forked from bbdamodaran/deepJDOT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeepjdot_demo.py
164 lines (141 loc) · 7.05 KB
/
deepjdot_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# -*- coding: utf-8 -*-
"""
Created on Wed Jan 31 19:26:41 2018
@author: damodara
DeepJDOT: with emd for the sample data
"""
import numpy as np
import pylab as pl
import matplotlib.pyplot as plt
import dnn
from scipy.spatial.distance import cdist
import ot
from sklearn.datasets import make_moons, make_blobs
#seed=1985
#np.random.seed(seed)
#%%
source_traindata, source_trainlabel = make_blobs(1200, centers=[[0, -1], [0, 0], [0, 1]], cluster_std=0.2)
target_traindata, target_trainlabel = make_blobs(1200, centers=[[1, 0], [1, 1], [1, 2]], cluster_std=0.2)
plt.figure()
plt.scatter(source_traindata[:,0], source_traindata[:,1], c=source_trainlabel, marker='o', alpha=0.4)
plt.scatter(target_traindata[:,0], target_traindata[:,1], c=target_trainlabel, marker='x', alpha=0.4)
plt.legend(['source train data', 'target train data'])
plt.title("2D blobs visualization (shape=domain, color=class)")
# convert to one hot encoded vector
from keras.utils.np_utils import to_categorical
source_trainlabel_cat = to_categorical(source_trainlabel)
target_trainlabel_cat = to_categorical(target_trainlabel)
#%% optimizer
n_class = len(np.unique(source_trainlabel))
n_dim = np.shape(source_traindata)
optim = dnn.keras.optimizers.SGD(lr=0.001)
#%% feature extraction and classifier function definition
def feat_ext(main_input, l2_weight=0.0):
net = dnn.Dense(500, activation='relu', name='fe')(main_input)
net = dnn.Dense(100, activation='relu', name='feat_ext')(net)
return net
def classifier(model_input, nclass, l2_weight=0.0):
net = dnn.Dense(100, activation='relu', name='cl')(model_input)
net = dnn.Dense(nclass, activation='softmax', name='cl_output')(net)
return net
#%% Feature extraction as a keras model
main_input = dnn.Input(shape=(n_dim[1],))
fe = feat_ext(main_input)
fe_size=fe.get_shape().as_list()[1]
# feature extraction model
fe_model = dnn.Model(main_input, fe, name= 'fe_model')
# Classifier model as a keras model
cl_input = dnn.Input(shape =(fe.get_shape().as_list()[1],)) # input dim for the classifier
net = classifier(cl_input , n_class)
# classifier keras model
cl_model = dnn.Model(cl_input, net, name ='classifier')
#%% source model
ms = dnn.Input(shape=(n_dim[1],))
fes = feat_ext(ms)
nets = classifier(fes,n_class)
source_model = dnn.Model(ms, nets)
source_model.compile(optimizer=optim, loss='categorical_crossentropy', metrics=['accuracy'])
source_model.fit(source_traindata, source_trainlabel_cat, batch_size=128, epochs=100, validation_data=(target_traindata, target_trainlabel_cat))
source_acc = source_model.evaluate(source_traindata, source_trainlabel_cat)
target_acc = source_model.evaluate(target_traindata, target_trainlabel_cat)
print("source loss & acc using source model", source_acc)
print("target loss & acc using source model", target_acc)
#%% Target model
main_input = dnn.Input(shape=(n_dim[1],))
# feature extraction model
ffe=fe_model(main_input)
# classifier model
net = cl_model(ffe)
#con_cat = dnn.concatenate([net, ffe ], axis=1)
# target model with two outputs: predicted class prob, and intermediate layers
model = dnn.Model(inputs=main_input, outputs=[net, ffe])
model.set_weights(source_model.get_weights())
#%% deepjdot model and training
from Deepjdot import Deepjdot
batch_size=128
sample_size=50
sloss = 2.0; tloss=1.0; int_lr=0.002; jdot_alpha=5.0
# DeepJDOT model initalization
al_model = Deepjdot(model, batch_size, n_class, optim,allign_loss=1.0,
sloss=sloss,tloss=tloss,int_lr=int_lr,jdot_alpha=jdot_alpha,
lr_decay=True,verbose=1)
# DeepJDOT model fit
h,t_loss,tacc = al_model.fit(source_traindata, source_trainlabel_cat, target_traindata,
n_iter=1500,cal_bal=False)
#%% accuracy assesment
tarmodel_sacc = al_model.evaluate(source_traindata, source_trainlabel_cat)
acc = al_model.evaluate(target_traindata, target_trainlabel_cat)
print("source loss & acc using source+target model", tarmodel_sacc)
print("target loss & acc using source+target model", acc)
#%% Intermediate layers features extraction from the pre-trained model
def feature_extraction(model, data, out_layer_num=-2, out_layer_name=None):
'''
extract the features from the pre-trained model
model - keras model from the features to be extracted
data - input to the keras model
inp_layer_num - input layer
out_layer_num -- from which layer to extract the features
out_layer_name -- name of the layer to extract the features
'''
if out_layer_name is None:
# define the model
intermediate_layer_model = dnn.Model(inputs=model.layers[0].input,
outputs=model.layers[out_layer_num].output)
# extract the features of the intermediate layer
intermediate_output = intermediate_layer_model.predict(data)
else:
intermediate_layer_model = dnn.Model(inputs=model.layers[0].input,
outputs=model.get_layer(out_layer_name).output)
intermediate_output = intermediate_layer_model.predict(data)
return intermediate_output
#%% source model intermediate layer values
subset = 200
smodel_source_feat = feature_extraction(source_model, source_traindata[:subset,],
out_layer_name='feat_ext')
smodel_target_feat = feature_extraction(source_model, target_traindata[:subset,],
out_layer_name='feat_ext')
#%% intermediate layers of source and target domain for TSNE plot of target (DeepJDOT) model
al_sourcedata = model.predict(source_traindata[:subset,])[1]
al_targetdata = model.predict(target_traindata[:subset,])[1]
#%% function for TSNE plot (source and target are combined)
def tsne_plot(xs, xt, xs_label, xt_label, subset=True, title=None, pname=None):
num_test=100
if subset:
combined_imgs = np.vstack([xs[0:num_test, :], xt[0:num_test, :]])
combined_labels = np.vstack([xs_label[0:num_test, :],xt_label[0:num_test, :]])
combined_labels = combined_labels.astype('int')
from sklearn.manifold import TSNE
tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=3000)
source_only_tsne = tsne.fit_transform(combined_imgs)
plt.figure(figsize=(10, 10))
plt.scatter(source_only_tsne[:num_test,0], source_only_tsne[:num_test,1],
c=combined_labels[:num_test].argmax(1), s=75, marker='o', alpha=0.5, label='source train data')
plt.scatter(source_only_tsne[num_test:,0], source_only_tsne[num_test:,1],
c=combined_labels[num_test:].argmax(1),s=50,marker='x',alpha=0.5,label='target train data')
plt.legend(loc='best')
plt.title(title)
#%% TSNE plots of source model and target model
title = 'tsne plot of source and target data with source model\n2D blobs visualization (shape=domain, color=class)'
tsne_plot(smodel_source_feat, smodel_target_feat, source_trainlabel_cat, target_trainlabel_cat, title=title)
title = 'tsne plot of source and target data with source+target model\n2D blobs visualization (shape=domain, color=class)'
tsne_plot(al_sourcedata, al_targetdata, source_trainlabel_cat, target_trainlabel_cat, title=title)