From 0d82139180413a0801caaa2a21afddadeedae5c8 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?M=C3=A9d=C3=A9ric=20Hurier=20=28Fmind=29?= Date: Tue, 10 Dec 2024 21:02:48 +0100 Subject: [PATCH 01/10] feat(manager): switch from poetry to uv BREAKING CHANGE: --- .github/actions/setup/action.yml | 12 +- .github/workflows/check.yml | 4 +- .github/workflows/publish.yml | 8 +- .pre-commit-config.yaml | 12 +- Dockerfile | 4 +- LICENCE.txt => LICENSE.txt | 2 - README.md | 50 +- data/inputs_test.parquet | Bin 55720 -> 54110 bytes data/inputs_train.parquet | Bin 180322 -> 178675 bytes data/targets_test.parquet | Bin 28795 -> 28592 bytes data/targets_train.parquet | Bin 102798 -> 102589 bytes docker-compose.yml | 2 +- notebooks/explain.ipynb | 418 ++-- notebooks/indicators.ipynb | 3067 ++++++++++++++++------- notebooks/processing.ipynb | 17 +- notebooks/prototype.ipynb | 591 +++-- poetry.lock | 3837 ----------------------------- poetry.toml | 5 - pyproject.toml | 118 +- python_env.yaml | 194 +- requirements.txt | 250 +- src/bikes/core/metrics.py | 8 +- src/bikes/core/models.py | 4 +- src/bikes/io/datasets.py | 6 +- src/bikes/io/registries.py | 34 +- src/bikes/io/services.py | 5 +- src/bikes/jobs/evaluations.py | 37 +- src/bikes/jobs/explanations.py | 8 +- src/bikes/jobs/inference.py | 3 +- src/bikes/jobs/training.py | 7 +- src/bikes/utils/splitters.py | 35 +- tasks/__init__.py | 2 +- tasks/checks.py | 22 +- tasks/cleans.py | 10 +- tasks/commits.py | 8 +- tasks/containers.py | 2 +- tasks/docs.py | 6 +- tasks/formats.py | 6 +- tasks/installs.py | 14 +- tasks/mlflow.py | 13 +- tasks/packages.py | 10 +- tasks/projects.py | 19 +- tests/conftest.py | 21 +- tests/core/test_metrics.py | 5 +- tests/core/test_models.py | 6 +- tests/data/inputs_sample.parquet | Bin 47719 -> 35890 bytes tests/data/outputs_sample.parquet | Bin 13827 -> 14309 bytes tests/data/targets_sample.parquet | Bin 18587 -> 17966 bytes tests/io/test_configs.py | 1 + tests/io/test_datasets.py | 7 +- tests/io/test_services.py | 6 +- tests/jobs/test_base.py | 4 +- tests/jobs/test_evaluations.py | 42 +- tests/jobs/test_explanations.py | 9 +- tests/jobs/test_inference.py | 7 +- tests/jobs/test_promotion.py | 1 + tests/jobs/test_training.py | 14 +- tests/jobs/test_tuning.py | 10 +- tests/test_scripts.py | 1 + tests/utils/test_searchers.py | 6 +- uv.lock | 2473 +++++++++++++++++++ 61 files changed, 5869 insertions(+), 5594 deletions(-) rename LICENCE.txt => LICENSE.txt (96%) delete mode 100644 poetry.lock delete mode 100644 poetry.toml create mode 100644 uv.lock diff --git a/.github/actions/setup/action.yml b/.github/actions/setup/action.yml index 97486a6..3426d72 100644 --- a/.github/actions/setup/action.yml +++ b/.github/actions/setup/action.yml @@ -3,9 +3,11 @@ description: Setup for project workflows runs: using: composite steps: - - run: pipx install invoke poetry - shell: bash - - uses: actions/setup-python@v5 + - name: Install uv + uses: astral-sh/setup-uv@v4 with: - python-version: 3.12 - cache: poetry + enable-cache: true + - name: Setup Python + uses: actions/setup-python@v5 + with: + python-version-file: .python-version diff --git a/.github/workflows/check.yml b/.github/workflows/check.yml index 7351b39..745501e 100644 --- a/.github/workflows/check.yml +++ b/.github/workflows/check.yml @@ -12,5 +12,5 @@ jobs: steps: - uses: actions/checkout@v4 - uses: ./.github/actions/setup - - run: poetry install --with checks - - run: poetry run invoke checks + - run: uv sync --group=checks + - run: uv run invoke checks diff --git a/.github/workflows/publish.yml b/.github/workflows/publish.yml index 105bf46..3457790 100644 --- a/.github/workflows/publish.yml +++ b/.github/workflows/publish.yml @@ -15,8 +15,8 @@ jobs: steps: - uses: actions/checkout@v4 - uses: ./.github/actions/setup - - run: poetry install --with docs - - run: poetry run invoke docs + - run: uv sync --group=docs + - run: uv run invoke docs - uses: JamesIves/github-pages-deploy-action@v4 with: folder: docs/ @@ -28,8 +28,8 @@ jobs: steps: - uses: actions/checkout@v4 - uses: ./.github/actions/setup - - run: poetry install --with dev - - run: poetry run invoke packages + - run: uv sync --only-dev + - run: uv run invoke packages - uses: docker/login-action@v3 with: registry: ghcr.io diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index ea14e6e..4d8bd70 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -5,7 +5,7 @@ default_language_version: python: python3.12 repos: - repo: https://github.com/pre-commit/pre-commit-hooks - rev: v4.6.0 + rev: v5.0.0 hooks: - id: check-added-large-files - id: check-case-conflict @@ -16,18 +16,14 @@ repos: - id: end-of-file-fixer - id: mixed-line-ending - id: trailing-whitespace - - repo: https://github.com/python-poetry/poetry - rev: 1.8.3 - hooks: - - id: poetry-check - repo: https://github.com/astral-sh/ruff-pre-commit - rev: v0.5.0 + rev: v0.8.1 hooks: - id: ruff - id: ruff-format - repo: https://github.com/commitizen-tools/commitizen - rev: v3.27.0 + rev: v4.0.0 hooks: - id: commitizen - id: commitizen-branch - stages: [push] + stages: [pre-push] diff --git a/Dockerfile b/Dockerfile index 043fa81..2142f8a 100644 --- a/Dockerfile +++ b/Dockerfile @@ -1,6 +1,6 @@ # https://docs.docker.com/engine/reference/builder/ -FROM python:3.12 +FROM ghcr.io/astral-sh/uv:python3.12-bookworm COPY dist/*.whl . -RUN pip install *.whl +RUN uv pip install --system *.whl CMD ["bikes", "--help"] diff --git a/LICENCE.txt b/LICENSE.txt similarity index 96% rename from LICENCE.txt rename to LICENSE.txt index bbab95b..0e77b64 100644 --- a/LICENCE.txt +++ b/LICENSE.txt @@ -1,5 +1,3 @@ -Copyright 2024 Médéric HURIER (Fmind) - Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. diff --git a/README.md b/README.md index 749e151..d82cdcc 100644 --- a/README.md +++ b/README.md @@ -69,7 +69,7 @@ You can use this package as part of your MLOps toolkit or platform (e.g., Model - [Package](#package) - [Evolution: Changelog](#evolution-changelog) - [Format: Wheel](#format-wheel) - - [Manager: Poetry](#manager-poetry) + - [Manager: uv](#manager-uv) - [Runtime: Docker](#runtime-docker) - [Programming](#programming) - [Language: Python](#language-python) @@ -119,7 +119,7 @@ This section details the requirements, actions, and next steps to kickstart your ## Prerequisites - [Python>=3.12](https://www.python.org/downloads/): to benefit from [the latest features and performance improvements](https://docs.python.org/3/whatsnew/3.12.html) -- [Poetry>=1.8.2](https://python-poetry.org/): to initialize the project [virtual environment](https://docs.python.org/3/library/venv.html) and its dependencies +- [uv>=0.5.5](https://docs.astral.sh/uv/): to initialize the project [virtual environment](https://docs.python.org/3/library/venv.html) and its dependencies ## Installation @@ -130,10 +130,10 @@ $ git clone git@github.com:fmind/mlops-python-package # with https $ git clone https://github.com/fmind/mlops-python-package ``` -2. [Run the project installation with poetry](https://python-poetry.org/docs/) +2. [Run the project installation with uv](https://docs.astral.sh/uv/) ```bash $ cd mlops-python-package/ -$ poetry install +$ uv sync ``` 3. Adapt the code base to your desire @@ -171,26 +171,26 @@ This config file instructs the program to start a `TrainingJob` with 2 parameter You can find all the parameters of your program in the `src/[package]/jobs/*.py` files. -You can also print the full schema supported by this package using `poetry run bikes --schema`. +You can also print the full schema supported by this package using `uv run bikes --schema`. ## Execution -The project code can be executed with poetry during your development: +The project code can be executed with uv during your development: ```bash -$ poetry run [package] confs/tuning.yaml -$ poetry run [package] confs/training.yaml -$ poetry run [package] confs/promotion.yaml -$ poetry run [package] confs/inference.yaml -$ poetry run [package] confs/evaluations.yaml -$ poetry run [package] confs/explanations.yaml +$ uv run [package] confs/tuning.yaml +$ uv run [package] confs/training.yaml +$ uv run [package] confs/promotion.yaml +$ uv run [package] confs/inference.yaml +$ uv run [package] confs/evaluations.yaml +$ uv run [package] confs/explanations.yaml ``` In production, you can build, ship, and run the project as a Python package: ```bash -poetry build -poetry publish # optional +uv build +uv publish # optional python -m pip install [package] [package] confs/inference.yaml ``` @@ -211,7 +211,7 @@ with job as runner: - You can pass several config files in the command-line to merge them from left to right - You can define common configurations shared between jobs (e.g., model params) - The right job task will be selected automatically thanks to [Pydantic Discriminated Unions](https://docs.pydantic.dev/latest/concepts/unions/#discriminated-unions) - - This is a great way to run any job supported by the application (training, tuning, .... + - This is a great way to run any job supported by the application (training, tuning, ...) ## Automation @@ -233,7 +233,6 @@ $ inv --list - **checks.code** - Check the codes with ruff. - **checks.coverage** - Check the coverage with coverage. - **checks.format** - Check the formats with ruff. -- **checks.poetry** - Check poetry config files. - **checks.security** - Check the security with bandit. - **checks.test** - Check the tests with pytest. - **checks.type** - Check the types with mypy. @@ -247,15 +246,15 @@ $ inv --list - **cleans.mlruns** - Clean the mlruns folder. - **cleans.mypy** - Clean the mypy tool. - **cleans.outputs** - Clean the outputs folder. -- **cleans.poetry** - Clean poetry lock file. -- **cleans.pytest** - Clean the pytest tool. - **cleans.projects** - Run all projects tasks. +- **cleans.pytest** - Clean the pytest tool. - **cleans.python** - Clean python caches and bytecodes. - **cleans.requirements** - Clean the project requirements file. - **cleans.reset** - Run all tools, folders, and sources tasks. - **cleans.ruff** - Clean the ruff tool. - **cleans.sources** - Run all sources tasks. - **cleans.tools** - Run all tools tasks. +- **cleans.uv** - Clean uv lock file. - **cleans.venv** - Clean the venv folder. - **commits.all (commits)** - Run all commit tasks. - **commits.bump** - Bump the version of the package. @@ -272,8 +271,8 @@ $ inv --list - **formats.imports** - Format python imports with ruff. - **formats.sources** - Format python sources with ruff. - **installs.all (installs)** - Run all install tasks. -- **installs.poetry** - Install poetry packages. - **installs.pre-commit** - Install pre-commit hooks on git. +- **installs.uv** - Install uv packages. - **mlflow.all (mlflow)** - Run all mlflow tasks. - **mlflow.doctor** - Run mlflow doctor to diagnose issues. - **mlflow.serve** - Start mlflow server with the given host, port, and backend uri. @@ -684,17 +683,18 @@ Define and build modern Python package. - [Source](https://docs.python.org/3/distutils/sourcedist.html): older format, less powerful - [Conda](https://conda.io/projects/conda/en/latest/user-guide/install/index.html): slow and hard to manage -### Manager: [Poetry](https://python-poetry.org/) +### Manager: [uv](https://docs.astral.sh/uv/) - **Motivations**: - Define and build Python package - - Most popular solution by GitHub stars + - Fast and compliant package manager - Pack every metadata in a single static file - **Limitations**: - Cannot add dependencies beyond Python (e.g., CUDA) - i.e., use Docker container for this use case - **Alternatives**: - [Setuptools](https://docs.python.org/3/distutils/setupscript.html): dynamic file is slower and more risky + - [Poetry](https://python-poetry.org/): previous solution of this package - Pdm, Hatch, PipEnv: https://xkcd.com/1987/ ### Runtime: [Docker](https://www.docker.com/resources/what-container/) @@ -937,10 +937,10 @@ Using Python package for your AI/ML project has the following benefits: - Install Python package as a library (e.g., like pandas) - Expose script entry points to run a CLI or a GUI -To build a Python package with Poetry, you simply have to type in a terminal: +To build a Python package with uv, you simply have to type in a terminal: ```bash -# for all poetry project -poetry build +# for all uv project +uv build # for this project only inv packages ``` @@ -1044,7 +1044,7 @@ Semantic Versioning (SemVer) provides a simple schema to communicate code change - *Minor* (Y): minor release with new features (i.e., provide new capabilities) - *Patch* (Z): patch release to fix bugs (i.e., correct wrong behavior) -Poetry and this package leverage Semantic Versioning to let developers control the speed of adoption for new releases. +Uv and this package leverage Semantic Versioning to let developers control the speed of adoption for new releases. ## [Testing Tricks](https://en.wikipedia.org/wiki/Software_testing) diff --git a/data/inputs_test.parquet b/data/inputs_test.parquet index 1e407873df7f29f59ea416f415ae4bd6c558d49c..4d43e971b360329df533a6e91637d5a1b27cd85f 100644 GIT binary patch delta 539 zcmZ3nnfcx_<_&%=EZ660hc&gRKKId@GK=U%c|iRUTP<~;tL zT$?+j>bN&&s?FuyoM|$Nb90K_dEw17gDy#LzLux$JvnRFXGVs}fh_(^Y7CP%?v~|z zCa5+?P)34-Wilh1=;U`S!ju2+76vN0&nn5fLs+dtc=AG49gvtZgN!JPq$vZNfTRRV zZeB@-D3jO{)T@;Y{%Nt{9;cg*0FW8EXG_D5#2;y!zz-P8BVu|JYmYmx_=_>oI^asZb&ROLQy zMb>RfYTp#0D!KR-SvyqK_Nh!Z;I{)Ar6ncJ{>NCY!vLt2ali27cqvVgu=ai#)@cc9 zzoI7l><8Jba{<5e|Te3Oupf(4qg`T0F z!Q{r1(u~HF=bo(RaCCNbbaZlb+-!2Hkc-{l*`&fJ%W?9WD=H#Yo_Pj9xk!+Fd1Sb0 pc4UO_<||hwvv7dTko+Ssx$&ml3g7y=xF3;|}Vuv7p5 delta 942 zcmb8sUr19?90%~-bMD=B{sFtUt*uR+WBwGotSKp(xw)W7@?ZL3QXs>EG?|s8g_KeB zVj;30K~ZLfh}4Skw!aen(FY4!Hl-pe3QB^a2Ma^!q1&LBHHFUMoQLy|-}!#tjnXlh z-l=6NTwaBR{yMB>yD9iqW3NAp>lfjHfJ1%JUa`|)hZ$j!LmO$BCVNcb`&$oF(7 z(pWfmfx#~!6X)xM!FJ5jOSmyC$mN!y3}tVI!Rqi@b#$14*hTCJJLOmFy&4u4e=>M0 zZ06_Yl#S;M-n2{Jh#qc|=BAPZ&AV#k*OP}*`P#+}J=N`1*bud{$ErMbxj%|*O8jNRuS_hO TwPNLLx<*x+qf*to8j5}cnnhu% diff --git a/data/inputs_train.parquet b/data/inputs_train.parquet index da347d92686f715156c9a455862e5c5e3b850dba..99e8645d57b32258f8bff916ea852d5f8cc0b751 100644 GIT binary patch delta 542 zcmaFV!2S6%*M?BR$twjrC&x%CPu?lyH#uGS%I3KuaV$WAeVgm0iWxyNo2z6*7=g-k zH!I7%=G`Px>8?H9!v6a3rfr891ym(KLvV*39D zOkWroCPxScGO004_gusz$NtY%ZI!Ex#No}@vQO=n)pq{O}~N9|HJ4);vf z^_OG2HiJ>EY0Bh4e|woYS^B+Y0%J$wUGJ%^*Sqobpf zqvQ5>8<+~Y*!`VNDtxjWr>E^^QW2^0%rgMWMuJq7M~0hbM@IN=@7v8ZnS}#vkmMhM b>5d1OB&G)(VB&-mY@7_v@(c_CjzNY14v@Vx delta 1248 zcmbV~ZAg<*6vy|R=h>?ta(mp|Y-l;hKK}y$Rca>flxaa=Q|D1DwD=RYZ z<%pppavBG6iLDEYxy6_iu2p`L#`y!}Qy0Vvd-tPfA9q8pCk87hxGT{*j#3mPV24qw zWHgxqQKUubgIZEZFa5*1u=W|;WdQ#@(HHC^7iMU!6e9zR>Hd+FTC0f>WpC_ZLA zPj=fOLFlW;!TO+ZF-9$8(CVN_k3Twj0hgQC2j!xY?jnPpaUjxeh!sEVrO@Z3xNOvu zGbW`GcD9AWq~o%mZq9OC!R-? zYGR7Qg?0w#+nAutI9Q}(uwzz4vK*ijy`2%F?=dkuz~HhzAI(m|XKy6I`H0HR4Nd0i zK+;YtsFqp*JAER2KPS?vIp-^uMB0HNUI!$(ixpH^A%k9P1d%!+DWYA9J?|v^A86@L zJ46u^e|c@#Ou2{6@Fk1EfmS7HbV9u7UYi2P?WD^I2GVy6KErR?N+2X;Z2Uj7#p=Sq ziVYVi43i}mHd17OknFH@Xlht`GhSGFGg8>(Fd1R#5Oieg|C{{{ro8z^w|6zCpyZz`MtNf^l0YU(qkrf-2l|f#07_THXEz*$cGU~ mWLolS)7){Rz%i0vi8O1GWO594keM+MNd+h31cIWRlJuXMyqS*x diff --git a/data/targets_test.parquet b/data/targets_test.parquet index 10c3c207e07254305f517ea1da25e1ed68e851ef..6151a149abd97bddad86fa11975b0f67738f6e76 100644 GIT binary patch delta 160 zcmezUfN{fp#tl8Po8QQ4drz*BM>;H0|^hOjHKM4jO6mkQ}Zu~flZdwkzrr}B8HD_3=9E| GL52W>mNLcw delta 172 zcmdmRpYitt#tl8P%xW{rCcn&x-P|Lq?aiXLZVB^bk4y!&eHWS3Zj?_J4AGf9D^qCl z_6$QNu(~*AOck4FWxi!(HPtiFGn(9!EzM{&c|~@eq@$-J5V(Q}$4DS{Dvt~|&5n%l y-K?Jz&BPX3>g#M$Ie9{!Dr=^frK98IQ+XG}z-CD5$S^Pf5yKZY28IB~AVUB&=Q`*B diff --git a/data/targets_train.parquet b/data/targets_train.parquet index de9a2b91f12fdeb81fccc6b5b2efee217206b112..4d741fe30c276c309ccd9c187c5a299bd1a2dc75 100644 GIT binary patch delta 151 zcmeBM%(izS+lJ!-&02xmwE`KxTTJinVl-l8n0}y(F#$-ab}=flb*$u6>pMK%r;E{k zduKP}9Y$6QJwrW%=~=yu(u~H_+j<%6I95^9X%a^z!gL|Mgp-@d1Sb0c4UO_cAH+tXePGM tQeS72%IS0a8C6*`y(}Far(f@9ydVZPNK!|JfdPmZezP$!1ULp60svZHPpbd` diff --git a/docker-compose.yml b/docker-compose.yml index bab711d..3b169d3 100644 --- a/docker-compose.yml +++ b/docker-compose.yml @@ -2,7 +2,7 @@ services: mlflow: - image: ghcr.io/mlflow/mlflow:v2.14.3 + image: ghcr.io/mlflow/mlflow:v2.18.0 ports: - 5000:5000 environment: diff --git a/notebooks/explain.ipynb b/notebooks/explain.ipynb index 69a6507..b06a698 100644 --- a/notebooks/explain.ipynb +++ b/notebooks/explain.ipynb @@ -29,9 +29,9 @@ } ], "source": [ - "import shap\n", "import pandas as pd\n", - "import plotly.express as px" + "import plotly.express as px\n", + "import shap" ] }, { @@ -48,8 +48,8 @@ "outputs": [], "source": [ "# note: you must run the explanations job first to generate the output\n", - "MODELS_EXPLANATIONS = '../outputs/models_explanations.parquet'\n", - "SAMPLES_EXPLANATIONS = '../outputs/samples_explanations.parquet'" + "MODELS_EXPLANATIONS = \"../outputs/models_explanations.parquet\"\n", + "SAMPLES_EXPLANATIONS = \"../outputs/samples_explanations.parquet\"" ] }, { @@ -488,7 +488,9 @@ } ], "source": [ - "shap_values = shap.Explanation(samples_explanations, feature_names=samples_explanations.columns.to_list())\n", + "shap_values = shap.Explanation(\n", + " samples_explanations, feature_names=samples_explanations.columns.to_list()\n", + ")\n", "shap_values.feature_names\n", "shap_values" ] @@ -561,7 +563,7 @@ 0.5791462063789368, 0.2507259249687195, 0.0785420835018158, - 0.038599804043769836, + 0.03859980404376984, 0.0120792705565691, 0.008070561103522778, 0.006674219388514757, @@ -572,11 +574,11 @@ 0.002690249355509877, 0.0013275929959490895, 0.0011345595121383667, - 0.0009102495387196541, + 0.000910249538719654, 0.0005809680442325771, 0.0005128193879500031, 0.00018277487833984196, - 0.0000030518597213813337 + 3.0518597213813337e-6 ], "yaxis": "y" } @@ -1433,7 +1435,7 @@ } ], "source": [ - "px.bar(models_explanations, x='feature', y='importance', title='Feature Importances')" + "px.bar(models_explanations, x=\"feature\", y=\"importance\", title=\"Feature Importances\")" ] }, { @@ -1591,8 +1593,8 @@ -0.12465005367994308, -0.20350304245948792, -0.7589821815490723, - -1.4744840860366821, - -1.0763494968414307, + -1.474484086036682, + -1.0763494968414309, 0.8019556403160095, 0.0005125635070726275, 31.495134353637695, @@ -1609,7 +1611,7 @@ ], [ 0.14229492843151093, - -0.24230052530765533, + -0.2423005253076553, -0.06181931495666504, -0.6509594321250916, -1.0017391443252563, @@ -1622,11 +1624,11 @@ -0.037578750401735306, -4.272334575653076, 19.72316551208496, - 1.8124518394470215, + 1.8124518394470217, 1.4621434211730957, 0.3695316016674042, 0.37441232800483704, - 117.78642272949219 + 117.7864227294922 ], [ 0.16869859397411346, @@ -1658,12 +1660,12 @@ 0.03979773819446564, 0.7789877653121948, 0.0005178267601877451, - 30.905353546142578, + 30.905353546142575, 2.808645009994507, -70.18022155761719, 0.09768002480268478, -6.699856758117676, - 19.206472396850586, + 19.206472396850582, 4.46869421005249, 7.614377975463867, -0.7768831253051758, @@ -1676,7 +1678,7 @@ -0.3953709006309509, -0.6145736575126648, -1.5584088563919067, - 0.11173088103532791, + 0.11173088103532793, -3.9278995990753174, 0.0009037204436026514, 47.19106674194336, @@ -1695,7 +1697,7 @@ 0.09980977326631546, -0.1289137452840805, 0.04262050241231918, - -1.0114322900772095, + -1.0114322900772097, -1.5444451570510864, -0.3063795566558838, 1.2926396131515503, @@ -1706,7 +1708,7 @@ 0.0029676654376089573, 4.077856063842773, 77.48359680175781, - 2.1760151386260986, + 2.176015138626098, -4.81910514831543, -3.676065444946289, 0.42632120847702026, @@ -1715,7 +1717,7 @@ [ 0.17066802084445953, -0.2959515154361725, - -0.11001028120517731, + -0.11001028120517732, -1.0064359903335571, -1.6547470092773438, -0.7146743535995483, @@ -1731,7 +1733,7 @@ -3.538238763809204, -3.534722089767456, 1.1455564498901367, - 236.20997619628906 + 236.20997619628903 ], [ 0.21100318431854248, @@ -1752,22 +1754,22 @@ 2.1445350646972656, -2.514310836791992, 1.3115136623382568, - 195.78465270996094 + 195.78465270996097 ], [ 0.15828295052051544, - -0.10273899137973785, + -0.10273899137973784, -0.23303288221359253, -0.7537844181060791, -1.0537359714508057, -0.3776755928993225, 0.923829197883606, 0.0001359017041977495, - 39.298519134521484, + 39.29851913452149, 1.023025631904602, -0.3841829001903534, - -0.09258145093917847, - 3.8694167137145996, + -0.09258145093917848, + 3.8694167137146, 46.602294921875, 3.19360613822937, 3.103475332260132, @@ -1790,10 +1792,10 @@ -0.08169162273406982, 4.318027496337891, 