Skip to content

Latest commit

 

History

History
489 lines (404 loc) · 11.6 KB

File metadata and controls

489 lines (404 loc) · 11.6 KB
comments difficulty edit_url tags
true
困难
设计
线段树
二分查找
有序集合

English Version

题目描述

k 个日程安排有一些时间上的交叉时(例如 k 个日程安排都在同一时间内),就会产生 k 次预订。

给你一些日程安排 [start, end) ,请你在每个日程安排添加后,返回一个整数 k ,表示所有先前日程安排会产生的最大 k 次预订。

实现一个 MyCalendarThree 类来存放你的日程安排,你可以一直添加新的日程安排。

  • MyCalendarThree() 初始化对象。
  • int book(int start, int end) 返回一个整数 k ,表示日历中存在的 k 次预订的最大值。

 

示例:

输入:
["MyCalendarThree", "book", "book", "book", "book", "book", "book"]
[[], [10, 20], [50, 60], [10, 40], [5, 15], [5, 10], [25, 55]]
输出:
[null, 1, 1, 2, 3, 3, 3]

解释:
MyCalendarThree myCalendarThree = new MyCalendarThree();
myCalendarThree.book(10, 20); // 返回 1 ,第一个日程安排可以预订并且不存在相交,所以最大 k 次预订是 1 次预订。
myCalendarThree.book(50, 60); // 返回 1 ,第二个日程安排可以预订并且不存在相交,所以最大 k 次预订是 1 次预订。
myCalendarThree.book(10, 40); // 返回 2 ,第三个日程安排 [10, 40) 与第一个日程安排相交,所以最大 k 次预订是 2 次预订。
myCalendarThree.book(5, 15); // 返回 3 ,剩下的日程安排的最大 k 次预订是 3 次预订。
myCalendarThree.book(5, 10); // 返回 3
myCalendarThree.book(25, 55); // 返回 3

 

提示:

  • 0 <= start < end <= 109
  • 每个测试用例,调用 book 函数最多不超过 400

解法

方法一:线段树

线段树将整个区间分割为多个不连续的子区间,子区间的数量不超过 $log(width)$。更新某个元素的值,只需要更新 $log(width)$ 个区间,并且这些区间都包含在一个包含该元素的大区间内。区间修改时,需要使用懒标记保证效率。

  • 线段树的每个节点代表一个区间;
  • 线段树具有唯一的根节点,代表的区间是整个统计范围,如 $[1,N]$
  • 线段树的每个叶子节点代表一个长度为 $1$ 的元区间 $[x, x]$
  • 对于每个内部节点 $[l,r]$,它的左儿子是 $[l,mid]$,右儿子是 $[mid+1,r]$, 其中 $mid = ⌊(l+r)/2⌋$ (即向下取整)。

对于本题,线段树节点维护的信息有:

  1. 区间范围内被预定的次数的最大值 $v$
  2. 懒标记 $add$

由于时间范围为 $10^9$,非常大,因此我们采用动态开点。

时间复杂度 $O(nlogn)$,其中 $n$ 表示日程安排的数量。

Python3

class Node:
    def __init__(self, l, r):
        self.left = None
        self.right = None
        self.l = l
        self.r = r
        self.mid = (l + r) >> 1
        self.v = 0
        self.add = 0


class SegmentTree:
    def __init__(self):
        self.root = Node(1, int(1e9 + 1))

    def modify(self, l, r, v, node=None):
        if l > r:
            return
        if node is None:
            node = self.root
        if node.l >= l and node.r <= r:
            node.v += v
            node.add += v
            return
        self.pushdown(node)
        if l <= node.mid:
            self.modify(l, r, v, node.left)
        if r > node.mid:
            self.modify(l, r, v, node.right)
        self.pushup(node)

