m,
'axis': self.axis}
class Select(Layer):
def __init__(self, sel, **kwargs):
self.sel = sel
self.output_dim=sel[1]-sel[0]
super(Select, self).__init__(**kwargs)
def build(self, input_shape):
#input_dim = input_shape[1]
#self.trainable_weights = []
pass
def call(self, x, mask=None):
return x[self.sel[0]:self.sel[1]]
def get_output_shape_for(self, input_shape):
return (input_shape[0], self.output_dim)