-
Notifications
You must be signed in to change notification settings - Fork 0
/
KEM_ROM.ec
443 lines (366 loc) · 9.62 KB
/
KEM_ROM.ec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
require import AllCore List Distr DBool PROM.
require (****) LorR.
(* Security definition in the standard model *)
abstract theory KEM.
type pkey.
type skey.
type key.
type ciphertext.
op [lossless uniform full] dkey : key distr.
module type Scheme = {
proc kg() : pkey * skey
proc enc(pk:pkey) : ciphertext * key
proc dec(sk:skey, c:ciphertext) : key option
}.
module Correctness(S:Scheme) = {
proc main() : bool = {
var pk : pkey;
var sk : skey;
var c : ciphertext;
var k : key;
var k' : key option;
(pk, sk) <@ S.kg();
(c,k) <@ S.enc(pk);
k' <@ S.dec(sk,c);
return (k' <> Some k);
}
}.
module type Adversary = {
proc guess(pk : pkey, c:ciphertext, k : key) : bool
}.
module CPA (S:Scheme, A:Adversary) = {
proc main() : bool = {
var pk : pkey;
var sk : skey;
var k1 : key;
var ck0 : ciphertext * key;
var b, b' : bool;
(pk, sk) <@ S.kg();
b <$ {0,1};
k1 <$ dkey;
ck0 <@ S.enc(pk);
b' <@ A.guess(pk, ck0.`1, if b then k1 else ck0.`2);
return (b' = b);
}
}.
(* IND-CPA Game when b = 0 *)
module CPA_L (S:Scheme, A:Adversary) = {
proc main() : bool = {
var pk : pkey;
var sk : skey;
var k1 : key;
var ck0 : ciphertext * key;
var b' : bool;
(pk, sk) <@ S.kg();
k1 <$ dkey;
ck0 <@ S.enc(pk);
b' <@ A.guess(pk, ck0.`1, ck0.`2);
return b';
}
}.
(* IND-CPA Game when b = 1 *)
module CPA_R (S:Scheme, A:Adversary) = {
proc main() : bool = {
var pk : pkey;
var sk : skey;
var k1 : key;
var ck0 : ciphertext * key;
var b' : bool;
(pk, sk) <@ S.kg();
k1 <$ dkey;
ck0 <@ S.enc(pk);
b' <@ A.guess(pk, ck0.`1, k1);
return b';
}
}.
section.
clone import LorR as LR with
type input <- unit.
declare module S<:Scheme.
declare module A<:Adversary{-S}.
lemma pr_CPA_LR &m:
islossless S.kg => islossless S.enc =>
islossless A.guess =>
`| Pr[CPA_L(S,A).main () @ &m : res] - Pr[CPA_R(S,A).main () @ &m : res] | =
2%r * `| Pr[CPA(S,A).main() @ &m : res] - 1%r/2%r |.
proof.
move => kg_ll enc_ll guess_ll.
have -> : Pr[CPA(S, A).main() @ &m : res] =
Pr[RandomLR(CPA_R(S,A), CPA_L(S,A)).main() @ &m : res].
+ byequiv (_ : ={glob S, glob A} ==> ={res})=> //.
proc.
swap{1} 2-1; seq 1 1 : (={glob S, glob A, b}); first by rnd.
if{2}; inline *; wp; do 2! call (_: true); rnd; call(_:true); auto => /> /#.
rewrite -(pr_AdvLR_AdvRndLR (CPA_R(S,A)) (CPA_L(S,A)) &m) 2:/#.
byphoare => //; proc.
by call guess_ll; call enc_ll; rnd; call kg_ll; auto => />; smt(dkey_ll).
qed.
end section.
module type CCA_ORC = {
proc dec(c:ciphertext) : key option
}.
module type CCA_ADV (O:CCA_ORC) = {
proc guess(pk : pkey, c:ciphertext, k : key) : bool
}.