40.69746780395508, - 2.7966856956481934, + 2.796685695648194, 2.3097407817840576, -4.547541618347168, - -1.7421387434005737, + -1.7421387434005735, 140.1410675048828 ], [ @@ -1809,7 +1811,7 @@ 2.3916404247283936, -56.327823638916016, -0.10369519889354706, - -3.7037088871002197, + -3.70370888710022, 17.519577026367188, 3.3487110137939453, 4.850150108337402, @@ -1840,18 +1842,18 @@ ], [ 0.1959066241979599, - -0.18706031143665314, + -0.1870603114366531, -0.02977874130010605, -0.5241200923919678, 0.7009141445159912, 0.07782352715730667, 0.6562888622283936, 0.0007873308495618403, - 18.619783401489258, + 18.619783401489254, 1.6802222728729248, -87.85552978515625, 0.008099825121462345, - -2.5846824645996094, + -2.58468246459961, 2.4992663860321045, 1.3333842754364014, 1.8203318119049072, @@ -1860,19 +1862,19 @@ -54.8721809387207 ], [ - 0.22012750804424286, + 0.2201275080442429, -0.1243598610162735, 0.04713971167802811, -0.4951706528663635, 0.5279565453529358, 0.006826077122241259, - 1.2234665155410767, + 1.2234665155410769, 0.0020947991870343685, 16.840295791625977, 1.5345487594604492, -78.14442443847656, 0.06610047072172165, - -0.40369319915771484, + -0.4036931991577149, 6.414614200592041, 1.874184489250183, 1.5743393898010254, @@ -1884,7 +1886,7 @@ 0.23642316460609436, -0.07295327633619308, 0.02021026983857155, - -0.46774348616600037, + -0.4677434861660004, 0.5260272026062012, -0.0433531254529953, 1.3350751399993896, @@ -1896,21 +1898,21 @@ -0.31112754344940186, 7.640243053436279, 1.160016655921936, - 1.7891626358032227, + 1.7891626358032229, -2.236783981323242, - 0.45728132128715515, - -104.49085235595703 + 0.4572813212871551, + -104.49085235595705 ], [ - 0.24079622328281403, + 0.24079622328281405, -0.04550537094473839, 0.10600541532039642, -0.4731599688529968, 0.5193852782249451, -0.02344142273068428, - 1.3347171545028687, + 1.3347171545028689, 0.000648858433123678, - 15.789037704467773, + 15.789037704467772, 1.5652916431427002, -80.2547836303711, -0.0102729182690382, @@ -1936,12 +1938,12 @@ -73.54963684082031, -0.021768908947706223, -0.015513437800109386, - 10.325225830078125, - 0.9995515942573547, - 1.6338378190994263, + 10.325225830078123, + 0.9995515942573548, + 1.6338378190994265, -1.988153100013733, 0.34100043773651123, - -114.72674560546875 + -114.72674560546876 ], [ 0.19245152175426483, @@ -1949,11 +1951,11 @@ -0.0036932018119841814, -0.47749078273773193, -0.778639554977417, - -0.12267234921455383, - 1.2741750478744507, + -0.12267234921455385, + 1.274175047874451, 0.0017355340532958508, 19.329111099243164, - 1.9788233041763306, + 1.9788233041763303, -49.32539367675781, -0.014683695510029793, 0.3591795265674591, @@ -1971,7 +1973,7 @@ -0.5295122861862183, -2.3159399032592773, -0.5527059435844421, - 1.4427541494369507, + 1.442754149436951, 0.002121501136571169, 23.01054573059082, 4.577113151550293, @@ -1998,11 +2000,11 @@ 11.02030086517334, 134.98486328125, -0.21013426780700684, - 1.3449642658233643, + 1.3449642658233645, 48.54542541503906, 4.885603427886963, 7.470324516296387, - -3.7808265686035156, + -3.780826568603515, -0.40304115414619446, 21.054868698120117 ], @@ -2028,15 +2030,15 @@ 127.35955047607422 ], [ - 0.12387402355670929, + 0.12387402355670928, 0.07819881290197372, - -0.009967210702598095, + -0.009967210702598097, -0.7128632664680481, -0.6675121784210205, 0.03523243963718414, 1.462039589881897, 0.0005336896283552051, - 54.256168365478516, + 54.25616836547851, 2.884908437728882, 24.965435028076172, -0.05086776614189148, @@ -2060,9 +2062,9 @@ 31.991912841796875, 2.542576551437378, -94.4873275756836, - -0.09413846582174301, + -0.094138465821743, -1.5950297117233276, - 12.353922843933105, + 12.353922843933104, 3.599046468734741, 2.71368408203125, 1.3042409420013428, @@ -2071,8 +2073,8 @@ ], [ 0.12881344556808472, - -0.23975999653339386, - -0.11960572004318237, + -0.23975999653339383, + -0.11960572004318236, -0.7206676602363586, -1.1241790056228638, -0.6253287196159363, @@ -2083,7 +2085,7 @@ -93.7419662475586, 0.02968677505850792, -0.7746119499206543, - 19.718368530273438, + 19.71836853027344, 2.5528836250305176, 1.075609564781189, 0.22086085379123688, @@ -2095,16 +2097,16 @@ -0.2558153569698334, -0.021835684776306152, -0.5680426955223083, - -1.2032192945480347, + -1.203219294548035, -0.269516259431839, 0.8631099462509155, 0.0005503954016603529, 41.81741714477539, - 3.8032913208007812, + 3.803291320800781, -56.884029388427734, -0.1119290143251419, 0.18008644878864288, - 14.842578887939453, + 14.842578887939451, 3.691838026046753, 2.833195447921753, 0.746959924697876, @@ -2120,17 +2122,17 @@ -0.34541767835617065, 0.8261586427688599, 0.0005503954016603529, - 31.770305633544922, - 2.8528950214385986, + 31.77030563354492, + 2.852895021438598, -65.05724334716797, - 0.10114981979131699, + 0.101149819791317, -4.877957344055176, 19.00931167602539, 4.283749580383301, 7.261184215545654, - -0.10680069774389267, + -0.10680069774389268, 1.2539360523223877, - 181.61904907226562 + 181.6190490722656 ], [ 0.16916249692440033, @@ -2140,11 +2142,11 @@ -0.8471976518630981, -0.2293485701084137, 0.8150206208229065, - 0.00047357301809825003, + 0.00047357301809825, 37.48652648925781, 3.877255439758301, -68.99298858642578, - -0.11778315156698227, + -0.11778315156698228, -0.25162991881370544, 13.409579277038574, 3.3177073001861572, @@ -2170,7 +2172,7 @@ 16.448652267456055, 5.755948543548584, 8.034867286682129, - 1.9738346338272095, + 1.9738346338272097, 0.8543528914451599, 193.16583251953125 ], @@ -2182,7 +2184,7 @@ -1.6411441564559937, -0.41482436656951904, 0.953245222568512, - 0.0018760856473818421, + 0.001876085647381842, 48.95395278930664, 6.103858470916748, -5.4297051429748535, @@ -2211,10 +2213,10 @@ 5.048268795013428, 87.0127944946289, 3.649786949157715, - -1.8663026094436646, + -1.8663026094436648, -1.0483384132385254, 0.7698644399642944, - 246.24838256835938 + 246.24838256835935 ], [ 0.14318406581878662, @@ -2235,11 +2237,11 @@ -5.162672996520996, -1.9589805603027344, 1.2794933319091797, - 250.82594299316406 + 250.8259429931641 ], [ 0.25990957021713257, - -0.45059436559677124, + -0.4505943655967712, 0.06157448887825012, -0.7794139385223389, 0.6918620467185974, @@ -2255,7 +2257,7 @@ 3.6040074825286865, 1.6773055791854858, -2.9190239906311035, - -1.7982277870178223, + -1.7982277870178225, 209.1162109375 ], [ @@ -2265,8 +2267,8 @@ -0.7437237501144409, 0.5962345600128174, 0.12838692963123322, - 0.9325858354568481, - 0.00018758232181426138, + 0.932585835456848, + 0.00018758232181426135, 41.38226318359375, 1.345165729522705, -2.0313286781311035, @@ -2303,7 +2305,7 @@ [ 0.23794770240783691, -0.4900645613670349, - -0.011707608588039875, + -0.011707608588039877, -0.6704952716827393, 0.5372632741928101, 0.051002152264118195, @@ -2311,10 +2313,10 @@ 0.0004856945888604969, 40.592533111572266, 2.753553867340088, - -42.574153900146484, + -42.57415390014648, -0.07540760189294815, - 3.0798721313476562, - 20.167428970336914, + 3.079872131347656, + 20.16742897033691, 3.7870593070983887, 4.918464660644531, -0.7026727199554443, @@ -2327,18 +2329,18 @@ 0.020931249484419823, -0.5460458993911743, 0.6820108890533447, - 0.09886196255683899, + 0.098861962556839, 0.7167019248008728, 0.0005002596299163997, 21.094329833984375, 2.4871826171875, -60.72250747680664, -0.03376798704266548, - 1.3835946321487427, + 1.383594632148743, 10.921226501464844, 1.651340365409851, 1.753352403640747, - -1.0688366889953613, + -1.068836688995361, 0.4954444169998169, -39.085052490234375 ], @@ -2348,7 +2350,7 @@ -0.014533264562487602, -0.5839090347290039, 0.518755316734314, - 0.000005135694664204493, + 5.135694664204493e-6, 0.6131640672683716, 0.0006211507134139538, 20.23552703857422, @@ -2373,25 +2375,25 @@ 1.023443341255188, 0.0030024913139641285, 16.98451042175293, - 1.5871094465255737, + 1.5871094465255735, -81.69155883789062, 0.050032585859298706, 2.0760021209716797, 5.364504337310791, 1.3132153749465942, - 1.8380100727081299, - -1.8052141666412354, - 0.11141256988048553, + 1.83801007270813, + -1.8052141666412351, + 0.11141256988048552, -87.30631256103516 ], [ 0.2194717824459076, -0.11921803653240204, 0.019222011789679527, - -0.47156256437301636, + -0.4715625643730163, 0.5185927748680115, 0.005403690971434116, - 1.1428186893463135, + 1.1428186893463137, 0.0012586560333147645, 16.242998123168945, 1.5087487697601318, @@ -2415,10 +2417,10 @@ 1.2979978322982788, 0.000569057185202837, 15.881168365478516, - 1.5359578132629395, + 1.5359578132629397, -79.95002746582031, -0.00878177210688591, - 0.9832655191421509, + 0.9832655191421508, 8.446954727172852, 0.997465968132019, 1.639317512512207, @@ -2427,12 +2429,12 @@ -105.7148666381836 ], [ - 0.23592261970043182, + 0.23592261970043185, -0.056163568049669266, 0.04964485019445419, -0.4659730792045593, -0.7095680236816406, - 0.048651017248630524, + 0.04865101724863053, 1.2980189323425293, 0.0007347611244767904, 16.73440933227539, @@ -2450,7 +2452,7 @@ [ 0.15151800215244293, -0.09102077037096024, - 0.014796901494264603, + 0.014796901494264604, -0.4803575873374939, -0.7396679520606995, -0.0007302318117581308, @@ -2466,7 +2468,7 @@ 1.3989856243133545, -3.14176082611084, 0.16095776855945587, - -110.93091583251953 + -110.93091583251952 ], [ 0.3331563174724579, @@ -2494,16 +2496,16 @@ -0.5458109974861145, 0.07436816394329071, -0.5558772683143616, - -1.6022089719772339, + -1.602208971977234, -1.8660619258880615, 1.4260317087173462, 0.0005109156481921673, 55.66039276123047, - 10.748068809509277, + 10.748068809509276, 133.65122985839844, - -0.20039774477481842, + -0.2003977447748184, 2.7093417644500732, - 47.711605072021484, + 47.71160507202149, 4.897413730621338, 7.3790411949157715, -3.70729398727417, @@ -2515,30 +2517,30 @@ -3.930114984512329, -0.05820227786898613, -0.7105394601821899, - 1.1356737613677979, + 1.135673761367798, 0.3353612422943115, 2.251840114593506, 0.00047251631622202694, 85.90479278564453, 6.80287504196167, - 229.81942749023438, + 229.8194274902344, -0.07705919444561005, 2.6597917079925537, 64.78392791748047, -2.5225374698638916, - 1.3843309879302979, - 1.1906018257141113, + 1.384330987930298, + 1.190601825714111, -0.05136825144290924, 86.52433013916016 ], [ - 0.20475554466247559, - -0.21365594863891602, + 0.2047555446624756, + -0.213655948638916, -0.00399854127317667, -0.5768263339996338, 0.4638493061065674, -0.025749268010258675, - 1.2562960386276245, + 1.2562960386276243, 0.00046094285789877176, 65.2007827758789, 3.486802816390991, @@ -2546,14 +2548,14 @@ -0.14037208259105682, 1.885317325592041, 18.04607582092285, - 2.0254745483398438, + 2.025474548339844, 2.0944604873657227, - -0.48780372738838196, + -0.4878037273883819, 0.42370009422302246, 81.5890884399414 ], [ - 0.10137239098548889, + 0.10137239098548888, -0.37388700246810913, -0.020501015707850456, -0.6074191927909851, @@ -2565,9 +2567,9 @@ 2.9056577682495117, -94.57997131347656, 0.03204174339771271, - 3.9000699520111084, + 3.900069952011109, 19.290468215942383, - 1.8547735214233398, + 1.85477352142334, 1.6670939922332764, 0.32219696044921875, -0.3370084762573242, @@ -2575,7 +2577,7 @@ ], [ 0.18710395693778992, - -0.19680142402648926, + -0.19680142402648929, -0.32244470715522766, -0.5688077807426453, 0.4720882475376129, @@ -2589,14 +2591,14 @@ 0.08460897952318192, 17.6873836517334, 3.125368118286133, - 3.4693655967712402, + 3.46936559677124, 2.5074703693389893, 2.282147169113159, 160.0921173095703 ], [ 0.1529584527015686, - -0.0030397260561585426, + -0.003039726056158542, -0.1533682495355606, -0.709664523601532, 0.893938422203064, @@ -2630,7 +2632,7 @@ 0.06724181771278381, 4.003010272979736, 20.30370330810547, - 1.7372372150421143, + 1.7372372150421145, 0.7887271046638489, 3.711036205291748, -0.16165831685066223, @@ -2638,7 +2640,7 @@ ], [ 0.2156868875026703, - -0.21970093250274658, + -0.21970093250274655, -0.17157238721847534, -0.582151472568512, 0.7571473121643066, @@ -2660,14 +2662,14 @@ [ 0.1412637084722519, -0.30071574449539185, - -0.022506190463900566, + -0.02250619046390057, -0.5232022404670715, 0.5742732882499695, 0.07827191799879074, 0.8163344860076904, 0.0004601764085236937, 40.39252471923828, - 3.7928383350372314, + 3.792838335037231, -66.60188293457031, -0.05314407870173454, 1.8710877895355225, @@ -2679,14 +2681,14 @@ 106.4751968383789 ], [ - 0.21904438734054565, - -0.9796338081359863, + 0.21904438734054563, + -0.9796338081359864, -0.20808185636997223, -0.6725241541862488, 0.76905757188797, 0.1507904976606369, 0.9582247138023376, - 0.0018147160299122334, + 0.0018147160299122336, 51.486236572265625, 8.145078659057617, 2.00826358795166, @@ -2721,7 +2723,7 @@ 253.45640563964844 ], [ - 0.020308295264840126, + 0.02030829526484013, -0.12989488244056702, 0.012950842268764973, -1.0508146286010742, @@ -2731,7 +2733,7 @@ 0.007097089663147926, 64.22801971435547, 5.043331623077393, - 185.12010192871094, + 185.12010192871097, -0.11849214881658554, 5.452884197235107, 99.28350067138672, @@ -2753,7 +2755,7 @@ 60.66386795043945, 6.487387657165527, 80.66358947753906, - -0.23649781942367554, + -0.2364978194236755, 6.688722610473633, 65.82988739013672, 4.051763534545898, @@ -2768,7 +2770,7 @@ -0.40808942914009094, -0.7420495748519897, 0.5262842774391174, - 0.12272506207227707, + 0.12272506207227708, 0.8630633354187012, 0.0002305197558598593, 45.97563552856445, @@ -2794,7 +2796,7 @@ 0.0004703139129560441, 38.556922912597656, 2.611149787902832, - -29.965702056884766, + -29.96570205688477, -0.2867933511734009, 3.7744107246398926, 19.35792350769043, @@ -2805,9 +2807,9 @@ 80.67886352539062 ], [ - 0.18422643840312958, + 0.1842264384031296, -0.61520916223526, - 0.00014860428927931935, + 0.00014860428927931937, -0.5726089477539062, -0.8390034437179565, -0.28560081124305725, @@ -2827,7 +2829,7 @@ ], [ 0.3403075337409973, - -0.49216631054878235, + -0.4921663105487823, 0.03154202178120613, -0.5617940425872803, 0.6211637854576111, @@ -2840,7 +2842,7 @@ -0.04405362904071808, 5.08213472366333, 11.197439193725586, - 1.9858449697494507, + 1.985844969749451, 2.1883108615875244, -1.1526974439620972, 1.0649752616882324, @@ -2856,7 +2858,7 @@ 0.5946183800697327, 0.0006588282412849367, 20.094369888305664, - 1.8859014511108398, + 1.88590145111084, -93.14723205566406, 0.04088236391544342, 4.745431900024414, @@ -2868,7 +2870,7 @@ -38.7278938293457 ], [ - 0.21943247318267822, + 0.21943247318267825, -0.12726733088493347, 0.037228118628263474, -0.534363865852356, @@ -2877,7 +2879,7 @@ 0.8946473002433777, 0.002717023016884923, 17.320478439331055, - 1.5989444255828857, + 1.5989444255828855, -83.35277557373047, 0.04878876730799675, 2.4009861946105957, @@ -2898,10 +2900,10 @@ 0.9255168437957764, 0.0023979234974831343, 16.93575096130371, - 1.9022513628005981, + 1.902251362800598, -88.30435943603516, 0.0501277782022953, - 0.9381177425384521, + 0.938117742538452, 5.077188014984131, 1.1604444980621338, 1.5118155479431152, @@ -2926,7 +2928,7 @@ 8.082894325256348, 1.1329712867736816, 1.1000499725341797, - -1.6158696413040161, + -1.615869641304016, -0.04177570715546608, -96.3712387084961 ], @@ -2935,7 +2937,7 @@ -0.05698171257972717, 0.04584861919283867, -0.43657249212265015, - -0.9378309845924377, + -0.9378309845924376, -0.03391912952065468, -4.230218887329102, 0.0004189460596535355, @@ -2945,10 +2947,10 @@ -0.03154341131448746, 0.8709114193916321, 9.55553913116455, - 0.9311321973800659, + 0.931132197380066, 1.621904730796814, -2.1065187454223633, - -0.09628447890281677, + -0.09628447890281676, -117.97828674316406 ], [ @@ -2960,12 +2962,12 @@ -0.004891686141490936, -4.217394828796387, 0.0008948497707024217, - 19.923673629760742, + 19.923673629760746, 1.6255260705947876, -43.96807098388672, -0.023817621171474457, 0.6935403347015381, - 14.397486686706543, + 14.397486686706545, 1.1161388158798218, 1.7200865745544434, -2.053905487060547, @@ -2978,7 +2980,7 @@ 0.03686278313398361, -0.5079013109207153, -2.0132761001586914, - 0.0010254626395180821, + 0.001025462639518082, -6.094466209411621, 0.000774412474129349, 20.7618408203125, @@ -2988,10 +2990,10 @@ -0.36693641543388367, 19.99711799621582, 1.3040275573730469, - 1.5885565280914307, + 1.5885565280914309, -3.245990514755249, -1.6222633123397827, - -111.28253173828125 + -111.28253173828124 ], [ 1.3190847635269165, @@ -3001,7 +3003,7 @@ -0.9835253357887268, -0.10344929993152618, -23.086894989013672, - 0.0010899447370320559, + 0.001089944737032056, 33.84690856933594, 6.115768909454346, 89.60429382324219, @@ -3009,7 +3011,7 @@ 7.1410698890686035, 31.115278244018555, -0.05915360897779465, - 0.12214836478233337, + 0.12214836478233336, -7.519678592681885, 0.6514346599578857, -114.10769653320312 @@ -3017,7 +3019,7 @@ [ 1.2231159210205078, -0.9607287645339966, - 0.11360731720924377, + 0.11360731720924376, -0.8973789811134338, -3.622178554534912, -0.04175031557679176, @@ -3040,9 +3042,9 @@ -0.14357897639274597, -0.040454570204019547, -0.6771087646484375, - -0.9349943995475769, - -0.18844249844551086, - 1.8697611093521118, + -0.9349943995475768, + -0.1884424984455109, + 1.869761109352112, 0.0005906057194806635, 48.79141616821289, 3.4771835803985596, @@ -3063,18 +3065,18 @@ -0.624649703502655, 0.6050037741661072, -0.02681633271276951, - 1.0923813581466675, + 1.0923813581466677, 0.0006138867465779185, 32.609310150146484, 1.8777395486831665, -67.16415405273438, -0.06076953560113907, - 1.5194796323776245, + 1.5194796323776243, 12.951915740966797, 3.7513234615325928, 1.5240014791488647, -8.173264503479004, - 0.45639482140541077, + 0.4563948214054108, 18.55360984802246 ], [ @@ -3099,12 +3101,12 @@ 129.00477600097656 ], [ - 0.11973437666893005, + 0.11973437666893004, -0.10793077945709229, - -0.10786595940589905, + -0.10786595940589903, -0.6045520305633545, -1.2147974967956543, - -0.9284350872039795, + -0.9284350872039796, 0.7844049334526062, 0.00048030438483692706, 32.625423431396484, @@ -3129,7 +3131,7 @@ 0.8043985962867737, 0.0004843123606406152, 34.36043167114258, - 2.9854509830474854, + 2.985450983047486, -57.13039016723633, -0.08268441259860992, 3.9013848304748535, @@ -3142,14 +3144,14 @@ ], [ 0.12623703479766846, - -0.09981473535299301, + -0.099814735352993, -0.022092686966061592, -0.6123619675636292, 0.6960574984550476, 0.17629790306091309, 0.7644410729408264, 0.0004500673967413604, - 31.243064880371094, + 31.243064880371097, 2.7847800254821777, -71.42472076416016, 0.029871594160795212, @@ -3175,22 +3177,22 @@ -52.44881057739258, 0.08841561526060104, 4.25314474105835, - 18.274324417114258, + 18.274324417114254, 6.6279802322387695, - 9.095296859741211, + 9.095296859741213, 1.1217288970947266, -1.7296305894851685, 186.48130798339844 ], [ - 0.19026543200016022, + 0.19026543200016025, -0.9811125993728638, -0.24197007715702057, -0.6790480017662048, 0.826160728931427, 0.1361076533794403, 0.9567856788635254, - 0.0017447572899982333, + 0.001744757289998233, 44.38533020019531, 6.729168891906738, 8.35029125213623, @@ -3225,7 +3227,7 @@ 232.139892578125 ], [ - 0.11156803369522095, + 0.11156803369522096, -0.14972706139087677, -0.03701518103480339, -1.0750479698181152, @@ -3279,12 +3281,12 @@ 3.0333330631256104, 15.15195083618164, -0.16700708866119385, - -11.840907096862793, + -11.840907096862791, 22.97865104675293, 4.272884368896484, 3.205537796020508, 1.213819980621338, - 0.24470829963684082, + 0.2447082996368408, 102.32076263427734 ], [ @@ -3296,10 +3298,10 @@ 0.024791114032268524, 0.7712389230728149, 0.00045804245746694505, - 41.705875396728516, + 41.70587539672851, 2.4311540126800537, -35.981204986572266, - -0.18467994034290314, + -0.1846799403429031, -3.1382734775543213, 16.870887756347656, 4.5229268074035645, @@ -3330,8 +3332,8 @@ 80.02012634277344 ], [ - 0.11466164141893387, - -0.16193976998329163, + 0.11466164141893388, + -0.16193976998329165, -0.050843071192502975, -0.5839547514915466, 0.4238177239894867, @@ -3346,7 +3348,7 @@ 13.935806274414062, 0.7567772269248962, 1.9554189443588257, - -1.8155736923217773, + -1.8155736923217771, -0.9485164284706116, 40.475616455078125 ], @@ -3365,14 +3367,14 @@ -0.3727305829524994, 3.743600845336914, -26.54120445251465, - -1.3080363273620605, + -1.3080363273620603, 1.7957813739776611, -2.2712464332580566, 0.7923770546913147, 41.63277816772461 ], [ - -0.19238382577896118, + -0.1923838257789612, 0.16576017439365387, -0.06331092119216919, -0.877108633518219, @@ -3386,11 +3388,11 @@ -0.15660357475280762, 4.341437339782715, -30.90949821472168, - -1.8963706493377686, + -1.8963706493377688, 0.18700070679187775, -1.8457233905792236, 0.1540101170539856, - 31.643033981323242 + 31.64303398132324 ], [ 