    def query(self, l, r, node=None):
        if l > r:
            return 0
        if node is None:
            node = self.root
        if node.l >= l and node.r <= r:
            return node.v
        self.pushdown(node)
        v = 0
        if l <= node.mid:
            v = max(v, self.query(l, r, node.left))
        if r > node.mid:
            v = max(v, self.query(l, r, node.right))
        return v

    def pushup(self, node):
        node.v = max(node.left.v, node.right.v)

    def pushdown(self, node):
        if node.left is None:
            node.left = Node(node.l, node.mid)
        if node.right is None:
            node.right = Node(node.mid + 1, node.r)
        if node.add:
            node.left.v += node.add
            node.right.v += node.add
            node.left.add += node.add
            node.right.add += node.add
            node.add = 0


class MyCalendarThree:
    def __init__(self):
        self.tree = SegmentTree()

    def book(self, start: int, end: int) -> int:
        self.tree.modify(start + 1, end, 1)
        return self.tree.query(1, int(1e9 + 1))


# Your MyCalendarThree object will be instantiated and called as such:
# obj = MyCalendarThree()
# param_1 = obj.book(start,end)

Java

class Node {
    Node left;
    Node right;
    int l;
    int r;
    int mid;
    int v;
    int add;
    public Node(int l, int r) {
        this.l = l;
        this.r = r;
        this.mid = (l + r) >> 1;
    }
}

class SegmentTree {
    private Node root = new Node(1, (int) 1e9 + 1);

    public SegmentTree() {
    }

    public void modify(int l, int r, int v) {
        modify(l, r, v, root);
    }

    public void modify(int l, int r, int v, Node node) {
        if (l > r) {
            return;
        }
        if (node.l >= l && node.r <= r) {
            node.v += v;
            node.add += v;
            return;
        }
        pushdown(node);
        if (l <= node.mid) {
            modify(l, r, v, node.left);
        }
        if (r > node.mid) {
            modify(l, r, v, node.right);
        }
        pushup(node);
    }

    public int query(int l, int r) {
        return query(l, r, root);
    }

    public int query(int l, int r, Node node) {
        if (l > r) {
            return 0;
        }
        if (node.l >= l && node.r <= r) {
            return node.v;
        }
        pushdown(node);
        int v = 0;
        if (l <= node.mid) {
            v = Math.max(v, query(l, r, node.left));
        }
        if (r > node.mid) {
            v = Math.max(v, query(l, r, node.right));
        }
        return v;
    }

    public void pushup(Node node) {
        node.v = Math.max(node.left.v, node.right.v);
    }

    public void pushdown(Node node) {
        if (node.left == null) {
            node.left = new Node(node.l, node.mid);
        }
        if (node.right == null) {
            node.right = new Node(node.mid + 1, node.r);
        }
        if (node.add != 0) {
            Node left = node.left, right = node.right;
            left.add += node.add;
            right.add += node.add;
            left.v += node.add;
            right.v += node.add;
            node.add = 0;
        }
    }
}

class MyCalendarThree {
    private SegmentTree tree = new SegmentTree();

    public MyCalendarThree() {
    }

    public int book(int start, int end) {
        tree.modify(start + 1, end, 1);
        return tree.query(1, (int) 1e9 + 1);
    }
}

/**
 * Your MyCalendarThree object will be instantiated and called as such:
 * MyCalendarThree obj = new MyCalendarThree();
 * int param_1 = obj.book(start,end);
 */

C++

class Node {
public:
    Node* left;
    Node* right;
    int l;
    int r;
    int mid;
    int v;
    int add;

