Skip to content

Latest commit

 

History

History
415 lines (356 loc) · 12.4 KB

File metadata and controls

415 lines (356 loc) · 12.4 KB
comments difficulty edit_url tags
true
困难
广度优先搜索
数组
矩阵
堆(优先队列)

English Version

题目描述

你被请来给一个要举办高尔夫比赛的树林砍树。树林由一个 m x n 的矩阵表示, 在这个矩阵中:

  • 0 表示障碍,无法触碰
  • 1 表示地面,可以行走
  • 比 1 大的数 表示有树的单元格,可以行走,数值表示树的高度

每一步,你都可以向上、下、左、右四个方向之一移动一个单位,如果你站的地方有一棵树,那么你可以决定是否要砍倒它。

你需要按照树的高度从低向高砍掉所有的树,每砍过一颗树,该单元格的值变为 1(即变为地面)。

你将从 (0, 0) 点开始工作,返回你砍完所有树需要走的最小步数。 如果你无法砍完所有的树,返回 -1

可以保证的是,没有两棵树的高度是相同的,并且你至少需要砍倒一棵树。

 

示例 1:

输入:forest = [[1,2,3],[0,0,4],[7,6,5]]
输出:6
解释:沿着上面的路径,你可以用 6 步,按从最矮到最高的顺序砍掉这些树。

示例 2:

输入:forest = [[1,2,3],[0,0,0],[7,6,5]]
输出:-1
解释:由于中间一行被障碍阻塞,无法访问最下面一行中的树。

示例 3:

输入:forest = [[2,3,4],[0,0,5],[8,7,6]]
输出:6
解释:可以按与示例 1 相同的路径来砍掉所有的树。
(0,0) 位置的树,可以直接砍去,不用算步数。

 

提示:

  • m == forest.length
  • n == forest[i].length
  • 1 <= m, n <= 50
  • 0 <= forest[i][j] <= 109

解法

方法一:BFS + 优先队列(A* 算法)

题目的一个关键信息是“所有树的高度都不同”,要按照从小到大的顺序依次砍树,因此,我们先遍历树林,找出所有树及对应的坐标点。然后将树按照高度升序排列。

接下来就是找相邻两个点之间的最短距离。可以用 BFS,A* 算法优化搜索。

A* 算法主要思想如下:

  1. 将 BFS 队列转换为优先队列(小根堆);
  2. 队列中的每个元素为 (dist[state] + f(state), state)dist[state] 表示从起点到当前 state 的距离,f(state) 表示从当前 state 到终点的估计距离,这两个距离之和作为堆排序的依据;
  3. 当终点第一次出队时,说明找到了从起点到终点的最短路径,直接返回对应的 step;
  4. f(state) 是估价函数,并且估价函数要满足 f(state) <= g(state),其中 g(state) 表示 state 到终点的真实距离;
  5. A* 算法只能保证终点第一次出队时,即找到了一条从起点到终点的最小路径,不能保证其他点出队时也是从起点到当前点的最短路径。

Python3

class Solution:
    def cutOffTree(self, forest: List[List[int]]) -> int:
        def f(i, j, x, y):
            return abs(i - x) + abs(j - y)

        def bfs(i, j, x, y):
            q = [(f(i, j, x, y), i, j)]
            dist = {i * n + j: 0}
            while q:
                _, i, j = heappop(q)
                step = dist[i * n + j]
                if (i, j) == (x, y):
                    return step
                for a, b in [[0, -1], [0, 1], [-1, 0], [1, 0]]:
                    c, d = i + a, j + b
                    if 0 <= c < m and 0 <= d < n and forest[c][d] > 0:
                        if c * n + d not in dist or dist[c * n + d] > step + 1:
                            dist[c * n + d] = step + 1
                            heappush(q, (dist[c * n + d] + f(c, d, x, y), c, d))
            return -1

        m, n = len(forest), len(forest[0])
        trees = [
            (forest[i][j], i, j) for i in range(m) for j in range(n) if forest[i][j] > 1
        ]
        trees.sort()
        i = j = 0
        ans = 0
        for _, x, y in trees:
            t = bfs(i, j, x, y)
            if t == -1:
                return -1
            ans += t
            i, j = x, y
        return ans

Java

class Solution {
    private int[] dist = new int[3600];
    private List<List<Integer>> forest;
    private int m;
    private int n;

    public int cutOffTree(List<List<Integer>> forest) {
        this.forest = forest;
        m = forest.size();
        n = forest.get(0).size();
        List<int[]> trees = new ArrayList<>();
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (forest.get(i).get(j) > 1) {
                    trees.add(new int[] {forest.get(i).get(j), i * n + j});
                }
            }
        }
        trees.sort(Comparator.comparingInt(a -> a[0]));
        int ans = 0;
        int start = 0;
        for (int[] tree : trees) {
            int end = tree[1];
            int t = bfs(start, end);
            if (t == -1) {
                return -1;
            }
            ans += t;
            start = end;
        }
        return ans;
    }

    private int bfs(int start, int end) {
        PriorityQueue<int[]> q = new PriorityQueue<>(Comparator.comparingInt(a -> a[0]));
        q.offer(new int[] {f(start, end), start});
        Arrays.fill(dist, Integer.MAX_VALUE);
        dist[start] = 0;
        int[] dirs = {-1, 0, 1, 0, -1};
        while (!q.isEmpty()) {
            int state = q.poll()[1];
            if (state == end) {
                return dist[state];
            }
            for (int k = 0; k < 4; ++k) {
                int x = state / n + dirs[k];
                int y = state % n + dirs[k + 1];
                if (x >= 0 && x < m && y >= 0 && y < n && forest.get(x).get(y) > 0) {
                    if (dist[x * n + y] > dist[state] + 1) {
                        dist[x * n + y] = dist[state] + 1;
                        q.offer(new int[] {dist[x * n + y] + f(x * n + y, end), x * n + y});
                    }
                }
            }
        }
        return -1;
    }

    private int f(int start, int end) {
        int a = start / n;
        int b = start % n;
        int c = end / n;
        int d = end % n;
        return Math.abs(a - c) + Math.abs(b - d);
    }
}