0.04668380692601204, @@ -3405,9 +3407,9 @@ 0.8874129056930542, -55.6029167175293, 0.15441690385341644, - 1.6044375896453857, + 1.6044375896453855, -19.737382888793945, - 0.18790587782859802, + 0.187905877828598, 0.5347346067428589, -1.110144853591919, -0.07951051741838455, @@ -3419,14 +3421,14 @@ 0.005788542330265045, -0.5281633138656616, -0.3896014392375946, - -0.051410697400569916, + -0.05141069740056992, -2.4512624740600586, 0.0005640322342514992, 14.02071762084961, - 0.9111858606338501, + 0.91118586063385, -42.93519592285156, 0.022168485447764397, - 1.2551944255828857, + 1.2551944255828855, -14.146629333496094, 0.7183982133865356, 1.0827301740646362, @@ -3443,20 +3445,20 @@ -0.01280132308602333, 0.6400336027145386, 0.0008225631900131702, - 14.963103294372559, + 14.96310329437256, 1.159946084022522, -51.35942840576172, - -0.10364393144845963, + -0.10364393144845964, 1.2107940912246704, -22.75741958618164, 0.4763311743736267, 0.853819727897644, -1.950206995010376, 0.16697914898395538, - -95.26329803466797 + -95.26329803466795 ], [ - 0.13270977139472961, + 0.1327097713947296, -0.01503751054406166, 0.03497190773487091, -0.5262167453765869, @@ -3464,7 +3466,7 @@ 0.0026681271847337484, 0.6798986196517944, 0.0008393845055252314, - 14.390527725219727, + 14.390527725219728, 1.1559127569198608, -34.342041015625, -0.2232520431280136, @@ -3474,20 +3476,20 @@ 1.1008868217468262, -2.6093475818634033, 0.02177518419921398, - -103.45665740966797 + -103.45665740966795 ], [ - 0.15651755034923553, + 0.1565175503492355, -0.15258224308490753, 0.03707513585686684, -0.5549656748771667, -0.8716737031936646, - -0.17876099050045013, + -0.1787609905004501, 0.5893511772155762, 0.0012780610704794526, 16.52436065673828, 1.6463030576705933, - -15.422141075134277, + -15.422141075134276, -0.3689005374908447, 1.9884896278381348, -55.493408203125, @@ -3511,7 +3513,7 @@ 44.66126251220703, -0.6762575507164001, 4.063052177429199, - -120.94087219238281, + -120.9408721923828, 2.1688156127929688, 2.7925262451171875, -2.3223366737365723, @@ -3527,7 +3529,7 @@ 0.1192348450422287, 1.2219772338867188, 0.0004078227502759546, - 40.303794860839844, + 40.30379486083984, 3.6706557273864746, 87.4390869140625, -0.5022661089897156, @@ -3540,7 +3542,7 @@ 37.80179977416992 ], [ - -0.9017656445503235, + -0.9017656445503236, 0.4451572299003601, 0.06388839334249496, -0.7944748997688293, @@ -3550,19 +3552,19 @@ 0.00041011886787600815, 37.274715423583984, 1.159719467163086, - 14.937543869018555, + 14.937543869018556, -2.050440788269043, 3.1982452869415283, -70.25680541992188, -1.3633711338043213, 0.7603104114532471, -5.101544380187988, - -0.42048677802085876, + -0.4204867780208587, 83.18323516845703 ], [ 0.11393378674983978, - 0.11304812133312225, + 0.11304812133312224, -0.16461777687072754, -0.7269461154937744, 0.16770629584789276, @@ -3589,7 +3591,7 @@ 0.26423653960227966, -0.05472677946090698, 0.5688372254371643, - 0.00039869867032393813, + 0.0003986986703239382, 40.12403869628906, 6.724072456359863, -3.9013240337371826, @@ -3612,7 +3614,7 @@ 0.5658614635467529, 0.00040272370097227395, 35.80498123168945, - 20.436368942260742, + 20.436368942260746, 4.8773040771484375, -0.02710779756307602, 2.5953235626220703, @@ -3628,7 +3630,7 @@ -0.054200202226638794, -0.015400067903101444, -0.6077865958213806, - 0.45533764362335205, + 0.4553376436233521, 0.003094450104981661, 0.5511691570281982, 0.00041140950634144247, @@ -3654,13 +3656,13 @@ 0.5377357006072998, 0.00039178752922452986, 32.3141975402832, - 23.293106079101562, + 23.29310607910156, 1.1144087314605713, 0.2542417645454407, 2.357220411300659, -18.85422134399414, -0.9144224524497986, - -15.955507278442383, + -15.955507278442385, 1.5044362545013428, -0.023106178268790245, 381.828125 @@ -3684,7 +3686,7 @@ -12.839770317077637, 3.3814566135406494, -0.1815534234046936, - 378.95782470703125 + 378.9578247070313 ] ] } @@ -4548,7 +4550,9 @@ } ], "source": [ - "px.imshow(samples_explanations, height=700, color_continuous_scale='Bluered', title=\"Sample Explanations\")" + "px.imshow(\n", + " samples_explanations, height=700, color_continuous_scale=\"Bluered\", title=\"Sample Explanations\"\n", + ")" ] } ], @@ -4568,7 +4572,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.4" + "version": "3.12.5" } }, "nbformat": 4, diff --git a/notebooks/indicators.ipynb b/notebooks/indicators.ipynb index ae0dad3..aaf3408 100644 --- a/notebooks/indicators.ipynb +++ b/notebooks/indicators.ipynb @@ -128,9 +128,9 @@ " \n", " 0\n", " file:///home/fmind/mlops-python-package/mlruns...\n", - " 2024-07-21 15:02:02.224\n", - " 598443335336095652\n", - " 2024-07-21 15:02:02.224\n", + " 2024-12-09 19:31:02.967\n", + " 892046783494697990\n", + " 2024-12-09 19:31:02.967\n", " active\n", " bikes\n", " {}\n", @@ -141,10 +141,10 @@ ], "text/plain": [ " artifact_location creation_time \\\n", - "0 file:///home/fmind/mlops-python-package/mlruns... 2024-07-21 15:02:02.224 \n", + "0 file:///home/fmind/mlops-python-package/mlruns... 2024-12-09 19:31:02.967 \n", "\n", " experiment_id last_update_time lifecycle_stage name tags \n", - "0 598443335336095652 2024-07-21 15:02:02.224 active bikes {} " + "0 892046783494697990 2024-12-09 19:31:02.967 active bikes {} " ] }, "execution_count": 5, @@ -174,7 +174,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "(18, 30)\n" + "(29, 29)\n" ] }, { @@ -222,7 +222,6 @@ " mlflow.runName\n", " mlflow.project.env\n", " mlflow.project.backend\n", - " mlflow.datasets\n", " estimator_name\n", " estimator_class\n", " mlflow.log-model.history\n", @@ -234,24 +233,24 @@ " \n", " 0\n", " file:///home/fmind/mlops-python-package/mlruns...\n", - " 2024-07-21 15:31:53.829\n", - " 598443335336095652\n", + " 2024-12-09 21:26:50.094\n", + " 892046783494697990\n", " active\n", - " 4df1e5931159491c963f2252add508cd\n", + " c21b823a68ba42b2b1ff98b2ae73c424\n", " Explanations\n", - " 4df1e5931159491c963f2252add508cd\n", - " 2024-07-21 15:31:20.207\n", + " c21b823a68ba42b2b1ff98b2ae73c424\n", + " 2024-12-09 21:26:19.324\n", " FINISHED\n", " fmind\n", " {}\n", " {'conf_file': 'confs/explanations.yaml'}\n", " {'mlflow.user': 'fmind', 'mlflow.source.name':...\n", - " 33.622\n", + " 30.770\n", " fmind\n", " file:///home/fmind/mlops-python-package\n", " PROJECT\n", " main\n", - " ee17d0a9de59efd2eb99d667786ac417ec8b3b63\n", + " 6baa64548d67a5bcf0a7f1422dfc8d45ed229aed\n", " git@github.com:fmind/mlops-python-package\n", " git@github.com:fmind/mlops-python-package\n", " Explanations\n", @@ -262,35 +261,33 @@ " NaN\n", " NaN\n", " NaN\n", - " NaN\n", " \n", " \n", " 1\n", " file:///home/fmind/mlops-python-package/mlruns...\n", - " 2024-07-21 15:31:13.361\n", - " 598443335336095652\n", + " 2024-12-09 21:26:18.061\n", + " 892046783494697990\n", " active\n", - " e993a53ee04e4357bad5cec101ab4031\n", + " 9da0f31e36a9413eaab18149ace82c78\n", " Evaluations\n", - " e993a53ee04e4357bad5cec101ab4031\n", - " 2024-07-21 15:31:07.565\n", + " 9da0f31e36a9413eaab18149ace82c78\n", + " 2024-12-09 21:26:13.489\n", " FINISHED\n", " fmind\n", " {'example_count': 13903.0, 'mean_absolute_erro...\n", " {'conf_file': 'confs/evaluations.yaml'}\n", " {'mlflow.user': 'fmind', 'mlflow.source.name':...\n", - " 5.796\n", + " 4.572\n", " fmind\n", " file:///home/fmind/mlops-python-package\n", " PROJECT\n", " main\n", - " ee17d0a9de59efd2eb99d667786ac417ec8b3b63\n", + " 6baa64548d67a5bcf0a7f1422dfc8d45ed229aed\n", " git@github.com:fmind/mlops-python-package\n", " git@github.com:fmind/mlops-python-package\n", " Evaluations\n", " virtualenv\n", " local\n", - " [{\"name\":\"ce0fe6e33c74e2fa3659d51482be5f27\",\"h...\n", " NaN\n", " NaN\n", " NaN\n", @@ -300,24 +297,24 @@ " \n", " 2\n", " file:///home/fmind/mlops-python-package/mlruns...\n", - " 2024-07-21 15:31:04.758\n", - " 598443335336095652\n", + " 2024-12-09 21:26:12.215\n", + " 892046783494697990\n", " active\n", - " c17b893e525b44ed89e349421e72510a\n", + " 8316d6855d17401b8358e88a48c159f0\n", " Inference\n", - " c17b893e525b44ed89e349421e72510a\n", - " 2024-07-21 15:30:59.023\n", + " 8316d6855d17401b8358e88a48c159f0\n", + " 2024-12-09 21:26:08.210\n", " FINISHED\n", " fmind\n", " {}\n", " {'conf_file': 'confs/inference.yaml'}\n", " {'mlflow.user': 'fmind', 'mlflow.source.name':...\n", - " 5.735\n", + " 4.005\n", " fmind\n", " file:///home/fmind/mlops-python-package\n", " PROJECT\n", " main\n", - " ee17d0a9de59efd2eb99d667786ac417ec8b3b63\n", + " 6baa64548d67a5bcf0a7f1422dfc8d45ed229aed\n", " git@github.com:fmind/mlops-python-package\n", " git@github.com:fmind/mlops-python-package\n", " Inference\n", @@ -328,29 +325,28 @@ " NaN\n", " NaN\n", " NaN\n", - " NaN\n", " \n", " \n", " 3\n", " file:///home/fmind/mlops-python-package/mlruns...\n", - " 2024-07-21 15:30:56.969\n", - " 598443335336095652\n", + " 2024-12-09 21:26:06.933\n", + " 892046783494697990\n", " active\n", - " d538cc2f3f644b6e97b611c1d96801ac\n", + " b92f959ab1564eb897e2f66f7089f573\n", " Promotion\n", - " d538cc2f3f644b6e97b611c1d96801ac\n", - " 2024-07-21 15:30:51.594\n", + " b92f959ab1564eb897e2f66f7089f573\n", + " 2024-12-09 21:26:03.382\n", " FINISHED\n", " fmind\n", " {}\n", " {'conf_file': 'confs/promotion.yaml'}\n", " {'mlflow.user': 'fmind', 'mlflow.source.name':...\n", - " 5.375\n", + " 3.551\n", " fmind\n", " file:///home/fmind/mlops-python-package\n", " PROJECT\n", " main\n", - " ee17d0a9de59efd2eb99d667786ac417ec8b3b63\n", + " 6baa64548d67a5bcf0a7f1422dfc8d45ed229aed\n", " git@github.com:fmind/mlops-python-package\n", " git@github.com:fmind/mlops-python-package\n", " Promotion\n", @@ -361,38 +357,36 @@ " NaN\n", " NaN\n", " NaN\n", - " NaN\n", " \n", " \n", " 4\n", " file:///home/fmind/mlops-python-package/mlruns...\n", - " 2024-07-21 15:30:46.302\n", - " 598443335336095652\n", + " 2024-12-09 21:26:01.071\n", + " 892046783494697990\n", " active\n", - " a75ea3e9742c48fd9c34a5b8abf9bd89\n", + " fc31f5b645204fdd9ef58fbbc0c105eb\n", " Training\n", - " a75ea3e9742c48fd9c34a5b8abf9bd89\n", - " 2024-07-21 15:29:25.495\n", + " fc31f5b645204fdd9ef58fbbc0c105eb\n", + " 2024-12-09 21:25:39.001\n", " FINISHED\n", " fmind\n", " {'training_mean_squared_error': 124.5105461557...\n", " {'conf_file': 'confs/training.yaml', 'memory':...\n", " {'mlflow.user': 'fmind', 'mlflow.source.name':...\n", - " 80.807\n", + " 22.070\n", " fmind\n", " file:///home/fmind/mlops-python-package\n", " PROJECT\n", " main\n", - " ee17d0a9de59efd2eb99d667786ac417ec8b3b63\n", + " 6baa64548d67a5bcf0a7f1422dfc8d45ed229aed\n", " git@github.com:fmind/mlops-python-package\n", " git@github.com:fmind/mlops-python-package\n", " Training\n", " virtualenv\n", " local\n", - " NaN\n", " Pipeline\n", " sklearn.pipeline.Pipeline\n", - " [{\"run_id\": \"a75ea3e9742c48fd9c34a5b8abf9bd89\"...\n", + " [{\"run_id\": \"fc31f5b645204fdd9ef58fbbc0c105eb\"...\n", " NaN\n", " NaN\n", " \n", @@ -402,25 +396,25 @@ ], "text/plain": [ " artifact_uri end_time \\\n", - "0 file:///home/fmind/mlops-python-package/mlruns... 2024-07-21 15:31:53.829 \n", - "1 file:///home/fmind/mlops-python-package/mlruns... 2024-07-21 15:31:13.361 \n", - "2 file:///home/fmind/mlops-python-package/mlruns... 2024-07-21 15:31:04.758 \n", - "3 file:///home/fmind/mlops-python-package/mlruns... 2024-07-21 15:30:56.969 \n", - "4 file:///home/fmind/mlops-python-package/mlruns... 2024-07-21 15:30:46.302 \n", + "0 file:///home/fmind/mlops-python-package/mlruns... 2024-12-09 21:26:50.094 \n", + "1 file:///home/fmind/mlops-python-package/mlruns... 2024-12-09 21:26:18.061 \n", + "2 file:///home/fmind/mlops-python-package/mlruns... 2024-12-09 21:26:12.215 \n", + "3 file:///home/fmind/mlops-python-package/mlruns... 2024-12-09 21:26:06.933 \n", + "4 file:///home/fmind/mlops-python-package/mlruns... 2024-12-09 21:26:01.071 \n", "\n", " experiment_id lifecycle_stage run_id \\\n", - "0 598443335336095652 active 4df1e5931159491c963f2252add508cd \n", - "1 598443335336095652 active e993a53ee04e4357bad5cec101ab4031 \n", - "2 598443335336095652 active c17b893e525b44ed89e349421e72510a \n", - "3 598443335336095652 active d538cc2f3f644b6e97b611c1d96801ac \n", - "4 598443335336095652 active a75ea3e9742c48fd9c34a5b8abf9bd89 \n", + "0 892046783494697990 active c21b823a68ba42b2b1ff98b2ae73c424 \n", + "1 892046783494697990 active 9da0f31e36a9413eaab18149ace82c78 \n", + "2 892046783494697990 active 8316d6855d17401b8358e88a48c159f0 \n", + "3 892046783494697990 active b92f959ab1564eb897e2f66f7089f573 \n", + "4 892046783494697990 active fc31f5b645204fdd9ef58fbbc0c105eb \n", "\n", " run_name run_uuid start_time \\\n", - "0 Explanations 4df1e5931159491c963f2252add508cd 2024-07-21 15:31:20.207 \n", - "1 Evaluations e993a53ee04e4357bad5cec101ab4031 2024-07-21 15:31:07.565 \n", - "2 Inference c17b893e525b44ed89e349421e72510a 2024-07-21 15:30:59.023 \n", - "3 Promotion d538cc2f3f644b6e97b611c1d96801ac 2024-07-21 15:30:51.594 \n", - "4 Training a75ea3e9742c48fd9c34a5b8abf9bd89 2024-07-21 15:29:25.495 \n", + "0 Explanations c21b823a68ba42b2b1ff98b2ae73c424 2024-12-09 21:26:19.324 \n", + "1 Evaluations 9da0f31e36a9413eaab18149ace82c78 2024-12-09 21:26:13.489 \n", + "2 Inference 8316d6855d17401b8358e88a48c159f0 2024-12-09 21:26:08.210 \n", + "3 Promotion b92f959ab1564eb897e2f66f7089f573 2024-12-09 21:26:03.382 \n", + "4 Training fc31f5b645204fdd9ef58fbbc0c105eb 2024-12-09 21:25:39.001 \n", "\n", " status user_id metrics \\\n", "0 FINISHED fmind {} \n", @@ -437,11 +431,11 @@ "4 {'conf_file': 'confs/training.yaml', 'memory':... \n", "\n", " tags run_time_secs \\\n", - "0 {'mlflow.user': 'fmind', 'mlflow.source.name':... 33.622 \n", - "1 {'mlflow.user': 'fmind', 'mlflow.source.name':... 5.796 \n", - "2 {'mlflow.user': 'fmind', 'mlflow.source.name':... 5.735 \n", - "3 {'mlflow.user': 'fmind', 'mlflow.source.name':... 5.375 \n", - "4 {'mlflow.user': 'fmind', 'mlflow.source.name':... 80.807 \n", + "0 {'mlflow.user': 'fmind', 'mlflow.source.name':... 30.770 \n", + "1 {'mlflow.user': 'fmind', 'mlflow.source.name':... 4.572 \n", + "2 {'mlflow.user': 'fmind', 'mlflow.source.name':... 4.005 \n", + "3 {'mlflow.user': 'fmind', 'mlflow.source.name':... 3.551 \n", + "4 {'mlflow.user': 'fmind', 'mlflow.source.name':... 22.070 \n", "\n", " mlflow.user mlflow.source.name mlflow.source.type \\\n", "0 fmind file:///home/fmind/mlops-python-package PROJECT \n", @@ -451,11 +445,11 @@ "4 fmind file:///home/fmind/mlops-python-package PROJECT \n", "\n", " mlflow.project.entryPoint mlflow.source.git.commit \\\n", - "0 main ee17d0a9de59efd2eb99d667786ac417ec8b3b63 \n", - "1 main ee17d0a9de59efd2eb99d667786ac417ec8b3b63 \n", - "2 main ee17d0a9de59efd2eb99d667786ac417ec8b3b63 \n", - "3 main ee17d0a9de59efd2eb99d667786ac417ec8b3b63 \n", - "4 main ee17d0a9de59efd2eb99d667786ac417ec8b3b63 \n", + "0 main 6baa64548d67a5bcf0a7f1422dfc8d45ed229aed \n", + "1 main 6baa64548d67a5bcf0a7f1422dfc8d45ed229aed \n", + "2 main 6baa64548d67a5bcf0a7f1422dfc8d45ed229aed \n", + "3 main 6baa64548d67a5bcf0a7f1422dfc8d45ed229aed \n", + "4 main 6baa64548d67a5bcf0a7f1422dfc8d45ed229aed \n", "\n", " mlflow.source.git.repoURL \\\n", "0 git@github.com:fmind/mlops-python-package \n", @@ -471,19 +465,12 @@ "3 git@github.com:fmind/mlops-python-package Promotion \n", "4 git@github.com:fmind/mlops-python-package Training \n", "\n", - " mlflow.project.env mlflow.project.backend \\\n", - "0 virtualenv local \n", - "1 virtualenv local \n", - "2 virtualenv local \n", - "3 virtualenv local \n", - "4 virtualenv local \n", - "\n", - " mlflow.datasets estimator_name \\\n", - "0 NaN NaN \n", - "1 [{\"name\":\"ce0fe6e33c74e2fa3659d51482be5f27\",\"h... NaN \n", - "2 NaN NaN \n", - "3 NaN NaN \n", - "4 NaN Pipeline \n", + " mlflow.project.env mlflow.project.backend estimator_name \\\n", + "0 virtualenv local NaN \n", + "1 virtualenv local NaN \n", + "2 virtualenv local NaN \n", + "3 virtualenv local NaN \n", + "4 virtualenv local Pipeline \n", "\n", " estimator_class \\\n", "0 NaN \n", @@ -497,7 +484,7 @@ "1 NaN NaN \n", "2 NaN NaN \n", "3 NaN NaN \n", - "4 [{\"run_id\": \"a75ea3e9742c48fd9c34a5b8abf9bd89\"... NaN \n", + "4 [{\"run_id\": \"fc31f5b645204fdd9ef58fbbc0c105eb\"... NaN \n", "\n", " mlflow.parentRunId \n", "0 NaN \n", @@ -523,9 +510,11 @@ "runs = pd.DataFrame(runs).assign(\n", " end_time=lambda data: pd.to_datetime(data[\"end_time\"], unit=\"ms\"),\n", " start_time=lambda data: pd.to_datetime(data[\"start_time\"], unit=\"ms\"),\n", - " run_time_secs=lambda data: (data['end_time'] - data['start_time']).map(lambda t: t.total_seconds()),\n", + " run_time_secs=lambda data: (data[\"end_time\"] - data[\"start_time\"]).map(\n", + " lambda t: t.total_seconds()\n", + " ),\n", ")\n", - "runs = pd.concat([runs, pd.json_normalize(runs['tags'])], axis=\"columns\")\n", + "runs = pd.concat([runs, pd.json_normalize(runs[\"tags\"])], axis=\"columns\")\n", "print(runs.shape)\n", "runs.head()" ] @@ -574,10 +563,10 @@ " \n", " \n", " 0\n", - " {'Champion': '2'}\n", - " 2024-07-21 15:03:06.208\n", + " {'Champion': '3'}\n", + " 2024-12-09 19:33:09.416\n", " \n", - " 2024-07-21 15:30:56.443\n", + " 2024-12-09 21:26:06.439\n", " bikes\n", " {}\n", " \n", @@ -587,10 +576,10 @@ ], "text/plain": [ " aliases creation_timestamp description \\\n", - "0 {'Champion': '2'} 2024-07-21 15:03:06.208 \n", + "0 {'Champion': '3'} 2024-12-09 19:33:09.416 \n", "\n", " last_updated_timestamp name tags \n", - "0 2024-07-21 15:30:56.443 bikes {} " + "0 2024-12-09 21:26:06.439 bikes {} " ] }, "execution_count": 7, @@ -603,10 +592,16 @@ " max_results=MAX_RESULTS, order_by=[\"creation_timestamp DESC\"]\n", ")\n", "models = [dict(model) for model in models]\n", - "models = pd.DataFrame(models).assign(\n", - " creation_timestamp=lambda data: pd.to_datetime(data[\"creation_timestamp\"], unit=\"ms\"),\n", - " last_updated_timestamp=lambda data: pd.to_datetime(data[\"last_updated_timestamp\"], unit=\"ms\"),\n", - ").drop(columns=['latest_versions'])\n", + "models = (\n", + " pd.DataFrame(models)\n", + " .assign(\n", + " creation_timestamp=lambda data: pd.to_datetime(data[\"creation_timestamp\"], unit=\"ms\"),\n", + " last_updated_timestamp=lambda data: pd.to_datetime(\n", + " data[\"last_updated_timestamp\"], unit=\"ms\"\n", + " ),\n", + " )\n", + " .drop(columns=[\"latest_versions\"])\n", + ")\n", "print(models.shape)\n", "models" ] @@ -620,7 +615,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "(2, 14)\n" + "(3, 14)\n" ] }, { @@ -664,29 +659,46 @@ " \n", " 0\n", " Champion\n", - " 2024-07-21 15:30:44.679\n", + " 2024-12-09 21:25:59.981\n", " None\n", " \n", - " 2024-07-21 15:30:44.679\n", + " 2024-12-09 21:25:59.981\n", " bikes\n", - " a75ea3e9742c48fd9c34a5b8abf9bd89\n", + " fc31f5b645204fdd9ef58fbbc0c105eb\n", " \n", " file:///home/fmind/mlops-python-package/mlruns...\n", " READY\n", " \n", " {}\n", " \n", - " 2\n", + " 3\n", " \n", " \n", " 1\n", " None\n", - " 2024-07-21 15:03:06.212\n", + " 2024-12-09 20:15:47.252\n", + " None\n", + " \n", + " 2024-12-09 20:15:47.252\n", + " bikes\n", + " abad34d51a2a4cffa328136540b455c0\n", + " \n", + " file:///home/fmind/mlops-python-package/mlruns...\n", + " READY\n", + " \n", + " {}\n", + " \n", + " 2\n", + " \n", + " \n", + " 2\n", + " None\n", + " 2024-12-09 19:33:09.426\n", " None\n", " \n", - " 2024-07-21 15:03:06.212\n", + " 2024-12-09 19:33:09.426\n", " bikes\n", - " 47302e957d8542198a281aad07b2413b\n", + " ca4c7550ad354be9a2f10f7eade8d47e\n", " \n", " file:///home/fmind/mlops-python-package/mlruns...\n", " READY\n", @@ -701,20 +713,24 @@ ], "text/plain": [ " aliases creation_timestamp current_stage description \\\n", - "0 Champion 2024-07-21 15:30:44.679 None \n", - "1 None 2024-07-21 15:03:06.212 None \n", + "0 Champion 2024-12-09 21:25:59.981 None \n", + "1 None 2024-12-09 20:15:47.252 None \n", + "2 None 2024-12-09 19:33:09.426 None \n", "\n", " last_updated_timestamp name run_id run_link \\\n", - "0 2024-07-21 15:30:44.679 bikes a75ea3e9742c48fd9c34a5b8abf9bd89 \n", - "1 2024-07-21 15:03:06.212 bikes 47302e957d8542198a281aad07b2413b \n", + "0 2024-12-09 21:25:59.981 bikes fc31f5b645204fdd9ef58fbbc0c105eb \n", + "1 2024-12-09 20:15:47.252 bikes abad34d51a2a4cffa328136540b455c0 \n", + "2 2024-12-09 19:33:09.426 bikes ca4c7550ad354be9a2f10f7eade8d47e \n", "\n", " source status status_message \\\n", "0 file:///home/fmind/mlops-python-package/mlruns... READY \n", "1 file:///home/fmind/mlops-python-package/mlruns... READY \n", + "2 file:///home/fmind/mlops-python-package/mlruns... READY \n", "\n", " tags user_id version \n", - "0 {} 2 \n", - "1 {} 1 " + "0 {} 3 \n", + "1 {} 2 \n", + "2 {} 1 " ] }, "execution_count": 8, @@ -728,7 +744,7 @@ ")\n", "versions = [dict(version) for version in versions]\n", "versions = pd.DataFrame(versions).assign(\n", - " aliases=lambda data: data['aliases'].map(lambda x: x[0] if len(x) else None),\n", + " aliases=lambda data: data[\"aliases\"].map(lambda x: x[0] if len(x) else None),\n", " creation_timestamp=lambda data: pd.to_datetime(data[\"creation_timestamp\"], unit=\"ms\"),\n", " last_updated_timestamp=lambda data: pd.to_datetime(data[\"last_updated_timestamp\"], unit=\"ms\"),\n", ")\n", @@ -760,9 +776,9 @@ "boxpoints": "all", "customdata": [ [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652", - "598443335336095652", - "2024-07-21T15:02:02.224000", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990", + "892046783494697990", + "2024-12-09T19:31:02.967000", "active", "bikes", {} @@ -788,7 +804,7 @@ "showlegend": true, "type": "box", "x": [ - "2024-07-21T15:02:02.224000" + "2024-12-09T19:31:02.967000" ], "x0": " ", "xaxis": "x", @@ -1676,10 +1692,10 @@ "customdata": [ [ { - "Champion": "2" + "Champion": "3" }, "", - "2024-07-21T15:30:56.443000", + "2024-12-09T21:26:06.439000", "bikes", {} ] @@ -1704,7 +1720,7 @@ "showlegend": false, "type": "box", "x": [ - "2024-07-21T15:03:06.208000" + "2024-12-09T19:33:09.416000" ], "x0": " ", "xaxis": "x", @@ -2588,10 +2604,10 @@ "customdata": [ [ { - "Champion": "2" + "Champion": "3" }, "", - "2024-07-21T15:30:56.443000", + "2024-12-09T21:26:06.439000", "bikes", {} ] @@ -2616,7 +2632,7 @@ "showlegend": false, "type": "box", "x": [ - "2024-07-21T15:03:06.208000" + "2024-12-09T19:33:09.416000" ], "x0": " ", "xaxis": "x", @@ -3502,11 +3518,26 @@ "Champion", "None", "", - "2024-07-21T15:30:44.679000", + "2024-12-09T21:25:59.981000", + "bikes", + "fc31f5b645204fdd9ef58fbbc0c105eb", + "", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/fc31f5b645204fdd9ef58fbbc0c105eb/artifacts/model", + "READY", + "", + {}, + "", + "3" + ], + [ + null, + "None", + "", + "2024-12-09T20:15:47.252000", "bikes", - "a75ea3e9742c48fd9c34a5b8abf9bd89", + "abad34d51a2a4cffa328136540b455c0", "", - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/a75ea3e9742c48fd9c34a5b8abf9bd89/artifacts/model", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/abad34d51a2a4cffa328136540b455c0/artifacts/model", "READY", "", {}, @@ -3517,11 +3548,11 @@ null, "None", "", - "2024-07-21T15:03:06.212000", + "2024-12-09T19:33:09.426000", "bikes", - "47302e957d8542198a281aad07b2413b", + "ca4c7550ad354be9a2f10f7eade8d47e", "", - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/47302e957d8542198a281aad07b2413b/artifacts/model", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/ca4c7550ad354be9a2f10f7eade8d47e/artifacts/model", "READY", "", {}, @@ -3533,6 +3564,7 @@ "hoveron": "points", "hovertemplate": "%{hovertext}