module CCA (S:Scheme, A:CCA_ADV) = {
var cstar : ciphertext option
var sk : skey
module O = {
proc dec(c:ciphertext) : key option = {
var k : key option;
k <- None;
if (Some c <> cstar) {
k <@ S.dec(sk, c);
}
return k;
}
}
module A = A(O)
proc main() : bool = {
var pk : pkey;
var k1 :key;
var ck0 : ciphertext * key;
var b, b' : bool;
cstar <- None;
(pk, sk) <@ S.kg();
k1 <$ dkey;
b <$ {0,1};
ck0 <@ S.enc(pk);
cstar <- Some ck0.`1;
b' <@ A.guess(pk, ck0.`1, if b then k1 else ck0.`2);
return (b' = b);
}
proc mainL() : bool = {
var pk : pkey;
var k1 :key;
var ck0 : ciphertext * key;
var b' : bool;
cstar <- None;
(pk, sk) <@ S.kg();
k1 <$ dkey;
ck0 <@ S.enc(pk);
cstar <- Some ck0.`1;
b' <@ A.guess(pk, ck0.`1, ck0.`2);
return b';
}
proc mainR() : bool = {
var pk : pkey;
var k1 :key;
var ck0 : ciphertext * key;
var b' : bool;
cstar <- None;
(pk, sk) <@ S.kg();
k1 <$ dkey;
ck0 <@ S.enc(pk);
cstar <- Some ck0.`1;
b' <@ A.guess(pk, ck0.`1, k1);
return (b');
}
}.
module type CCR_ADV = {
proc find(pk : pkey, sk : skey, c:ciphertext, k : key) : ciphertext
}.
module CCR(S:Scheme, A:CCR_ADV) = {
proc main() : bool = {
var pk : pkey;
var sk : skey;
var k0 : key;
var k1 : key option;
var c0 : ciphertext;
var c1 : ciphertext;
(pk, sk) <@ S.kg();
(c0,k0) <@ S.enc(pk);
c1 <@ A.find(pk, sk, c0, k0);
k1 <@ S.dec(sk,c1);
return (c1 <> c0 && k1 = Some k0);
}
}.
end KEM.
(* Security definition in the ROM *)
abstract theory KEM_ROM.
type pkey.
type skey.
type key.
type ciphertext.
op [lossless uniform full]dkey : key distr.
clone import FullRO as RO.
module type Oracle = {
include FRO [init, get]
}.
module type POracle = {
include FRO [get]
}.
module type Scheme(O : POracle) = {
proc kg() : pkey * skey
proc enc(pk:pkey) : ciphertext * key
proc dec(sk:skey, c:ciphertext) : key option
}.
module Correctness(H : Oracle, S:Scheme) = {
proc main() : bool = {
var pk : pkey;
var sk : skey;
var c : ciphertext;
var k : key;
var k' : key option;
H.init();
(pk, sk) <@ S(H).kg();
(c,k) <@ S(H).enc(pk);
k' <@ S(H).dec(sk,c);
return (k' <> Some k);
}
}.
module type CCA_ORC = {
proc dec(c:ciphertext) : key option
}.
module type CCA_ADV (H : POracle, O:CCA_ORC) = {
proc guess(pk : pkey, c: ciphertext, k : key) : bool
}.
module CCA(H : Oracle, S:Scheme, A:CCA_ADV) = {
var cstar : ciphertext option
var sk : skey
module O = {
proc dec(c:ciphertext) : key option = {
var k : key option;
k <- None;
if (Some c <> cstar) {
k <@ S(H).dec(sk, c);
}
return k;
}
}
module A = A(H,O)
proc main() : bool = {
var pk : pkey;
var k1 :key;
var ck0 : ciphertext * key;
var b, b' : bool;
H.init();
cstar <- None;
(pk, sk) <@ S(H).kg();
k1 <$ dkey;
b <$ {0,1};
ck0 <@ S(H).enc(pk);
cstar <- Some ck0.`1;
b' <@ A.guess(pk, ck0.`1, if b then k1 else ck0.`2);
return (b' = b);
}
}.