C++

class Solution {
public:
    int m;
    int n;
    vector<int> dist;

    int cutOffTree(vector<vector<int>>& forest) {
        m = forest.size();
        n = forest[0].size();
        dist.resize(3600);
        vector<pair<int, int>> trees;
        for (int i = 0; i < m; ++i)
            for (int j = 0; j < n; ++j)
                if (forest[i][j] > 1)
                    trees.push_back({forest[i][j], i * n + j});
        sort(trees.begin(), trees.end());
        int ans = 0;
        int start = 0;
        for (auto& tree : trees) {
            int end = tree.second;
            int t = bfs(start, end, forest);
            if (t == -1) return -1;
            ans += t;
            start = end;
        }
        return ans;
    }

    int bfs(int start, int end, vector<vector<int>>& forest) {
        priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> q;
        q.push({f(start, end), start});
        fill(dist.begin(), dist.end(), INT_MAX);
        dist[start] = 0;
        vector<int> dirs = {-1, 0, 1, 0, -1};
        while (!q.empty()) {
            int state = q.top().second;
            q.pop();
            if (state == end) return dist[state];
            for (int k = 0; k < 4; ++k) {
                int x = state / n + dirs[k], y = state % n + dirs[k + 1];
                if (x >= 0 && x < m && y >= 0 && y < n && forest[x][y] && dist[x * n + y] > dist[state] + 1) {
                    dist[x * n + y] = dist[state] + 1;
                    q.push({dist[x * n + y] + f(x * n + y, end), x * n + y});
                }
            }
        }
        return -1;
    }

    int f(int start, int end) {
        int a = start / n, b = start % n;
        int c = end / n, d = end % n;
        return abs(a - c) + abs(b - d);
    }
};

Go

var dirs = [][]int{{-1, 0}, {1, 0}, {0, -1}, {0, 1}}

type tree struct {
	height int
	pos    int
}

func cutOffTree(forest [][]int) int {
	row, col := len(forest), len(forest[0])

	bfs := func(start, end int) int {
		q := []int{start}
		vis := make(map[int]bool)
		vis[start] = true
		step := 0
		for n := len(q); n > 0; n = len(q) {
			for i := 0; i < n; i++ {
				state := q[0]
				q = q[1:]
				if state == end {
					return step
				}
				for k := 0; k < 4; k++ {
					x, y := state/col+dirs[k][0], state%col+dirs[k][1]
					nxt := x*col + y
					if x >= 0 && x < row && y >= 0 && y < col && forest[x][y] != 0 && !vis[nxt] {
						q = append(q, nxt)
						vis[nxt] = true
					}
				}
			}
			step++
		}
		return -1
	}

	var trees []tree
	for i := 0; i < row; i++ {
		for j := 0; j < col; j++ {
			if forest[i][j] > 1 {
				trees = append(trees, tree{forest[i][j], i*col + j})
			}
		}
	}
	sort.Slice(trees, func(i, j int) bool {
		return trees[i].height < trees[j].height
	})

	ans, start := 0, 0
	for _, t := range trees {
		end := t.pos
		step := bfs(start, end)
		if step == -1 {
			return -1
		}
		ans += step
		start = end
	}
	return ans
}

Rust

use std::collections::HashSet;
use std::collections::VecDeque;

const DIRS: [[i32; 2]; 4] = [
    [-1, 0],
    [1, 0],
    [0, -1],
    [0, 1],
];

impl Solution {
    pub fn cut_off_tree(forest: Vec<Vec<i32>>) -> i32 {
        let (row, col) = (forest.len() as i32, forest[0].len() as i32);

        let bfs = |start: i32, end: i32| -> i32 {
            let mut queue = VecDeque::new();
            let mut vis = HashSet::new();
            queue.push_back(start);
            vis.insert(start);
            let mut step = 0;
            while !queue.is_empty() {
                let n = queue.len();
                for _ in 0..n {
                    let state = queue.pop_front().unwrap();
                    if state == end {
                        return step;
                    }
                    for k in 0..4 {
                        let x = state / col + DIRS[k][0];
                        let y = (state % col) + DIRS[k][1];
                        let nxt = x * col + y;
                        if
                            x >= 0 &&
                            x < row &&
                            y >= 0 &&
                            y < col &&
                            forest[x as usize][y as usize] != 0 &&
                            !vis.contains(&nxt)
                        {
                            queue.push_back(nxt);
                            vis.insert(nxt);
                        }
                    }
                }
                step += 1;
            }
            -1
        };

        let mut trees = Vec::new();
        for i in 0..row {
            for j in 0..col {
                let height = forest[i as usize][j as usize];
                if height > 1 {
                    trees.push((height, i * col + j));
                }
            }
        }
        trees.sort();

        let (mut ans, mut start) = (0, 0);
        for t in &trees {
            let end = t.1;
            let step = bfs(start, end);
            if step == -1 {
                return -1;
            }
            ans += step;
            start = end;
        }
        ans
    }
}