name=%{customdata[4]}
creation_timestamp=%{x}
aliases=%{customdata[0]}
current_stage=%{customdata[1]}
description=%{customdata[2]}
last_updated_timestamp=%{customdata[3]}
run_id=%{customdata[5]}
run_link=%{customdata[6]}
source=%{customdata[7]}
status=%{customdata[8]}
status_message=%{customdata[9]}
tags=%{customdata[10]}
user_id=%{customdata[11]}
version=%{customdata[12]}", "hovertext": [ + "bikes", "bikes", "bikes" ], @@ -3550,8 +3582,9 @@ "showlegend": true, "type": "box", "x": [ - "2024-07-21T15:30:44.679000", - "2024-07-21T15:03:06.212000" + "2024-12-09T21:25:59.981000", + "2024-12-09T20:15:47.252000", + "2024-12-09T19:33:09.426000" ], "x0": " ", "xaxis": "x", @@ -4438,13 +4471,13 @@ "boxpoints": "all", "customdata": [ [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/4df1e5931159491c963f2252add508cd/artifacts", - "2024-07-21T15:31:53.829000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/c21b823a68ba42b2b1ff98b2ae73c424/artifacts", + "2024-12-09T21:26:50.094000", + "892046783494697990", "active", - "4df1e5931159491c963f2252add508cd", + "c21b823a68ba42b2b1ff98b2ae73c424", "Explanations", - "4df1e5931159491c963f2252add508cd", + "c21b823a68ba42b2b1ff98b2ae73c424", "FINISHED", "fmind", {}, @@ -4457,18 +4490,18 @@ "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Explanations", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", "mlflow.user": "fmind" }, - 33.622, + 30.77, "fmind", "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Explanations", @@ -4478,17 +4511,16 @@ null, null, null, - null, null ], [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/e993a53ee04e4357bad5cec101ab4031/artifacts", - "2024-07-21T15:31:13.361000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/9da0f31e36a9413eaab18149ace82c78/artifacts", + "2024-12-09T21:26:18.061000", + "892046783494697990", "active", - "e993a53ee04e4357bad5cec101ab4031", + "9da0f31e36a9413eaab18149ace82c78", "Evaluations", - "e993a53ee04e4357bad5cec101ab4031", + "9da0f31e36a9413eaab18149ace82c78", "FINISHED", "fmind", { @@ -4506,30 +4538,28 @@ "conf_file": "confs/evaluations.yaml" }, { - "mlflow.datasets": "[{\"name\":\"ce0fe6e33c74e2fa3659d51482be5f27\",\"hash\":\"ce0fe6e33c74e2fa3659d51482be5f27\",\"model\":\"06840f30fcdd4553a7aaf17e83232475\"}]", "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", "mlflow.project.backend": "local", "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Evaluations", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", "mlflow.user": "fmind" }, - 5.796, + 4.572, "fmind", "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Evaluations", "virtualenv", "local", - "[{\"name\":\"ce0fe6e33c74e2fa3659d51482be5f27\",\"hash\":\"ce0fe6e33c74e2fa3659d51482be5f27\",\"model\":\"06840f30fcdd4553a7aaf17e83232475\"}]", null, null, null, @@ -4537,13 +4567,13 @@ null ], [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/c17b893e525b44ed89e349421e72510a/artifacts", - "2024-07-21T15:31:04.758000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/8316d6855d17401b8358e88a48c159f0/artifacts", + "2024-12-09T21:26:12.215000", + "892046783494697990", "active", - "c17b893e525b44ed89e349421e72510a", + "8316d6855d17401b8358e88a48c159f0", "Inference", - "c17b893e525b44ed89e349421e72510a", + "8316d6855d17401b8358e88a48c159f0", "FINISHED", "fmind", {}, @@ -4556,18 +4586,18 @@ "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Inference", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", "mlflow.user": "fmind" }, - 5.735, + 4.005, "fmind", "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Inference", @@ -4577,17 +4607,16 @@ null, null, null, - null, null ], [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/d538cc2f3f644b6e97b611c1d96801ac/artifacts", - "2024-07-21T15:30:56.969000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/b92f959ab1564eb897e2f66f7089f573/artifacts", + "2024-12-09T21:26:06.933000", + "892046783494697990", "active", - "d538cc2f3f644b6e97b611c1d96801ac", + "b92f959ab1564eb897e2f66f7089f573", "Promotion", - "d538cc2f3f644b6e97b611c1d96801ac", + "b92f959ab1564eb897e2f66f7089f573", "FINISHED", "fmind", {}, @@ -4600,18 +4629,18 @@ "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Promotion", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", "mlflow.user": "fmind" }, - 5.375, + 3.551, "fmind", "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Promotion", @@ -4621,29 +4650,28 @@ null, null, null, - null, null ], [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/a75ea3e9742c48fd9c34a5b8abf9bd89/artifacts", - "2024-07-21T15:30:46.302000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/fc31f5b645204fdd9ef58fbbc0c105eb/artifacts", + "2024-12-09T21:26:01.071000", + "892046783494697990", "active", - "a75ea3e9742c48fd9c34a5b8abf9bd89", + "fc31f5b645204fdd9ef58fbbc0c105eb", "Training", - "a75ea3e9742c48fd9c34a5b8abf9bd89", + "fc31f5b645204fdd9ef58fbbc0c105eb", "FINISHED", "fmind", { - "mean_squared_error": -1786.7527777777777, - "system/cpu_utilization_percentage": 38.1, - "system/disk_available_megabytes": 32585.5, - "system/disk_usage_megabytes": 73526.3, - "system/disk_usage_percentage": 69.3, - "system/network_receive_megabytes": 0.02063199999997778, - "system/network_transmit_megabytes": 0.00015000000007603376, - "system/system_memory_usage_megabytes": 10535.7, - "system/system_memory_usage_percentage": 69.8, + "mean_squared_error": -1786.7527777777775, + "system/cpu_utilization_percentage": 25, + "system/disk_available_megabytes": 11550.6, + "system/disk_usage_megabytes": 104367.7, + "system/disk_usage_percentage": 90, + "system/network_receive_megabytes": 0, + "system/network_transmit_megabytes": 0, + "system/system_memory_usage_megabytes": 6226.8, + "system/system_memory_usage_percentage": 41.3, "training_mean_absolute_error": 6.8051192198812736, "training_mean_squared_error": 124.51054615575788, "training_r2_score": 0.9948851411922456, @@ -4683,6 +4711,7 @@ "transformer__categoricals__max_categories": "None", "transformer__categoricals__min_frequency": "None", "transformer__categoricals__sparse_output": "False", + "transformer__force_int_remainder_cols": "True", "transformer__n_jobs": "None", "transformer__numericals": "passthrough", "transformer__remainder": "drop", @@ -4697,121 +4726,51 @@ "estimator_class": "sklearn.pipeline.Pipeline", "estimator_name": "Pipeline", "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", - "mlflow.log-model.history": "[{\"run_id\": \"a75ea3e9742c48fd9c34a5b8abf9bd89\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-07-21 15:30:23.365959\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.4\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.4.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}, \"model_uuid\": \"ade01433a8a54ec298de322ba009fa10\", \"mlflow_version\": \"2.14.3\", \"signature\": {\"inputs\": \"[{\\\"type\\\": \\\"datetime\\\", \\\"name\\\": \\\"dteday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"season\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"yr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"mnth\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"hr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"holiday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weekday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"workingday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weathersit\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"temp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"atemp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"hum\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"windspeed\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"casual\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"registered\\\", \\\"required\\\": true}]\", \"outputs\": \"[{\\\"type\\\": \\\"tensor\\\", \\\"tensor-spec\\\": {\\\"dtype\\\": \\\"float64\\\", \\\"shape\\\": [-1]}}]\", \"params\": null}, \"saved_input_example_info\": {\"artifact_path\": \"input_example.json\", \"type\": \"dataframe\", \"pandas_orient\": \"split\"}, \"model_size_bytes\": 203898413}, {\"run_id\": \"a75ea3e9742c48fd9c34a5b8abf9bd89\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-07-21 15:30:35.571973\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.0.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.4\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}, \"model_uuid\": \"06840f30fcdd4553a7aaf17e83232475\", \"mlflow_version\": \"2.14.3\", \"signature\": {\"inputs\": \"[{\\\"type\\\": \\\"datetime\\\", \\\"name\\\": \\\"dteday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"season\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"yr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"mnth\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"hr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"holiday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weekday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"workingday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weathersit\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"temp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"atemp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"hum\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"windspeed\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"casual\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"registered\\\", \\\"required\\\": true}]\", \"outputs\": \"[{\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"prediction\\\", \\\"required\\\": true}]\", \"params\": null}, \"saved_input_example_info\": {\"artifact_path\": \"input_example.json\", \"type\": \"dataframe\", \"pandas_orient\": \"split\"}, \"model_size_bytes\": 205599260}]", + "mlflow.log-model.history": "[{\"run_id\": \"fc31f5b645204fdd9ef58fbbc0c105eb\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 21:25:50.311693\", \"model_uuid\": \"3479cedd4b164da6929b186ac8a40509\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"fc31f5b645204fdd9ef58fbbc0c105eb\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 21:25:53.843399\", \"model_uuid\": \"0b50f33451c845acae155bf366ecebf5\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.1.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}}]", "mlflow.project.backend": "local", "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Training", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", "mlflow.user": "fmind" }, - 80.807, + 22.07, "fmind", "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Training", "virtualenv", "local", - null, "Pipeline", "sklearn.pipeline.Pipeline", - "[{\"run_id\": \"a75ea3e9742c48fd9c34a5b8abf9bd89\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-07-21 15:30:23.365959\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.4\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.4.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}, \"model_uuid\": \"ade01433a8a54ec298de322ba009fa10\", \"mlflow_version\": \"2.14.3\", \"signature\": {\"inputs\": \"[{\\\"type\\\": \\\"datetime\\\", \\\"name\\\": \\\"dteday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"season\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"yr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"mnth\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"hr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"holiday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weekday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"workingday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weathersit\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"temp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"atemp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"hum\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"windspeed\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"casual\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"registered\\\", \\\"required\\\": true}]\", \"outputs\": \"[{\\\"type\\\": \\\"tensor\\\", \\\"tensor-spec\\\": {\\\"dtype\\\": \\\"float64\\\", \\\"shape\\\": [-1]}}]\", \"params\": null}, \"saved_input_example_info\": {\"artifact_path\": \"input_example.json\", \"type\": \"dataframe\", \"pandas_orient\": \"split\"}, \"model_size_bytes\": 203898413}, {\"run_id\": \"a75ea3e9742c48fd9c34a5b8abf9bd89\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-07-21 15:30:35.571973\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.0.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.4\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}, \"model_uuid\": \"06840f30fcdd4553a7aaf17e83232475\", \"mlflow_version\": \"2.14.3\", \"signature\": {\"inputs\": \"[{\\\"type\\\": \\\"datetime\\\", \\\"name\\\": \\\"dteday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"season\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"yr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"mnth\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"hr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"holiday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weekday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"workingday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weathersit\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"temp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"atemp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"hum\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"windspeed\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"casual\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"registered\\\", \\\"required\\\": true}]\", \"outputs\": \"[{\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"prediction\\\", \\\"required\\\": true}]\", \"params\": null}, \"saved_input_example_info\": {\"artifact_path\": \"input_example.json\", \"type\": \"dataframe\", \"pandas_orient\": \"split\"}, \"model_size_bytes\": 205599260}]", - null, - null - ], - [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/005e2f5532664a7aa7aafaa1509c3575/artifacts", - "2024-07-21T15:29:11.193000", - "598443335336095652", - "active", - "005e2f5532664a7aa7aafaa1509c3575", - "Tuning", - "005e2f5532664a7aa7aafaa1509c3575", - "FINISHED", - "fmind", - { - "best_cv_score": -5517.252604166667, - "system/cpu_utilization_percentage": 47.2, - "system/disk_available_megabytes": 34093.7, - "system/disk_usage_megabytes": 71913, - "system/disk_usage_percentage": 67.8, - "system/network_receive_megabytes": 254.222282, - "system/network_transmit_megabytes": 507.10717, - "system/system_memory_usage_megabytes": 8470.1, - "system/system_memory_usage_percentage": 56.2, - "training_score": -1951.0630079838884 - }, - { - "best_max_depth": "7", - "conf_file": "confs/tuning.yaml", - "cv": "KIND='TimeSeriesSplitter' gap=0 n_splits=4 test_size=1440", - "error_score": "raise", - "estimator": "KIND='BaselineSklearnModel' max_depth=20 n_estimators=200 random_state=42", - "n_jobs": "None", - "param_grid": "{'max_depth': [3, 5, 7]}", - "pre_dispatch": "2*n_jobs", - "refit": "True", - "return_train_score": "False", - "scoring": "", - "verbose": "3" - }, - { - "estimator_class": "sklearn.model_selection._search.GridSearchCV", - "estimator_name": "GridSearchCV", - "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", - "mlflow.log-model.history": "[{\"run_id\": \"005e2f5532664a7aa7aafaa1509c3575\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-07-21 15:28:24.521733\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.4\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.4.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}, \"model_uuid\": \"c800dd5b2d1f49ce98281338d9abbd29\", \"mlflow_version\": \"2.14.3\", \"signature\": {\"inputs\": \"[{\\\"type\\\": \\\"datetime\\\", \\\"name\\\": \\\"dteday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"season\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"yr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"mnth\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"hr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"holiday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weekday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"workingday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weathersit\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"temp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"atemp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"hum\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"windspeed\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"casual\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"registered\\\", \\\"required\\\": true}]\", \"outputs\": \"[{\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"prediction\\\", \\\"required\\\": true}]\", \"params\": null}, \"saved_input_example_info\": {\"artifact_path\": \"input_example.json\", \"type\": \"dataframe\", \"pandas_orient\": \"split\"}, \"model_size_bytes\": 3726525}, {\"run_id\": \"005e2f5532664a7aa7aafaa1509c3575\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-07-21 15:28:50.044236\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.4\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.4.