    Node(int l, int r) {
        this->l = l;
        this->r = r;
        this->mid = (l + r) >> 1;
        this->left = this->right = nullptr;
        v = add = 0;
    }
};

class SegmentTree {
private:
    Node* root;

public:
    SegmentTree() {
        root = new Node(1, 1e9 + 1);
    }

    void modify(int l, int r, int v) {
        modify(l, r, v, root);
    }

    void modify(int l, int r, int v, Node* node) {
        if (l > r) return;
        if (node->l >= l && node->r <= r) {
            node->v += v;
            node->add += v;
            return;
        }
        pushdown(node);
        if (l <= node->mid) modify(l, r, v, node->left);
        if (r > node->mid) modify(l, r, v, node->right);
        pushup(node);
    }

    int query(int l, int r) {
        return query(l, r, root);
    }

    int query(int l, int r, Node* node) {
        if (l > r) return 0;
        if (node->l >= l && node->r <= r) return node->v;
        pushdown(node);
        int v = 0;
        if (l <= node->mid) v = max(v, query(l, r, node->left));
        if (r > node->mid) v = max(v, query(l, r, node->right));
        return v;
    }

    void pushup(Node* node) {
        node->v = max(node->left->v, node->right->v);
    }

    void pushdown(Node* node) {
        if (!node->left) node->left = new Node(node->l, node->mid);
        if (!node->right) node->right = new Node(node->mid + 1, node->r);
        if (node->add) {
            Node* left = node->left;
            Node* right = node->right;
            left->v += node->add;
            right->v += node->add;
            left->add += node->add;
            right->add += node->add;
            node->add = 0;
        }
    }
};

class MyCalendarThree {
public:
    SegmentTree* tree;

    MyCalendarThree() {
        tree = new SegmentTree();
    }

    int book(int start, int end) {
        tree->modify(start + 1, end, 1);
        return tree->query(1, 1e9 + 1);
    }
};

/**
 * Your MyCalendarThree object will be instantiated and called as such:
 * MyCalendarThree* obj = new MyCalendarThree();
 * int param_1 = obj->book(start,end);
 */

Go

type node struct {
	left      *node
	right     *node
	l, mid, r int
	v, add    int
}

func newNode(l, r int) *node {
	return &node{
		l:   l,
		r:   r,
		mid: int(uint(l+r) >> 1),
	}
}

type segmentTree struct {
	root *node
}

func newSegmentTree() *segmentTree {
	return &segmentTree{
		root: newNode(1, 1e9+1),
	}
}

func (t *segmentTree) modify(l, r, v int, n *node) {
	if l > r {
		return
	}
	if n.l >= l && n.r <= r {
		n.v += v
		n.add += v
		return
	}
	t.pushdown(n)
	if l <= n.mid {
		t.modify(l, r, v, n.left)
	}
	if r > n.mid {
		t.modify(l, r, v, n.right)
	}
	t.pushup(n)
}

func (t *segmentTree) query(l, r int, n *node) int {
	if l > r {
		return 0
	}
	if n.l >= l && n.r <= r {
		return n.v
	}
	t.pushdown(n)
	v := 0
	if l <= n.mid {
		v = max(v, t.query(l, r, n.left))
	}
	if r > n.mid {
		v = max(v, t.query(l, r, n.right))
	}
	return v
}

func (t *segmentTree) pushup(n *node) {
	n.v = max(n.left.v, n.right.v)
}

func (t *segmentTree) pushdown(n *node) {
	if n.left == nil {
		n.left = newNode(n.l, n.mid)
	}
	if n.right == nil {
		n.right = newNode(n.mid+1, n.r)
	}
	if n.add != 0 {
		n.left.add += n.add
		n.right.add += n.add
		n.left.v += n.add
		n.right.v += n.add
		n.add = 0
	}
}

type MyCalendarThree struct {
	tree *segmentTree
}

func Constructor() MyCalendarThree {
	return MyCalendarThree{newSegmentTree()}
}

func (this *MyCalendarThree) Book(start int, end int) int {
	this.tree.modify(start+1, end, 1, this.tree.root)
	return this.tree.query(1, int(1e9)+1, this.tree.root)
}

/**
 * Your MyCalendarThree object will be instantiated and called as such:
 * obj := Constructor();
 * param_1 := obj.Book(start,end);
 */