module type CCR_ADV(H : POracle) = {
proc find(pk : pkey, sk : skey, c:ciphertext, k : key) : ciphertext
}.
module CCR(H : Oracle, S:Scheme, A:CCR_ADV) = {
proc main() : bool = {
var pk : pkey;
var sk : skey;
var k0 : key;
var k1 : key option;
var c0 : ciphertext;
var c1 : ciphertext;
H.init();
(pk, sk) <@ S(H).kg();
(c0,k0) <@ S(H).enc(pk);
c1 <@ A(H).find(pk, sk, c0, k0);
k1 <@ S(H).dec(sk,c1);
return (c1 <> c0 && k1 = Some k0);
}
}.
end KEM_ROM.
theory KEM_ROM_x2.
type pkey.
type skey.
type key.
type ciphertext.
op [lossless uniform full]dkey : key distr.
clone import FullRO as RO1.
clone import FullRO as RO2.
module type Oracle_x2 = {
proc init() : unit
proc get1(_: RO1.in_t) : RO1.out_t
proc get2(_: RO2.in_t) : RO2.out_t
}.
module type POracle_x2 = {
include Oracle_x2 [get1,get2]
}.
module RO_x2(H1 : RO1.RO, H2 : RO2.RO): Oracle_x2 = {
proc init() : unit = {
H1.init();
H2.init();
}
proc get1 = H1.get
proc get2 = H2.get
}.
module type Scheme(O : POracle_x2) = {
proc kg() : pkey * skey
proc enc(pk:pkey) : ciphertext * key
proc dec(sk:skey, c:ciphertext) : key option
}.
module Correctness(H : Oracle_x2, S:Scheme) = {
proc main() : bool = {
var pk : pkey;
var sk : skey;
var c : ciphertext;
var k : key;
var k' : key option;
H.init();
(pk, sk) <@ S(H).kg();
(c,k) <@ S(H).enc(pk);
k' <@ S(H).dec(sk,c);
return (k' <> Some k);
}
}.
module type CCA_ORC = {
proc dec(c:ciphertext) : key option
}.
module type CCA_ADV (H : POracle_x2, O:CCA_ORC) = {
proc guess(pk : pkey, c:ciphertext, k : key) : bool
}.
module CCA(H : Oracle_x2, S:Scheme, A:CCA_ADV) = {
var cstar : ciphertext option
var sk : skey
module O = {
proc dec(c:ciphertext) : key option = {
var k : key option;
k <- None;
if (Some c <> cstar) {
k <@ S(H).dec(sk, c);
}
return k;
}
}
module A = A(H,O)
proc main() : bool = {
var pk : pkey;
var k1 :key;
var ck0 : ciphertext * key;
var b, b' : bool;
H.init();
cstar <- None;
(pk, sk) <@ S(H).kg();
k1 <$ dkey;
b <$ {0,1};
ck0 <@ S(H).enc(pk);
cstar <- Some ck0.`1;
b' <@ A.guess(pk, ck0.`1, if b then k1 else ck0.`2);
return (b' = b);
}
}.
module type CCR_ADV (H : POracle_x2) = {
proc find(pk : pkey, sk : skey, c:ciphertext, k : key) : ciphertext
}.
module CCR(H : Oracle_x2, S:Scheme, A:CCR_ADV) = {
proc main() : bool = {
var pk : pkey;
var sk : skey;
var k0 : key;
var k1 : key option;
var c0 : ciphertext;
var c1 : ciphertext;
H.init();
(pk, sk) <@ S(H).kg();
(c0,k0) <@ S(H).enc(pk);
c1 <@ A(H).find(pk, sk, c0, k0);
k1 <@ S(H).dec(sk,c1);
return (c1 <> c0 && k1 = Some k0);
}
}.
end KEM_ROM_x2.