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}, \"model_uuid\": \"acb76eef9e5e4a56aa84e634b7d7444c\", \"mlflow_version\": \"2.14.3\", \"signature\": {\"inputs\": \"[{\\\"type\\\": \\\"datetime\\\", \\\"name\\\": \\\"dteday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"season\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"yr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"mnth\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"hr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"holiday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weekday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"workingday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weathersit\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"temp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"atemp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"hum\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"windspeed\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"casual\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"registered\\\", \\\"required\\\": true}]\", \"outputs\": \"[{\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"prediction\\\", \\\"required\\\": true}]\", \"params\": null}, \"saved_input_example_info\": {\"artifact_path\": \"input_example.json\", \"type\": \"dataframe\", \"pandas_orient\": \"split\"}, \"model_size_bytes\": 3713919}]", - "mlflow.project.backend": "local", - "mlflow.project.entryPoint": "main", - "mlflow.project.env": "virtualenv", - "mlflow.runName": "Tuning", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", - "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", - "mlflow.source.name": "file:///home/fmind/mlops-python-package", - "mlflow.source.type": "PROJECT", - "mlflow.user": "fmind" - }, - 100.111, - "fmind", - "file:///home/fmind/mlops-python-package", - "PROJECT", - "main", - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", - "git@github.com:fmind/mlops-python-package", - "git@github.com:fmind/mlops-python-package", - "Tuning", - "virtualenv", - "local", - null, - "GridSearchCV", - "sklearn.model_selection._search.GridSearchCV", - "[{\"run_id\": \"005e2f5532664a7aa7aafaa1509c3575\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-07-21 15:28:24.521733\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.4\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.4.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}, \"model_uuid\": \"c800dd5b2d1f49ce98281338d9abbd29\", \"mlflow_version\": \"2.14.3\", \"signature\": {\"inputs\": \"[{\\\"type\\\": \\\"datetime\\\", \\\"name\\\": \\\"dteday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"season\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"yr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"mnth\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"hr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"holiday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weekday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"workingday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weathersit\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"temp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"atemp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"hum\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"windspeed\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"casual\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"registered\\\", \\\"required\\\": true}]\", \"outputs\": \"[{\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"prediction\\\", \\\"required\\\": true}]\", \"params\": null}, \"saved_input_example_info\": {\"artifact_path\": \"input_example.json\", \"type\": \"dataframe\", \"pandas_orient\": \"split\"}, \"model_size_bytes\": 3726525}, {\"run_id\": \"005e2f5532664a7aa7aafaa1509c3575\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-07-21 15:28:50.044236\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.4\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.4.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}, \"model_uuid\": \"acb76eef9e5e4a56aa84e634b7d7444c\", \"mlflow_version\": \"2.14.3\", \"signature\": {\"inputs\": \"[{\\\"type\\\": \\\"datetime\\\", \\\"name\\\": \\\"dteday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"season\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"yr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"mnth\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"hr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"holiday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weekday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"workingday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weathersit\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"temp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"atemp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"hum\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"windspeed\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"casual\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"registered\\\", \\\"required\\\": true}]\", \"outputs\": \"[{\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"prediction\\\", \\\"required\\\": true}]\", \"params\": null}, \"saved_input_example_info\": {\"artifact_path\": \"input_example.json\", \"type\": \"dataframe\", \"pandas_orient\": \"split\"}, \"model_size_bytes\": 3713919}]", + "[{\"run_id\": \"fc31f5b645204fdd9ef58fbbc0c105eb\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 21:25:50.311693\", \"model_uuid\": \"3479cedd4b164da6929b186ac8a40509\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"fc31f5b645204fdd9ef58fbbc0c105eb\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 21:25:53.843399\", \"model_uuid\": \"0b50f33451c845acae155bf366ecebf5\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.1.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}}]", null, null ], [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/9867f954f07b448a901844dae9fb8d23/artifacts", - "2024-07-21T15:29:05.256000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/2d2ec19f48a040e4af90b20fdf7e6575/artifacts", + "2024-12-09T21:25:36.982000", + "892046783494697990", "active", - "9867f954f07b448a901844dae9fb8d23", - "rumbling-bass-180", - "9867f954f07b448a901844dae9fb8d23", + "2d2ec19f48a040e4af90b20fdf7e6575", + "angry-dog-423", + "2d2ec19f48a040e4af90b20fdf7e6575", "FINISHED", "fmind", { - "mean_fit_time": 1.2907636165618896, - "mean_score_time": 0.04417002201080322, + "mean_fit_time": 1.0932143330574036, + "mean_score_time": 0.038968682289123535, "mean_test_score": -16644.957118055558, "rank_test_score": 3, - "std_fit_time": 0.20825952588936553, - "std_score_time": 0.005795796359843565, + "std_fit_time": 0.15177696215903197, + "std_score_time": 0.0005394662396354217, "std_test_score": 5315.459715152708 }, { @@ -4823,52 +4782,51 @@ "estimator_class": "bikes.core.models.BaselineSklearnModel", "estimator_name": "BaselineSklearnModel", "mlflow.autologging": "sklearn", - "mlflow.parentRunId": "005e2f5532664a7aa7aafaa1509c3575", - "mlflow.runName": "rumbling-bass-180", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "mlflow.parentRunId": "5ded1a1700cc4e0ea786ed96cc15c410", + "mlflow.runName": "angry-dog-423", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", "mlflow.source.type": "LOCAL", "mlflow.user": "fmind" }, - 94.174, + 33.41, "fmind", "/home/fmind/mlops-python-package/src/bikes/__main__.py", "LOCAL", null, - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", null, null, - "rumbling-bass-180", - null, + "angry-dog-423", null, null, "BaselineSklearnModel", "bikes.core.models.BaselineSklearnModel", null, "sklearn", - "005e2f5532664a7aa7aafaa1509c3575" + "5ded1a1700cc4e0ea786ed96cc15c410" ], [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/9b9c55b6f0874d0eb97963fff97c172c/artifacts", - "2024-07-21T15:29:05.256000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/352518f26eef4fa38bcd37c0e91c9f97/artifacts", + "2024-12-09T21:25:36.982000", + "892046783494697990", "active", - "9b9c55b6f0874d0eb97963fff97c172c", - "redolent-koi-314", - "9b9c55b6f0874d0eb97963fff97c172c", + "352518f26eef4fa38bcd37c0e91c9f97", + "lyrical-snail-804", + "352518f26eef4fa38bcd37c0e91c9f97", "FINISHED", "fmind", { - "mean_fit_time": 1.8935438394546509, - "mean_score_time": 0.04412144422531128, - "mean_test_score": -8287.860416666666, - "rank_test_score": 2, - "std_fit_time": 0.35395270632391435, - "std_score_time": 0.001845193435988503, - "std_test_score": 1045.7595024691313 + "mean_fit_time": 2.202679216861725, + "mean_score_time": 0.041945457458496094, + "mean_test_score": -5517.252604166667, + "rank_test_score": 1, + "std_fit_time": 0.32352226262719747, + "std_score_time": 0.0005519371825696691, + "std_test_score": 1613.520146542553 }, { - "max_depth": "5", + "max_depth": "7", "n_estimators": "200", "random_state": "42" }, @@ -4876,52 +4834,119 @@ "estimator_class": "bikes.core.models.BaselineSklearnModel", "estimator_name": "BaselineSklearnModel", "mlflow.autologging": "sklearn", - "mlflow.parentRunId": "005e2f5532664a7aa7aafaa1509c3575", - "mlflow.runName": "redolent-koi-314", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "mlflow.parentRunId": "5ded1a1700cc4e0ea786ed96cc15c410", + "mlflow.runName": "lyrical-snail-804", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", "mlflow.source.type": "LOCAL", "mlflow.user": "fmind" }, - 94.174, + 33.41, "fmind", "/home/fmind/mlops-python-package/src/bikes/__main__.py", "LOCAL", null, - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", null, null, - "redolent-koi-314", - null, + "lyrical-snail-804", null, null, "BaselineSklearnModel", "bikes.core.models.BaselineSklearnModel", null, "sklearn", - "005e2f5532664a7aa7aafaa1509c3575" + "5ded1a1700cc4e0ea786ed96cc15c410" ], [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/b8cf5f33d9ac429fab195d32a9326725/artifacts", - "2024-07-21T15:29:05.256000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/5ded1a1700cc4e0ea786ed96cc15c410/artifacts", + "2024-12-09T21:25:37.702000", + "892046783494697990", "active", - "b8cf5f33d9ac429fab195d32a9326725", - "languid-eel-151", - "b8cf5f33d9ac429fab195d32a9326725", + "5ded1a1700cc4e0ea786ed96cc15c410", + "Tuning", + "5ded1a1700cc4e0ea786ed96cc15c410", "FINISHED", "fmind", { - "mean_fit_time": 4.7537882924079895, - "mean_score_time": 0.1421765685081482, - "mean_test_score": -5517.252604166667, - "rank_test_score": 1, - "std_fit_time": 3.0094242269462623, - "std_score_time": 0.10171904359731292, - "std_test_score": 1613.520146542553 + "best_cv_score": -5517.252604166667, + "system/cpu_utilization_percentage": 9.7, + "system/disk_available_megabytes": 11550.6, + "system/disk_usage_megabytes": 104367.7, + "system/disk_usage_percentage": 90, + "system/network_receive_megabytes": 0.00699700000041048, + "system/network_transmit_megabytes": 0.007774000000154047, + "system/system_memory_usage_megabytes": 6252.9, + "system/system_memory_usage_percentage": 41.5, + "training_score": -1951.0630079838884 }, { - "max_depth": "7", + "best_max_depth": "7", + "conf_file": "confs/tuning.yaml", + "cv": "KIND='TimeSeriesSplitter' gap=0 n_splits=4 test_size=1440", + "error_score": "raise", + "estimator": "KIND='BaselineSklearnModel' max_depth=20 n_estimators=200 random_state=42", + "n_jobs": "None", + "param_grid": "{'max_depth': [3, 5, 7]}", + "pre_dispatch": "2*n_jobs", + "refit": "True", + "return_train_score": "False", + "scoring": "", + "verbose": "3" + }, + { + "estimator_class": "sklearn.model_selection._search.GridSearchCV", + "estimator_name": "GridSearchCV", + "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.log-model.history": "[{\"run_id\": \"5ded1a1700cc4e0ea786ed96cc15c410\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 21:25:30.717827\", \"model_uuid\": \"aa3b9d7746ac436d86292c4c55d3ce29\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"5ded1a1700cc4e0ea786ed96cc15c410\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-12-09 21:25:34.349513\", \"model_uuid\": \"0406ff5b9abe4e68b91a8c55af172213\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}]", + "mlflow.project.backend": "local", + "mlflow.project.entryPoint": "main", + "mlflow.project.env": "virtualenv", + "mlflow.runName": "Tuning", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.source.name": "file:///home/fmind/mlops-python-package", + "mlflow.source.type": "PROJECT", + "mlflow.user": "fmind" + }, + 34.13, + "fmind", + "file:///home/fmind/mlops-python-package", + "PROJECT", + "main", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "git@github.com:fmind/mlops-python-package", + "git@github.com:fmind/mlops-python-package", + "Tuning", + "virtualenv", + "local", + "GridSearchCV", + "sklearn.model_selection._search.GridSearchCV", + "[{\"run_id\": \"5ded1a1700cc4e0ea786ed96cc15c410\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 21:25:30.717827\", \"model_uuid\": \"aa3b9d7746ac436d86292c4c55d3ce29\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"5ded1a1700cc4e0ea786ed96cc15c410\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-12-09 21:25:34.349513\", \"model_uuid\": \"0406ff5b9abe4e68b91a8c55af172213\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}]", + null, + null + ], + [ + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/eb21e4c57e3047dd9fbace349ddfc701/artifacts", + "2024-12-09T21:25:36.982000", + "892046783494697990", + "active", + "eb21e4c57e3047dd9fbace349ddfc701", + "capable-asp-689", + "eb21e4c57e3047dd9fbace349ddfc701", + "FINISHED", + "fmind", + { + "mean_fit_time": 1.6217315793037417, + "mean_score_time": 0.03804677724838257, + "mean_test_score": -8287.860416666666, + "rank_test_score": 2, + "std_fit_time": 0.19954826138452603, + "std_score_time": 0.00046356596170521295, + "std_test_score": 1045.7595024691311 + }, + { + "max_depth": "5", "n_estimators": "200", "random_state": "42" }, @@ -4929,39 +4954,38 @@ "estimator_class": "bikes.core.models.BaselineSklearnModel", "estimator_name": "BaselineSklearnModel", "mlflow.autologging": "sklearn", - "mlflow.parentRunId": "005e2f5532664a7aa7aafaa1509c3575", - "mlflow.runName": "languid-eel-151", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "mlflow.parentRunId": "5ded1a1700cc4e0ea786ed96cc15c410", + "mlflow.runName": "capable-asp-689", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", "mlflow.source.type": "LOCAL", "mlflow.user": "fmind" }, - 94.174, + 33.41, "fmind", "/home/fmind/mlops-python-package/src/bikes/__main__.py", "LOCAL", null, - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", null, null, - "languid-eel-151", - null, + "capable-asp-689", null, null, "BaselineSklearnModel", "bikes.core.models.BaselineSklearnModel", null, "sklearn", - "005e2f5532664a7aa7aafaa1509c3575" + "5ded1a1700cc4e0ea786ed96cc15c410" ], [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/5936b0cb0d9b47b2a1862344a79e55e7/artifacts", - "2024-07-21T15:04:07.438000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/f71527e645d24f579e571b6573912f32/artifacts", + "2024-12-09T20:16:43.066000", + "892046783494697990", "active", - "5936b0cb0d9b47b2a1862344a79e55e7", + "f71527e645d24f579e571b6573912f32", "Explanations", - "5936b0cb0d9b47b2a1862344a79e55e7", + "f71527e645d24f579e571b6573912f32", "FINISHED", "fmind", {}, @@ -4974,18 +4998,18 @@ "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Explanations", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", "mlflow.user": "fmind" }, - 39.107, + 33.233, "fmind", "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Explanations", @@ -4995,17 +5019,16 @@ null, null, null, - null, null ], [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/ef5b224b3f4e4dbcb05169cfc4f358f7/artifacts", - "2024-07-21T15:03:25.782000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/f2823c6d05a545b793545d85b230d467/artifacts", + "2024-12-09T20:16:08.336000", + "892046783494697990", "active", - "ef5b224b3f4e4dbcb05169cfc4f358f7", + "f2823c6d05a545b793545d85b230d467", "Evaluations", - "ef5b224b3f4e4dbcb05169cfc4f358f7", + "f2823c6d05a545b793545d85b230d467", "FINISHED", "fmind", { @@ -5023,30 +5046,28 @@ "conf_file": "confs/evaluations.yaml" }, { - "mlflow.datasets": "[{\"name\":\"ce0fe6e33c74e2fa3659d51482be5f27\",\"hash\":\"ce0fe6e33c74e2fa3659d51482be5f27\",\"model\":\"c18c304506ec438c9937a5804b4e19bc\"}]", "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", "mlflow.project.backend": "local", "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Evaluations", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", "mlflow.user": "fmind" }, - 6.145, + 5.407, "fmind", "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Evaluations", "virtualenv", "local", - "[{\"name\":\"ce0fe6e33c74e2fa3659d51482be5f27\",\"hash\":\"ce0fe6e33c74e2fa3659d51482be5f27\",\"model\":\"c18c304506ec438c9937a5804b4e19bc\"}]", null, null, null, @@ -5054,13 +5075,13 @@ null ], [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/65f34c799e814cfe82d844b0eff6a16f/artifacts", - "2024-07-21T15:03:18.035000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/d40bfd6d238b4e999a8b9eac47f9932a/artifacts", + "2024-12-09T20:16:01.543000", + "892046783494697990", "active", - "65f34c799e814cfe82d844b0eff6a16f", + "d40bfd6d238b4e999a8b9eac47f9932a", "Inference", - "65f34c799e814cfe82d844b0eff6a16f", + "d40bfd6d238b4e999a8b9eac47f9932a", "FINISHED", "fmind", {}, @@ -5073,18 +5094,18 @@ "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Inference", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", "mlflow.user": "fmind" }, - 4.182, + 4.655, "fmind", "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Inference", @@ -5094,17 +5115,16 @@ null, null, null, - null, null ], [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/a5dbcb3fc6a24fdc863fb31eb0fc4d7a/artifacts", - "2024-07-21T15:03:12.321000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/0a425df1a36947cc912cc0abdc4c9fe1/artifacts", + "2024-12-09T20:15:55.295000", + "892046783494697990", "active", - "a5dbcb3fc6a24fdc863fb31eb0fc4d7a", + "0a425df1a36947cc912cc0abdc4c9fe1", "Promotion", - "a5dbcb3fc6a24fdc863fb31eb0fc4d7a", + "0a425df1a36947cc912cc0abdc4c9fe1", "FINISHED", "fmind", {}, @@ -5117,18 +5137,18 @@ "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Promotion", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", "mlflow.user": "fmind" }, - 3.31, + 4.463, "fmind", "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Promotion", @@ -5138,29 +5158,28 @@ null, null, null, - null, null ], [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/47302e957d8542198a281aad07b2413b/artifacts", - "2024-07-21T15:03:07.098000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/abad34d51a2a4cffa328136540b455c0/artifacts", + "2024-12-09T20:15:48.530000", + "892046783494697990", "active", - "47302e957d8542198a281aad07b2413b", + "abad34d51a2a4cffa328136540b455c0", "Training", - "47302e957d8542198a281aad07b2413b", + "abad34d51a2a4cffa328136540b455c0", "FINISHED", "fmind", { - "mean_squared_error": -1786.7527777777777, - "system/cpu_utilization_percentage": 15.6, - "system/disk_available_megabytes": 35139.3, - "system/disk_usage_megabytes": 70848.1, - "system/disk_usage_percentage": 66.8, - "system/network_receive_megabytes": 0.001855000000034579, - "system/network_transmit_megabytes": 0.003730000000018663, - "system/system_memory_usage_megabytes": 4143.6, - "system/system_memory_usage_percentage": 27.5, + "mean_squared_error": -1786.7527777777775, + "system/cpu_utilization_percentage": 8, + "system/disk_available_megabytes": 11976.9, + "system/disk_usage_megabytes": 103931.2, + "system/disk_usage_percentage": 89.7, + "system/network_receive_megabytes": 0.0021689999994123355, + "system/network_transmit_megabytes": 0.002279000000044107, + "system/system_memory_usage_megabytes": 5892.8, + "system/system_memory_usage_percentage": 39.1, "training_mean_absolute_error": 6.8051192198812736, "training_mean_squared_error": 124.51054615575788, "training_r2_score": 0.9948851411922456, @@ -5200,6 +5219,7 @@ "transformer__categoricals__max_categories": "None", "transformer__categoricals__min_frequency": "None", "transformer__categoricals__sparse_output": "False", + "transformer__force_int_remainder_cols": "True", "transformer__n_jobs": "None", "transformer__numericals": "passthrough", "transformer__remainder": "drop", @@ -5214,55 +5234,158 @@ "estimator_class": "sklearn.pipeline.Pipeline", "estimator_name": "Pipeline", "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", - "mlflow.log-model.history": "[{\"run_id\": \"47302e957d8542198a281aad07b2413b\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-07-21 15:02:54.863113\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.4\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.4.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}, \"model_uuid\": \"4fd09447dee548f586e05d2edbfbe2d8\", \"mlflow_version\": \"2.14.3\", \"signature\": {\"inputs\": \"[{\\\"type\\\": \\\"datetime\\\", \\\"name\\\": \\\"dteday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"season\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"yr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"mnth\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"hr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"holiday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weekday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"workingday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weathersit\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"temp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"atemp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"hum\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"windspeed\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"casual\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"registered\\\", \\\"required\\\": true}]\", \"outputs\": \"[{\\\"type\\\": \\\"tensor\\\", \\\"tensor-spec\\\": {\\\"dtype\\\": \\\"float64\\\", \\\"shape\\\": [-1]}}]\", \"params\": null}, \"saved_input_example_info\": {\"artifact_path\": \"input_example.json\", \"type\": \"dataframe\", \"pandas_orient\": \"split\"}, \"model_size_bytes\": 203898413}, {\"run_id\": \"47302e957d8542198a281aad07b2413b\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-07-21 15:02:59.278448\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.0.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.4\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}, \"model_uuid\": \"c18c304506ec438c9937a5804b4e19bc\", \"mlflow_version\": \"2.14.3\", \"signature\": {\"inputs\": \"[{\\\"type\\\": \\\"datetime\\\", \\\"name\\\": \\\"dteday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"season\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"yr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"mnth\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"hr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"holiday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weekday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"workingday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weathersit\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"temp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"atemp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"hum\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"windspeed\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"casual\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"registered\\\", \\\"required\\\": true}]\", \"outputs\": \"[{\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"prediction\\\", \\\"required\\\": true}]\", \"params\": null}, \"saved_input_example_info\": {\"artifact_path\": \"input_example.json\", \"type\": \"dataframe\", \"pandas_orient\": \"split\"}, \"model_size_bytes\": 205599260}]", + "mlflow.log-model.history": "[{\"run_id\": \"abad34d51a2a4cffa328136540b455c0\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 20:15:36.204115\", \"model_uuid\": \"fe2207a51a9e4044908492f3b08b501a\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"abad34d51a2a4cffa328136540b455c0\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 20:15:40.634927\", \"model_uuid\": \"f44319bad67247bfbb342d00bb00963e\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.1.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}}]", "mlflow.project.backend": "local", "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Training", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", "mlflow.user": "fmind" }, - 25.008, + 25.301, "fmind", "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Training", "virtualenv", "local", - null, "Pipeline", "sklearn.pipeline.Pipeline", - "[{\"run_id\": \"47302e957d8542198a281aad07b2413b\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-07-21 15:02:54.863113\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.4\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.4.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}, \"model_uuid\": \"4fd09447dee548f586e05d2edbfbe2d8\", \"mlflow_version\": \"2.14.3\", \"signature\": {\"inputs\": \"[{\\\"type\\\": \\\"datetime\\\", \\\"name\\\": \\\"dteday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"season\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"yr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"mnth\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"hr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"holiday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weekday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"workingday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weathersit\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"temp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"atemp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"hum\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"windspeed\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"casual\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"registered\\\", \\\"required\\\": true}]\", \"outputs\": \"[{\\\"type\\\": \\\"tensor\\\", \\\"tensor-spec\\\": {\\\"dtype\\\": \\\"float64\\\", \\\"shape\\\": [-1]}}]\", \"params\": null}, \"saved_input_example_info\": {\"artifact_path\": \"input_example.json\", \"type\": \"dataframe\", \"pandas_orient\": \"split\"}, \"model_size_bytes\": 203898413}, {\"run_id\": \"47302e957d8542198a281aad07b2413b\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-07-21 15:02:59.278448\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.0.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.4\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}, \"model_uuid\": \"c18c304506ec438c9937a5804b4e19bc\", \"mlflow_version\": \"2.14.3\", \"signature\": {\"inputs\": \"[{\\\"type\\\": \\\"datetime\\\", \\\"name\\\": \\\"dteday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"season\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"yr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"mnth\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"hr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"holiday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weekday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"workingday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weathersit\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"temp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"atemp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"hum\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"windspeed\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"casual\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"registered\\\", \\\"required\\\": true}]\", \"outputs\": \"[{\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"prediction\\\", \\\"required\\\": true}]\", \"params\": null}, \"saved_input_example_info\": {\"artifact_path\": \"input_example.json\", \"type\": \"dataframe\", \"pandas_orient\": \"split\"}, \"model_size_bytes\": 205599260}]", + "[{\"run_id\": \"abad34d51a2a4cffa328136540b455c0\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 20:15:36.204115\", \"model_uuid\": \"fe2207a51a9e4044908492f3b08b501a\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"abad34d51a2a4cffa328136540b455c0\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 20:15:40.634927\", \"model_uuid\": \"f44319bad67247bfbb342d00bb00963e\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.1.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}}]", null, null ], [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/38a4df3abf194e06b5eeaaa0bb383ee8/artifacts", - "2024-07-21T15:02:40.466000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/0f3fb536c019419ba34c04dfb4357f55/artifacts", + "2024-12-09T20:15:20.354000", + "892046783494697990", + "active", + "0f3fb536c019419ba34c04dfb4357f55", + "youthful-carp-377", + "0f3fb536c019419ba34c04dfb4357f55", + "FINISHED", + "fmind", + { + "mean_fit_time": 2.5905266404151917, + "mean_score_time": 0.06293588876724243, + "mean_test_score": -5517.252604166667, + "rank_test_score": 1, + "std_fit_time": 0.3868199607236693, + "std_score_time": 0.02203671973427432, + "std_test_score": 1613.520146542553 + }, + { + "max_depth": "7", + "n_estimators": "200", + "random_state": "42" + }, + { + "estimator_class": "bikes.core.models.BaselineSklearnModel", + "estimator_name": "BaselineSklearnModel", + "mlflow.autologging": "sklearn", + "mlflow.parentRunId": "2bb5da83357d443eb0346606326770ae", + "mlflow.runName": "youthful-carp-377", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", + "mlflow.source.type": "LOCAL", + "mlflow.user": "fmind" + }, + 225.455, + "fmind", + "/home/fmind/mlops-python-package/src/bikes/__main__.py", + "LOCAL", + null, + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + null, + null, + "youthful-carp-377", + null, + null, + "BaselineSklearnModel", + "bikes.core.models.BaselineSklearnModel", + null, + "sklearn", + "2bb5da83357d443eb0346606326770ae" + ], + [ + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/1460078c4b1a4e9eacc1284ef88fb01d/artifacts", + "2024-12-09T20:15:20.354000", + "892046783494697990", + "active", + "1460078c4b1a4e9eacc1284ef88fb01d", + "enchanting-pig-738", + "1460078c4b1a4e9eacc1284ef88fb01d", + "FINISHED", + "fmind", + { + "mean_fit_time": 1.890411198139191, + "mean_score_time": 0.05750620365142822, + "mean_test_score": -16644.957118055558, + "rank_test_score": 3, + "std_fit_time": 0.3518040426866576, + "std_score_time": 0.007664776865110902, + "std_test_score": 5315.459715152708 + }, + { + "max_depth": "3", + "n_estimators": "200", + "random_state": "42" + }, + { + "estimator_class": "bikes.core.models.BaselineSklearnModel", + "estimator_name": "BaselineSklearnModel", + "mlflow.autologging": "sklearn", + "mlflow.parentRunId": "2bb5da83357d443eb0346606326770ae", + "mlflow.runName": "enchanting-pig-738", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", + "mlflow.source.type": "LOCAL", + "mlflow.user": "fmind" + }, + 225.455, + "fmind", + "/home/fmind/mlops-python-package/src/bikes/__main__.py", + "LOCAL", + null, + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + null, + null, + "enchanting-pig-738", + null, + null, + "BaselineSklearnModel", + "bikes.core.models.BaselineSklearnModel", + null, + "sklearn", + "2bb5da83357d443eb0346606326770ae" + ], + [ + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/2bb5da83357d443eb0346606326770ae/artifacts", + "2024-12-09T20:15:21.479000", + "892046783494697990", "active", - "38a4df3abf194e06b5eeaaa0bb383ee8", + "2bb5da83357d443eb0346606326770ae", "Tuning", - "38a4df3abf194e06b5eeaaa0bb383ee8", + "2bb5da83357d443eb0346606326770ae", "FINISHED", "fmind", { "best_cv_score": -5517.252604166667, - "system/cpu_utilization_percentage": 17.1, - "system/disk_available_megabytes": 35143.4, - "system/disk_usage_megabytes": 70843.7, - "system/disk_usage_percentage": 66.8, - "system/network_receive_megabytes": 0.012593999999978678, - "system/network_transmit_megabytes": 0.006136999999995396, - "system/system_memory_usage_megabytes": 4245, - "system/system_memory_usage_percentage": 28.1, + "system/cpu_utilization_percentage": 19.1, + "system/disk_available_megabytes": 12079.1, + "system/disk_usage_megabytes": 103828.7, + "system/disk_usage_percentage": 89.6, + "system/network_receive_megabytes": 0.006941999999980908, + "system/network_transmit_megabytes": 0.00029599999993479287, + "system/system_memory_usage_megabytes": 11827.8, + "system/system_memory_usage_percentage": 78.4, "training_score": -1951.0630079838884 }, { @@ -5283,56 +5406,55 @@ "estimator_class": "sklearn.model_selection._search.GridSearchCV", "estimator_name": "GridSearchCV", "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", - "mlflow.log-model.history": "[{\"run_id\": \"38a4df3abf194e06b5eeaaa0bb383ee8\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-07-21 15:02:33.521812\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.4\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.4.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}, \"model_uuid\": \"67c6c33385b04cb5ad03402d17d4e377\", \"mlflow_version\": \"2.14.3\", \"signature\": {\"inputs\": \"[{\\\"type\\\": \\\"datetime\\\", \\\"name\\\": \\\"dteday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"season\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"yr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"mnth\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"hr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"holiday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weekday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"workingday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weathersit\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"temp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"atemp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"hum\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"windspeed\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"casual\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"registered\\\", \\\"required\\\": true}]\", \"outputs\": \"[{\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"prediction\\\", \\\"required\\\": true}]\", \"params\": null}, \"saved_input_example_info\": {\"artifact_path\": \"input_example.json\", \"type\": \"dataframe\", \"pandas_orient\": \"split\"}, \"model_size_bytes\": 3726525}, {\"run_id\": \"38a4df3abf194e06b5eeaaa0bb383ee8\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-07-21 15:02:37.041779\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.4\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.4.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}, \"model_uuid\": \"301cd67b8f704f2280ce6b59d6846c7c\", \"mlflow_version\": \"2.14.3\", \"signature\": {\"inputs\": \"[{\\\"type\\\": \\\"datetime\\\", \\\"name\\\": \\\"dteday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"season\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"yr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"mnth\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"hr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"holiday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weekday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"workingday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weathersit\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"temp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"atemp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"hum\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"windspeed\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"casual\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"registered\\\", \\\"required\\\": true}]\", \"outputs\": \"[{\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"prediction\\\", \\\"required\\\": true}]\", \"params\": null}, \"saved_input_example_info\": {\"artifact_path\": \"input_example.json\", \"type\": \"dataframe\", \"pandas_orient\": \"split\"}, \"model_size_bytes\": 3713919}]", + "mlflow.log-model.history": "[{\"run_id\": \"2bb5da83357d443eb0346606326770ae\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 20:15:01.134394\", \"model_uuid\": \"c98c0f4df45649ca8721179a65a45f05\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"2bb5da83357d443eb0346606326770ae\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-12-09 20:15:17.229920\", \"model_uuid\": \"ed1ae8f113754da49fd14448fb88d32a\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}]", "mlflow.project.backend": "local", "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Tuning", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", "mlflow.user": "fmind" }, - 38.088, + 226.58, "fmind", "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Tuning", "virtualenv", "local", - null, "GridSearchCV", "sklearn.model_selection._search.GridSearchCV", - "[{\"run_id\": \"38a4df3abf194e06b5eeaaa0bb383ee8\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-07-21 15:02:33.521812\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.4\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.4.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}, \"model_uuid\": \"67c6c33385b04cb5ad03402d17d4e377\", \"mlflow_version\": \"2.14.3\", \"signature\": {\"inputs\": \"[{\\\"type\\\": \\\"datetime\\\", \\\"name\\\": \\\"dteday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"season\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"yr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"mnth\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"hr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"holiday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weekday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"workingday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weathersit\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"temp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"atemp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"hum\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"windspeed\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"casual\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"registered\\\", \\\"required\\\": true}]\", \"outputs\": \"[{\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"prediction\\\", \\\"required\\\": true}]\", \"params\": null}, \"saved_input_example_info\": {\"artifact_path\": \"input_example.json\", \"type\": \"dataframe\", \"pandas_orient\": \"split\"}, \"model_size_bytes\": 3726525}, {\"run_id\": \"38a4df3abf194e06b5eeaaa0bb383ee8\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-07-21 15:02:37.041779\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.4\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.4.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}, \"model_uuid\": \"301cd67b8f704f2280ce6b59d6846c7c\", \"mlflow_version\": \"2.14.3\", \"signature\": {\"inputs\": \"[{\\\"type\\\": \\\"datetime\\\", \\\"name\\\": \\\"dteday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"season\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"yr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"mnth\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"hr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"holiday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weekday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"workingday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weathersit\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"temp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"atemp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"hum\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"windspeed\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"casual\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"registered\\\", \\\"required\\\": true}]\", \"outputs\": \"[{\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"prediction\\\", \\\"required\\\": true}]\", \"params\": null}, \"saved_input_example_info\": {\"artifact_path\": \"input_example.json\", \"type\": \"dataframe\", \"pandas_orient\": \"split\"}, \"model_size_bytes\": 3713919}]", + "[{\"run_id\": \"2bb5da83357d443eb0346606326770ae\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 20:15:01.134394\", \"model_uuid\": \"c98c0f4df45649ca8721179a65a45f05\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"2bb5da83357d443eb0346606326770ae\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-12-09 20:15:17.229920\", \"model_uuid\": \"ed1ae8f113754da49fd14448fb88d32a\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}]", null, null ], [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/38c04e59e8344096bf574faf63b10cd1/artifacts", - "2024-07-21T15:02:39.624000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/fe06e9a76b124cdb8d95a70d0e0807e1/artifacts", + "2024-12-09T20:15:20.354000", + "892046783494697990", "active", - "38c04e59e8344096bf574faf63b10cd1", - "charming-boar-572", - "38c04e59e8344096bf574faf63b10cd1", + "fe06e9a76b124cdb8d95a70d0e0807e1", + "youthful-shoat-928", + "fe06e9a76b124cdb8d95a70d0e0807e1", "FINISHED", "fmind", { - "mean_fit_time": 1.0880586504936218, - "mean_score_time": 0.03774416446685791, - "mean_test_score": -16644.957118055558, - "rank_test_score": 3, - "std_fit_time": 0.15489854371698458, - "std_score_time": 0.001806776770578061, - "std_test_score": 5315.459715152708 + "mean_fit_time": 1.954506516456604, + "mean_score_time": 0.04336249828338623, + "mean_test_score": -8287.860416666666, + "rank_test_score": 2, + "std_fit_time": 0.1713001550642603, + "std_score_time": 0.002758689884238117, + "std_test_score": 1045.7595024691311 }, { - "max_depth": "3", + "max_depth": "5", "n_estimators": "200", "random_state": "42" }, @@ -5340,102 +5462,581 @@ "estimator_class": "bikes.core.models.BaselineSklearnModel", "estimator_name": "BaselineSklearnModel", "mlflow.autologging": "sklearn", - "mlflow.parentRunId": "38a4df3abf194e06b5eeaaa0bb383ee8", - "mlflow.runName": "charming-boar-572", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "mlflow.parentRunId": "2bb5da83357d443eb0346606326770ae", + "mlflow.runName": "youthful-shoat-928", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", "mlflow.source.type": "LOCAL", "mlflow.user": "fmind" }, - 37.246, + 225.455, "fmind", "/home/fmind/mlops-python-package/src/bikes/__main__.py", "LOCAL", null, - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", - null, + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", null, - "charming-boar-572", null, + "youthful-shoat-928", null, null, "BaselineSklearnModel", "bikes.core.models.BaselineSklearnModel", null, "sklearn", - "38a4df3abf194e06b5eeaaa0bb383ee8" + "2bb5da83357d443eb0346606326770ae" ], [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/82f77216b8ee4a2d8dc0869d4a6bfc48/artifacts", - "2024-07-21T15:02:39.624000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/ecc6bbcc06a14ac4a853f18a85d2aa79/artifacts", + "2024-12-09T19:41:30.872000", + "892046783494697990", "active", - "82f77216b8ee4a2d8dc0869d4a6bfc48", - "luxuriant-bird-233", - "82f77216b8ee4a2d8dc0869d4a6bfc48", - "FINISHED", + "ecc6bbcc06a14ac4a853f18a85d2aa79", + "Evaluations", + "ecc6bbcc06a14ac4a853f18a85d2aa79", + "FAILED", "fmind", + {}, { - "mean_fit_time": 2.5814242362976074, - "mean_score_time": 0.04819995164871216, - "mean_test_score": -5517.252604166667, - "rank_test_score": 1, - "std_fit_time": 0.41318261395357886, - "std_score_time": 0.00042696711729265627, - "std_test_score": 1613.520146542553 - }, - { - "max_depth": "7", - "n_estimators": "200", - "random_state": "42" + "conf_file": "confs/evaluations.yaml" }, { - "estimator_class": "bikes.core.models.BaselineSklearnModel", - "estimator_name": "BaselineSklearnModel", - "mlflow.autologging": "sklearn", - "mlflow.parentRunId": "38a4df3abf194e06b5eeaaa0bb383ee8", - "mlflow.runName": "luxuriant-bird-233", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", - "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", + "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.project.backend": "local", + "mlflow.project.entryPoint": "main", + "mlflow.project.env": "virtualenv", + "mlflow.runName": "Evaluations", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.source.name": "file:///home/fmind/mlops-python-package", + "mlflow.source.type": "PROJECT", + "mlflow.user": "fmind" + }, + 4.646, + "fmind", + "file:///home/fmind/mlops-python-package", + "PROJECT", + "main", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "git@github.com:fmind/mlops-python-package", + "git@github.com:fmind/mlops-python-package", + "Evaluations", + "virtualenv", + "local", + null, + null, + null, + null, + null + ], + [ + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/ba156f94df9e4c1eb8cb2852e36efeb0/artifacts", + "2024-12-09T19:40:49.139000", + "892046783494697990", + "active", + "ba156f94df9e4c1eb8cb2852e36efeb0", + "Explanations", + "ba156f94df9e4c1eb8cb2852e36efeb0", + "FINISHED", + "fmind", + {}, + { + "conf_file": "confs/explanations.yaml" + }, + { + "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.project.backend": "local", + "mlflow.project.entryPoint": "main", + "mlflow.project.env": "virtualenv", + "mlflow.runName": "Explanations", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.source.name": "file:///home/fmind/mlops-python-package", + "mlflow.source.type": "PROJECT", + "mlflow.user": "fmind" + }, + 29.178, + "fmind", + "file:///home/fmind/mlops-python-package", + "PROJECT", + "main", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "git@github.com:fmind/mlops-python-package", + "git@github.com:fmind/mlops-python-package", + "Explanations", + "virtualenv", + "local", + null, + null, + null, + null, + null + ], + [ + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/4177ef56fb0e4e4eaa7f7c443c46fc16/artifacts", + "2024-12-09T19:40:14.417000", + "892046783494697990", + "active", + "4177ef56fb0e4e4eaa7f7c443c46fc16", + "Evaluations", + "4177ef56fb0e4e4eaa7f7c443c46fc16", + "FAILED", + "fmind", + {}, + { + "conf_file": "confs/evaluations.yaml" + }, + { + "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.project.backend": "local", + "mlflow.project.entryPoint": "main", + "mlflow.project.env": "virtualenv", + "mlflow.runName": "Evaluations", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.source.name": "file:///home/fmind/mlops-python-package", + "mlflow.source.type": "PROJECT", + "mlflow.user": "fmind" + }, + 5.218, + "fmind", + "file:///home/fmind/mlops-python-package", + "PROJECT", + "main", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "git@github.com:fmind/mlops-python-package", + "git@github.com:fmind/mlops-python-package", + "Evaluations", + "virtualenv", + "local", + null, + null, + null, + null, + null + ], + [ + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/f11653b8018e42f6825a2ac1c9443937/artifacts", + "2024-12-09T19:33:26.711000", + "892046783494697990", + "active", + "f11653b8018e42f6825a2ac1c9443937", + "Evaluations", + "f11653b8018e42f6825a2ac1c9443937", + "FAILED", + "fmind", + {}, + { + "conf_file": "confs/evaluations.yaml" + }, + { + "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.project.backend": "local", + "mlflow.project.entryPoint": "main", + "mlflow.project.env": "virtualenv", + "mlflow.runName": "Evaluations", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.source.name": "file:///home/fmind/mlops-python-package", + "mlflow.source.type": "PROJECT", + "mlflow.user": "fmind" + }, + 4.35, + "fmind", + "file:///home/fmind/mlops-python-package", + "PROJECT", + "main", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "git@github.com:fmind/mlops-python-package", + "git@github.com:fmind/mlops-python-package", + "Evaluations", + "virtualenv", + "local", + null, + null, + null, + null, + null + ], + [ + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/92f6f8fe787c4f489024a81181b7ab41/artifacts", + "2024-12-09T19:33:20.732000", + "892046783494697990", + "active", + "92f6f8fe787c4f489024a81181b7ab41", + "Inference", + "92f6f8fe787c4f489024a81181b7ab41", + "FINISHED", + "fmind", + {}, + { + "conf_file": "confs/inference.yaml" + }, + { + "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.project.backend": "local", + "mlflow.project.entryPoint": "main", + "mlflow.project.env": "virtualenv", + "mlflow.runName": "Inference", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.source.name": "file:///home/fmind/mlops-python-package", + "mlflow.source.type": "PROJECT", + "mlflow.user": "fmind" + }, + 3.944, + "fmind", + "file:///home/fmind/mlops-python-package", + "PROJECT", + "main", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "git@github.com:fmind/mlops-python-package", + "git@github.com:fmind/mlops-python-package", + "Inference", + "virtualenv", + "local", + null, + null, + null, + null, + null + ], + [ + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/88e2b857d3734cfe96ea207be49bba2f/artifacts", + "2024-12-09T19:33:15.552000", + "892046783494697990", + "active", + "88e2b857d3734cfe96ea207be49bba2f", + "Promotion", + "88e2b857d3734cfe96ea207be49bba2f", + "FINISHED", + "fmind", + {}, + { + "conf_file": "confs/promotion.yaml" + }, + { + "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.project.backend": "local", + "mlflow.project.entryPoint": "main", + "mlflow.project.env": "virtualenv", + "mlflow.runName": "Promotion", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.source.name": "file:///home/fmind/mlops-python-package", + "mlflow.source.type": "PROJECT", + "mlflow.user": "fmind" + }, + 3.294, + "fmind", + "file:///home/fmind/mlops-python-package", + "PROJECT", + "main", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "git@github.com:fmind/mlops-python-package", + "git@github.com:fmind/mlops-python-package", + "Promotion", + "virtualenv", + "local", + null, + null, + null, + null, + null + ], + [ + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/ca4c7550ad354be9a2f10f7eade8d47e/artifacts", + "2024-12-09T19:33:10.574000", + "892046783494697990", + "active", + "ca4c7550ad354be9a2f10f7eade8d47e", + "Training", + "ca4c7550ad354be9a2f10f7eade8d47e", + "FINISHED", + "fmind", + { + "mean_squared_error": -1786.7527777777775, + "system/cpu_utilization_percentage": 100, + "system/disk_available_megabytes": 13904.4, + "system/disk_usage_megabytes": 101839, + "system/disk_usage_percentage": 88, + "system/network_receive_megabytes": 0, + "system/network_transmit_megabytes": 0, + "system/system_memory_usage_megabytes": 5196, + "system/system_memory_usage_percentage": 34.5, + "training_mean_absolute_error": 6.8051192198812736, + "training_mean_squared_error": 124.51054615575788, + "training_r2_score": 0.9948851411922456, + "training_root_mean_squared_error": 11.158429376742852, + "training_score": 0.9948851411922456 + }, + { + "conf_file": "confs/training.yaml", + "memory": "None", + "regressor": "RandomForestRegressor(max_depth=20, n_estimators=200, random_state=42)", + "regressor__bootstrap": "True", + "regressor__ccp_alpha": "0.0", + "regressor__criterion": "squared_error", + "regressor__max_depth": "20", + "regressor__max_features": "1.0", + "regressor__max_leaf_nodes": "None", + "regressor__max_samples": "None", + "regressor__min_impurity_decrease": "0.0", + "regressor__min_samples_leaf": "1", + "regressor__min_samples_split": "2", + "regressor__min_weight_fraction_leaf": "0.0", + "regressor__monotonic_cst": "None", + "regressor__n_estimators": "200", + "regressor__n_jobs": "None", + "regressor__oob_score": "False", + "regressor__random_state": "42", + "regressor__verbose": "0", + "regressor__warm_start": "False", + "steps": "[('transformer', ColumnTransformer(transformers=[('categoricals',\n OneHotEncoder(handle_unknown='ignore',\n sparse_output=False),\n ['season', 'weathersit']),\n ('numericals', 'passthrough',\n ['yr', 'mnth', 'hr', 'holiday', 'weekday',\n 'workingday', 'temp', 'atemp', 'hum',\n 'windspeed', 'casual'])])), ('regressor', RandomForestRegressor(max_depth=20, n_estimators=200, random_state=42))]", + "transform_input": "None", + "transformer": "ColumnTransformer(transformers=[('categoricals',\n OneHotEncoder(handle_unknown='ignore',\n sparse_output=False),\n ['season', 'weathersit']),\n ('numericals', 'passthrough',\n ['yr', 'mnth', 'hr', 'holiday', 'weekday',\n 'workingday', 'temp', 'atemp', 'hum',\n 'windspeed', 'casual'])])", + "transformer__categoricals": "OneHotEncoder(handle_unknown='ignore', sparse_output=False)", + "transformer__categoricals__categories": "auto", + "transformer__categoricals__drop": "None", + "transformer__categoricals__dtype": "", + "transformer__categoricals__feature_name_combiner": "concat", + "transformer__categoricals__handle_unknown": "ignore", + "transformer__categoricals__max_categories": "None", + "transformer__categoricals__min_frequency": "None", + "transformer__categoricals__sparse_output": "False", + "transformer__force_int_remainder_cols": "True", + "transformer__n_jobs": "None", + "transformer__numericals": "passthrough", + "transformer__remainder": "drop", + "transformer__sparse_threshold": "0.3", + "transformer__transformer_weights": "None", + "transformer__transformers": "[('categoricals', OneHotEncoder(handle_unknown='ignore', sparse_output=False), ['season', 'weathersit']), ('numericals', 'passthrough', ['yr', 'mnth', 'hr', 'holiday', 'weekday', 'workingday', 'temp', 'atemp', 'hum', 'windspeed', 'casual'])]", + "transformer__verbose": "False", + "transformer__verbose_feature_names_out": "True", + "verbose": "False" + }, + { + "estimator_class": "sklearn.pipeline.Pipeline", + "estimator_name": "Pipeline", + "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.log-model.history": "[{\"run_id\": \"ca4c7550ad354be9a2f10f7eade8d47e\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 19:32:59.722969\", \"model_uuid\": \"d925b66d7b954d01aeee5c19cbdf12cd\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.6.0\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"ca4c7550ad354be9a2f10f7eade8d47e\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 19:33:04.014747\", \"model_uuid\": \"31d6dd9554bf41f79dea63dfea57b515\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.1.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}}]", + "mlflow.project.backend": "local", + "mlflow.project.entryPoint": "main", + "mlflow.project.env": "virtualenv", + "mlflow.runName": "Training", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.source.name": "file:///home/fmind/mlops-python-package", + "mlflow.source.type": "PROJECT", + "mlflow.user": "fmind" + }, + 23.168, + "fmind", + "file:///home/fmind/mlops-python-package", + "PROJECT", + "main", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "git@github.com:fmind/mlops-python-package", + "git@github.com:fmind/mlops-python-package", + "Training", + "virtualenv", + "local", + "Pipeline", + "sklearn.pipeline.Pipeline", + "[{\"run_id\": \"ca4c7550ad354be9a2f10f7eade8d47e\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 19:32:59.722969\", \"model_uuid\": \"d925b66d7b954d01aeee5c19cbdf12cd\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.6.0\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"ca4c7550ad354be9a2f10f7eade8d47e\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 19:33:04.014747\", \"model_uuid\": \"31d6dd9554bf41f79dea63dfea57b515\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.1.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}}]", + null, + null + ], + [ + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/3c3f2883be0643b9800e8c161764bb5f/artifacts", + "2024-12-09T19:32:45.039000", + "892046783494697990", + "active", + "3c3f2883be0643b9800e8c161764bb5f", + "resilient-doe-203", + "3c3f2883be0643b9800e8c161764bb5f", + "FINISHED", + "fmind", + { + "mean_fit_time": 1.1269992589950562, + "mean_score_time": 0.04589015245437622, + "mean_test_score": -16644.957118055558, + "rank_test_score": 3, + "std_fit_time": 0.1527565842379814, + "std_score_time": 0.002551598470194752, + "std_test_score": 5315.459715152708 + }, + { + "max_depth": "3", + "n_estimators": "200", + "random_state": "42" + }, + { + "estimator_class": "bikes.core.models.BaselineSklearnModel", + "estimator_name": "BaselineSklearnModel", + "mlflow.autologging": "sklearn", + "mlflow.parentRunId": "d8d365de957c46098b7cf2e251b486fb", + "mlflow.runName": "resilient-doe-203", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", "mlflow.source.type": "LOCAL", "mlflow.user": "fmind" }, - 37.246, + 101.932, "fmind", "/home/fmind/mlops-python-package/src/bikes/__main__.py", "LOCAL", null, - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + null, + null, + "resilient-doe-203", + null, + null, + "BaselineSklearnModel", + "bikes.core.models.BaselineSklearnModel", + null, + "sklearn", + "d8d365de957c46098b7cf2e251b486fb" + ], + [ + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/846fb4b5ca654800b2cb0592c6c2e999/artifacts", + "2024-12-09T19:32:45.039000", + "892046783494697990", + "active", + "846fb4b5ca654800b2cb0592c6c2e999", + "unequaled-conch-92", + "846fb4b5ca654800b2cb0592c6c2e999", + "FINISHED", + "fmind", + { + "mean_fit_time": 2.39922958612442, + "mean_score_time": 0.05329245328903198, + "mean_test_score": -5517.252604166667, + "rank_test_score": 1, + "std_fit_time": 0.36662621678955415, + "std_score_time": 0.0019089998263635895, + "std_test_score": 1613.520146542553 + }, + { + "max_depth": "7", + "n_estimators": "200", + "random_state": "42" + }, + { + "estimator_class": "bikes.core.models.BaselineSklearnModel", + "estimator_name": "BaselineSklearnModel", + "mlflow.autologging": "sklearn", + "mlflow.parentRunId": "d8d365de957c46098b7cf2e251b486fb", + "mlflow.runName": "unequaled-conch-92", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", + "mlflow.source.type": "LOCAL", + "mlflow.user": "fmind" + }, + 101.932, + "fmind", + "/home/fmind/mlops-python-package/src/bikes/__main__.py", + "LOCAL", null, + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", null, - "luxuriant-bird-233", null, + "unequaled-conch-92", null, null, "BaselineSklearnModel", "bikes.core.models.BaselineSklearnModel", null, "sklearn", - "38a4df3abf194e06b5eeaaa0bb383ee8" + "d8d365de957c46098b7cf2e251b486fb" + ], + [ + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/d8d365de957c46098b7cf2e251b486fb/artifacts", + "2024-12-09T19:32:45.822000", + "892046783494697990", + "active", + "d8d365de957c46098b7cf2e251b486fb", + "Tuning", + "d8d365de957c46098b7cf2e251b486fb", + "FINISHED", + "fmind", + { + "best_cv_score": -5517.252604166667, + "system/cpu_utilization_percentage": 13.7, + "system/disk_available_megabytes": 13904.4, + "system/disk_usage_megabytes": 101839, + "system/disk_usage_percentage": 88, + "system/network_receive_megabytes": 0.0017000000007101337, + "system/network_transmit_megabytes": 0.002966000000014901, + "system/system_memory_usage_megabytes": 5151.2, + "system/system_memory_usage_percentage": 34.2, + "training_score": -1951.0630079838884 + }, + { + "best_max_depth": "7", + "conf_file": "confs/tuning.yaml", + "cv": "KIND='TimeSeriesSplitter' gap=0 n_splits=4 test_size=1440", + "error_score": "raise", + "estimator": "KIND='BaselineSklearnModel' max_depth=20 n_estimators=200 random_state=42", + "n_jobs": "None", + "param_grid": "{'max_depth': [3, 5, 7]}", + "pre_dispatch": "2*n_jobs", + "refit": "True", + "return_train_score": "False", + "scoring": "", + "verbose": "3" + }, + { + "estimator_class": "sklearn.model_selection._search.GridSearchCV", + "estimator_name": "GridSearchCV", + "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.log-model.history": "[{\"run_id\": \"d8d365de957c46098b7cf2e251b486fb\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 19:32:38.556552\", \"model_uuid\": \"409d881ce0dd4efc8439d95e9d2fa9f3\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.6.0\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"d8d365de957c46098b7cf2e251b486fb\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-12-09 19:32:42.268804\", \"model_uuid\": \"244b00e5d67f40a8876cd3b5eb18a39f\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.6.0\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}]", + "mlflow.project.backend": "local", + "mlflow.project.entryPoint": "main", + "mlflow.project.env": "virtualenv", + "mlflow.runName": "Tuning", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.source.name": "file:///home/fmind/mlops-python-package", + "mlflow.source.type": "PROJECT", + "mlflow.user": "fmind" + }, + 102.715, + "fmind", + "file:///home/fmind/mlops-python-package", + "PROJECT", + "main", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "git@github.com:fmind/mlops-python-package", + "git@github.com:fmind/mlops-python-package", + "Tuning", + "virtualenv", + "local", + "GridSearchCV", + "sklearn.model_selection._search.GridSearchCV", + "[{\"run_id\": \"d8d365de957c46098b7cf2e251b486fb\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 19:32:38.556552\", \"model_uuid\": \"409d881ce0dd4efc8439d95e9d2fa9f3\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.6.0\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"d8d365de957c46098b7cf2e251b486fb\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-12-09 19:32:42.268804\", \"model_uuid\": \"244b00e5d67f40a8876cd3b5eb18a39f\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.6.0\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}]", + null, + null ], [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/e110400581f846d08f802c970ae25458/artifacts", - "2024-07-21T15:02:39.624000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/ed9728cf10d74fe6a053231b54e82e16/artifacts", + "2024-12-09T19:32:45.039000", + "892046783494697990", "active", - "e110400581f846d08f802c970ae25458", - "capricious-bear-977", - "e110400581f846d08f802c970ae25458", + "ed9728cf10d74fe6a053231b54e82e16", + "adventurous-fowl-590", + "ed9728cf10d74fe6a053231b54e82e16", "FINISHED", "fmind", { - "mean_fit_time": 1.7571877837181091, - "mean_score_time": 0.0408632755279541, + "mean_fit_time": 1.6259471774101255, + "mean_score_time": 0.045266807079315186, "mean_test_score": -8287.860416666666, "rank_test_score": 2, - "std_fit_time": 0.2750353199252692, - "std_score_time": 0.0028638736758093077, - "std_test_score": 1045.7595024691313 + "std_fit_time": 0.24068743297866052, + "std_score_time": 0.00025423702187683014, + "std_test_score": 1045.7595024691311 }, { "max_depth": "5", @@ -5446,87 +6047,108 @@ "estimator_class": "bikes.core.models.BaselineSklearnModel", "estimator_name": "BaselineSklearnModel", "mlflow.autologging": "sklearn", - "mlflow.parentRunId": "38a4df3abf194e06b5eeaaa0bb383ee8", - "mlflow.runName": "capricious-bear-977", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "mlflow.parentRunId": "d8d365de957c46098b7cf2e251b486fb", + "mlflow.runName": "adventurous-fowl-590", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", "mlflow.source.type": "LOCAL", "mlflow.user": "fmind" }, - 37.246, + 101.932, "fmind", "/home/fmind/mlops-python-package/src/bikes/__main__.py", "LOCAL", null, - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", null, null, - "capricious-bear-977", - null, + "adventurous-fowl-590", null, null, "BaselineSklearnModel", "bikes.core.models.BaselineSklearnModel", null, "sklearn", - "38a4df3abf194e06b5eeaaa0bb383ee8" + "d8d365de957c46098b7cf2e251b486fb" ] ], "fillcolor": "rgba(255,255,255,0)", "hoveron": "points", - "hovertemplate": "%{hovertext}

experiment_id=%{customdata[2]}
start_time=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_name=%{customdata[5]}
run_uuid=%{customdata[6]}
status=%{customdata[7]}
user_id=%{customdata[8]}
metrics=%{customdata[9]}
params=%{customdata[10]}
tags=%{customdata[11]}
run_time_secs=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
mlflow.datasets=%{customdata[23]}
estimator_name=%{customdata[24]}
estimator_class=%{customdata[25]}
mlflow.log-model.history=%{customdata[26]}
mlflow.autologging=%{customdata[27]}
mlflow.parentRunId=%{customdata[28]}", + "hovertemplate": "%{hovertext}

experiment_id=%{customdata[2]}
start_time=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_name=%{customdata[5]}
run_uuid=%{customdata[6]}
status=%{customdata[7]}
user_id=%{customdata[8]}
metrics=%{customdata[9]}
params=%{customdata[10]}
tags=%{customdata[11]}
run_time_secs=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
estimator_name=%{customdata[23]}
estimator_class=%{customdata[24]}
mlflow.log-model.history=%{customdata[25]}
mlflow.autologging=%{customdata[26]}
mlflow.parentRunId=%{customdata[27]}", "hovertext": [ "Explanations", "Evaluations", "Inference", "Promotion", "Training", + "angry-dog-423", + "lyrical-snail-804", + "Tuning", + "capable-asp-689", + "Explanations", + "Evaluations", + "Inference", + "Promotion", + "Training", + "youthful-carp-377", + "enchanting-pig-738", "Tuning", - "rumbling-bass-180", - "redolent-koi-314", - "languid-eel-151", + "youthful-shoat-928", + "Evaluations", "Explanations", "Evaluations", + "Evaluations", "Inference", "Promotion", "Training", + "resilient-doe-203", + "unequaled-conch-92", "Tuning", - "charming-boar-572", - "luxuriant-bird-233", - "capricious-bear-977" + "adventurous-fowl-590" ], - "legendgroup": "598443335336095652", + "legendgroup": "892046783494697990", "line": { "color": "rgba(255,255,255,0)" }, "marker": { "color": "#636efa" }, - "name": "598443335336095652", - "offsetgroup": "598443335336095652", + "name": "892046783494697990", + "offsetgroup": "892046783494697990", "orientation": "h", "pointpos": 0, "showlegend": true, "type": "box", "x": [ - "2024-07-21T15:31:20.207000", - "2024-07-21T15:31:07.565000", - "2024-07-21T15:30:59.023000", - "2024-07-21T15:30:51.594000", - "2024-07-21T15:29:25.495000", - "2024-07-21T15:27:31.082000", - "2024-07-21T15:27:31.082000", - "2024-07-21T15:27:31.082000", - "2024-07-21T15:27:31.082000", - "2024-07-21T15:03:28.331000", - "2024-07-21T15:03:19.637000", - "2024-07-21T15:03:13.853000", - "2024-07-21T15:03:09.011000", - "2024-07-21T15:02:42.090000", - "2024-07-21T15:02:02.378000", - "2024-07-21T15:02:02.378000", - "2024-07-21T15:02:02.378000", - "2024-07-21T15:02:02.378000" + "2024-12-09T21:26:19.324000", + "2024-12-09T21:26:13.489000", + "2024-12-09T21:26:08.210000", + "2024-12-09T21:26:03.382000", + "2024-12-09T21:25:39.001000", + "2024-12-09T21:25:03.572000", + "2024-12-09T21:25:03.572000", + "2024-12-09T21:25:03.572000", + "2024-12-09T21:25:03.572000", + "2024-12-09T20:16:09.833000", + "2024-12-09T20:16:02.929000", + "2024-12-09T20:15:56.888000", + "2024-12-09T20:15:50.832000", + "2024-12-09T20:15:23.229000", + "2024-12-09T20:11:34.899000", + "2024-12-09T20:11:34.899000", + "2024-12-09T20:11:34.899000", + "2024-12-09T20:11:34.899000", + "2024-12-09T19:41:26.226000", + "2024-12-09T19:40:19.961000", + "2024-12-09T19:40:09.199000", + "2024-12-09T19:33:22.361000", + "2024-12-09T19:33:16.788000", + "2024-12-09T19:33:12.258000", + "2024-12-09T19:32:47.406000", + "2024-12-09T19:31:03.107000", + "2024-12-09T19:31:03.107000", + "2024-12-09T19:31:03.107000", + "2024-12-09T19:31:03.107000" ], "x0": " ", "xaxis": "x", @@ -6413,14 +7035,14 @@ "boxpoints": "all", "customdata": [ [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/4df1e5931159491c963f2252add508cd/artifacts", - "2024-07-21T15:31:53.829000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/c21b823a68ba42b2b1ff98b2ae73c424/artifacts", + "2024-12-09T21:26:50.094000", + "892046783494697990", "active", - "4df1e5931159491c963f2252add508cd", + "c21b823a68ba42b2b1ff98b2ae73c424", "Explanations", - "4df1e5931159491c963f2252add508cd", - "2024-07-21T15:31:20.207000", + "c21b823a68ba42b2b1ff98b2ae73c424", + "2024-12-09T21:26:19.324000", "FINISHED", "fmind", {}, @@ -6433,7 +7055,7 @@ "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Explanations", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", @@ -6443,7 +7065,7 @@ "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Explanations", @@ -6453,18 +7075,17 @@ null, null, null, - null, null ], [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/5936b0cb0d9b47b2a1862344a79e55e7/artifacts", - "2024-07-21T15:04:07.438000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/f71527e645d24f579e571b6573912f32/artifacts", + "2024-12-09T20:16:43.066000", + "892046783494697990", "active", - "5936b0cb0d9b47b2a1862344a79e55e7", + "f71527e645d24f579e571b6573912f32", "Explanations", - "5936b0cb0d9b47b2a1862344a79e55e7", - "2024-07-21T15:03:28.331000", + "f71527e645d24f579e571b6573912f32", + "2024-12-09T20:16:09.833000", "FINISHED", "fmind", {}, @@ -6477,7 +7098,7 @@ "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Explanations", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", @@ -6487,7 +7108,7 @@ "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Explanations", @@ -6497,16 +7118,59 @@ null, null, null, + null + ], + [ + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/ba156f94df9e4c1eb8cb2852e36efeb0/artifacts", + "2024-12-09T19:40:49.139000", + "892046783494697990", + "active", + "ba156f94df9e4c1eb8cb2852e36efeb0", + "Explanations", + "ba156f94df9e4c1eb8cb2852e36efeb0", + "2024-12-09T19:40:19.961000", + "FINISHED", + "fmind", + {}, + { + "conf_file": "confs/explanations.yaml" + }, + { + "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.project.backend": "local", + "mlflow.project.entryPoint": "main", + "mlflow.project.env": "virtualenv", + "mlflow.runName": "Explanations", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.source.name": "file:///home/fmind/mlops-python-package", + "mlflow.source.type": "PROJECT", + "mlflow.user": "fmind" + }, + "fmind", + "file:///home/fmind/mlops-python-package", + "PROJECT", + "main", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "git@github.com:fmind/mlops-python-package", + "git@github.com:fmind/mlops-python-package", + "Explanations", + "virtualenv", + "local", + null, + null, + null, null, null ] ], "fillcolor": "rgba(255,255,255,0)", "hoveron": "points", - "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
mlflow.datasets=%{customdata[23]}
estimator_name=%{customdata[24]}
estimator_class=%{customdata[25]}
mlflow.log-model.history=%{customdata[26]}
mlflow.autologging=%{customdata[27]}
mlflow.parentRunId=%{customdata[28]}", + "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
estimator_name=%{customdata[23]}
estimator_class=%{customdata[24]}
mlflow.log-model.history=%{customdata[25]}
mlflow.autologging=%{customdata[26]}
mlflow.parentRunId=%{customdata[27]}", "hovertext": [ - "4df1e5931159491c963f2252add508cd", - "5936b0cb0d9b47b2a1862344a79e55e7" + "c21b823a68ba42b2b1ff98b2ae73c424", + "f71527e645d24f579e571b6573912f32", + "ba156f94df9e4c1eb8cb2852e36efeb0" ], "legendgroup": "Explanations", "line": { @@ -6522,8 +7186,9 @@ "showlegend": true, "type": "box", "x": [ - 33.622, - 39.107 + 30.77, + 33.233, + 29.178 ], "x0": " ", "xaxis": "x", @@ -6535,14 +7200,67 @@ "boxpoints": "all", "customdata": [ [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/e993a53ee04e4357bad5cec101ab4031/artifacts", - "2024-07-21T15:31:13.361000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/9da0f31e36a9413eaab18149ace82c78/artifacts", + "2024-12-09T21:26:18.061000", + "892046783494697990", + "active", + "9da0f31e36a9413eaab18149ace82c78", + "Evaluations", + "9da0f31e36a9413eaab18149ace82c78", + "2024-12-09T21:26:13.489000", + "FINISHED", + "fmind", + { + "example_count": 13903, + "max_error": 4294967295, + "mean_absolute_error": 2044457567.3205063, + "mean_absolute_percentage_error": 55189262.03890929, + "mean_on_target": 174.63914263108683, + "mean_squared_error": 296.66338200388407, + "r2_score": 0.9893562621162568, + "root_mean_squared_error": 17.223918892165166, + "sum_on_target": 2428008 + }, + { + "conf_file": "confs/evaluations.yaml" + }, + { + "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.project.backend": "local", + "mlflow.project.entryPoint": "main", + "mlflow.project.env": "virtualenv", + "mlflow.runName": "Evaluations", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.source.name": "file:///home/fmind/mlops-python-package", + "mlflow.source.type": "PROJECT", + "mlflow.user": "fmind" + }, + "fmind", + "file:///home/fmind/mlops-python-package", + "PROJECT", + "main", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "git@github.com:fmind/mlops-python-package", + "git@github.com:fmind/mlops-python-package", + "Evaluations", + "virtualenv", + "local", + null, + null, + null, + null, + null + ], + [ + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/f2823c6d05a545b793545d85b230d467/artifacts", + "2024-12-09T20:16:08.336000", + "892046783494697990", "active", - "e993a53ee04e4357bad5cec101ab4031", + "f2823c6d05a545b793545d85b230d467", "Evaluations", - "e993a53ee04e4357bad5cec101ab4031", - "2024-07-21T15:31:07.565000", + "f2823c6d05a545b793545d85b230d467", + "2024-12-09T20:16:02.929000", "FINISHED", "fmind", { @@ -6560,13 +7278,98 @@ "conf_file": "confs/evaluations.yaml" }, { - "mlflow.datasets": "[{\"name\":\"ce0fe6e33c74e2fa3659d51482be5f27\",\"hash\":\"ce0fe6e33c74e2fa3659d51482be5f27\",\"model\":\"06840f30fcdd4553a7aaf17e83232475\"}]", "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", "mlflow.project.backend": "local", "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Evaluations", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.source.name": "file:///home/fmind/mlops-python-package", + "mlflow.source.type": "PROJECT", + "mlflow.user": "fmind" + }, + "fmind", + "file:///home/fmind/mlops-python-package", + "PROJECT", + "main", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "git@github.com:fmind/mlops-python-package", + "git@github.com:fmind/mlops-python-package", + "Evaluations", + "virtualenv", + "local", + null, + null, + null, + null, + null + ], + [ + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/ecc6bbcc06a14ac4a853f18a85d2aa79/artifacts", + "2024-12-09T19:41:30.872000", + "892046783494697990", + "active", + "ecc6bbcc06a14ac4a853f18a85d2aa79", + "Evaluations", + "ecc6bbcc06a14ac4a853f18a85d2aa79", + "2024-12-09T19:41:26.226000", + "FAILED", + "fmind", + {}, + { + "conf_file": "confs/evaluations.yaml" + }, + { + "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.project.backend": "local", + "mlflow.project.entryPoint": "main", + "mlflow.project.env": "virtualenv", + "mlflow.runName": "Evaluations", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.source.name": "file:///home/fmind/mlops-python-package", + "mlflow.source.type": "PROJECT", + "mlflow.user": "fmind" + }, + "fmind", + "file:///home/fmind/mlops-python-package", + "PROJECT", + "main", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "git@github.com:fmind/mlops-python-package", + "git@github.com:fmind/mlops-python-package", + "Evaluations", + "virtualenv", + "local", + null, + null, + null, + null, + null + ], + [ + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/4177ef56fb0e4e4eaa7f7c443c46fc16/artifacts", + "2024-12-09T19:40:14.417000", + "892046783494697990", + "active", + "4177ef56fb0e4e4eaa7f7c443c46fc16", + "Evaluations", + "4177ef56fb0e4e4eaa7f7c443c46fc16", + "2024-12-09T19:40:09.199000", + "FAILED", + "fmind", + {}, + { + "conf_file": "confs/evaluations.yaml" + }, + { + "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.project.backend": "local", + "mlflow.project.entryPoint": "main", + "mlflow.project.env": "virtualenv", + "mlflow.runName": "Evaluations", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", @@ -6576,13 +7379,12 @@ "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Evaluations", "virtualenv", "local", - "[{\"name\":\"ce0fe6e33c74e2fa3659d51482be5f27\",\"hash\":\"ce0fe6e33c74e2fa3659d51482be5f27\",\"model\":\"06840f30fcdd4553a7aaf17e83232475\"}]", null, null, null, @@ -6590,38 +7392,27 @@ null ], [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/ef5b224b3f4e4dbcb05169cfc4f358f7/artifacts", - "2024-07-21T15:03:25.782000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/f11653b8018e42f6825a2ac1c9443937/artifacts", + "2024-12-09T19:33:26.711000", + "892046783494697990", "active", - "ef5b224b3f4e4dbcb05169cfc4f358f7", + "f11653b8018e42f6825a2ac1c9443937", "Evaluations", - "ef5b224b3f4e4dbcb05169cfc4f358f7", - "2024-07-21T15:03:19.637000", - "FINISHED", + "f11653b8018e42f6825a2ac1c9443937", + "2024-12-09T19:33:22.361000", + "FAILED", "fmind", - { - "example_count": 13903, - "max_error": 4294967295, - "mean_absolute_error": 2044457567.3205063, - "mean_absolute_percentage_error": 55189262.03890929, - "mean_on_target": 174.63914263108683, - "mean_squared_error": 296.66338200388407, - "r2_score": 0.9893562621162568, - "root_mean_squared_error": 17.223918892165166, - "sum_on_target": 2428008 - }, + {}, { "conf_file": "confs/evaluations.yaml" }, { - "mlflow.datasets": "[{\"name\":\"ce0fe6e33c74e2fa3659d51482be5f27\",\"hash\":\"ce0fe6e33c74e2fa3659d51482be5f27\",\"model\":\"c18c304506ec438c9937a5804b4e19bc\"}]", "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", "mlflow.project.backend": "local", "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Evaluations", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", @@ -6631,13 +7422,12 @@ "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Evaluations", "virtualenv", "local", - "[{\"name\":\"ce0fe6e33c74e2fa3659d51482be5f27\",\"hash\":\"ce0fe6e33c74e2fa3659d51482be5f27\",\"model\":\"c18c304506ec438c9937a5804b4e19bc\"}]", null, null, null, @@ -6647,10 +7437,13 @@ ], "fillcolor": "rgba(255,255,255,0)", "hoveron": "points", - "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
mlflow.datasets=%{customdata[23]}
estimator_name=%{customdata[24]}
estimator_class=%{customdata[25]}
mlflow.log-model.history=%{customdata[26]}
mlflow.autologging=%{customdata[27]}
mlflow.parentRunId=%{customdata[28]}", + "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
estimator_name=%{customdata[23]}
estimator_class=%{customdata[24]}
mlflow.log-model.history=%{customdata[25]}
mlflow.autologging=%{customdata[26]}
mlflow.parentRunId=%{customdata[27]}", "hovertext": [ - "e993a53ee04e4357bad5cec101ab4031", - "ef5b224b3f4e4dbcb05169cfc4f358f7" + "9da0f31e36a9413eaab18149ace82c78", + "f2823c6d05a545b793545d85b230d467", + "ecc6bbcc06a14ac4a853f18a85d2aa79", + "4177ef56fb0e4e4eaa7f7c443c46fc16", + "f11653b8018e42f6825a2ac1c9443937" ], "legendgroup": "Evaluations", "line": { @@ -6666,8 +7459,11 @@ "showlegend": true, "type": "box", "x": [ - 5.796, - 6.145 + 4.572, + 5.407, + 4.646, + 5.218, + 4.35 ], "x0": " ", "xaxis": "x", @@ -6679,14 +7475,14 @@ "boxpoints": "all", "customdata": [ [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/c17b893e525b44ed89e349421e72510a/artifacts", - "2024-07-21T15:31:04.758000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/8316d6855d17401b8358e88a48c159f0/artifacts", + "2024-12-09T21:26:12.215000", + "892046783494697990", "active", - "c17b893e525b44ed89e349421e72510a", + "8316d6855d17401b8358e88a48c159f0", "Inference", - "c17b893e525b44ed89e349421e72510a", - "2024-07-21T15:30:59.023000", + "8316d6855d17401b8358e88a48c159f0", + "2024-12-09T21:26:08.210000", "FINISHED", "fmind", {}, @@ -6699,7 +7495,7 @@ "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Inference", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", @@ -6709,7 +7505,7 @@ "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Inference", @@ -6719,18 +7515,17 @@ null, null, null, - null, null ], [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/65f34c799e814cfe82d844b0eff6a16f/artifacts", - "2024-07-21T15:03:18.035000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/d40bfd6d238b4e999a8b9eac47f9932a/artifacts", + "2024-12-09T20:16:01.543000", + "892046783494697990", "active", - "65f34c799e814cfe82d844b0eff6a16f", + "d40bfd6d238b4e999a8b9eac47f9932a", "Inference", - "65f34c799e814cfe82d844b0eff6a16f", - "2024-07-21T15:03:13.853000", + "d40bfd6d238b4e999a8b9eac47f9932a", + "2024-12-09T20:15:56.888000", "FINISHED", "fmind", {}, @@ -6743,7 +7538,7 @@ "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Inference", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", @@ -6753,7 +7548,7 @@ "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Inference", @@ -6763,16 +7558,59 @@ null, null, null, + null + ], + [ + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/92f6f8fe787c4f489024a81181b7ab41/artifacts", + "2024-12-09T19:33:20.732000", + "892046783494697990", + "active", + "92f6f8fe787c4f489024a81181b7ab41", + "Inference", + "92f6f8fe787c4f489024a81181b7ab41", + "2024-12-09T19:33:16.788000", + "FINISHED", + "fmind", + {}, + { + "conf_file": "confs/inference.yaml" + }, + { + "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.project.backend": "local", + "mlflow.project.entryPoint": "main", + "mlflow.project.env": "virtualenv", + "mlflow.runName": "Inference", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.source.name": "file:///home/fmind/mlops-python-package", + "mlflow.source.type": "PROJECT", + "mlflow.user": "fmind" + }, + "fmind", + "file:///home/fmind/mlops-python-package", + "PROJECT", + "main", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "git@github.com:fmind/mlops-python-package", + "git@github.com:fmind/mlops-python-package", + "Inference", + "virtualenv", + "local", + null, + null, + null, null, null ] ], "fillcolor": "rgba(255,255,255,0)", "hoveron": "points", - "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
mlflow.datasets=%{customdata[23]}
estimator_name=%{customdata[24]}
estimator_class=%{customdata[25]}
mlflow.log-model.history=%{customdata[26]}
mlflow.autologging=%{customdata[27]}
mlflow.parentRunId=%{customdata[28]}", + "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
estimator_name=%{customdata[23]}
estimator_class=%{customdata[24]}
mlflow.log-model.history=%{customdata[25]}
mlflow.autologging=%{customdata[26]}
mlflow.parentRunId=%{customdata[27]}", "hovertext": [ - "c17b893e525b44ed89e349421e72510a", - "65f34c799e814cfe82d844b0eff6a16f" + "8316d6855d17401b8358e88a48c159f0", + "d40bfd6d238b4e999a8b9eac47f9932a", + "92f6f8fe787c4f489024a81181b7ab41" ], "legendgroup": "Inference", "line": { @@ -6788,8 +7626,9 @@ "showlegend": true, "type": "box", "x": [ - 5.735, - 4.182 + 4.005, + 4.655, + 3.944 ], "x0": " ", "xaxis": "x", @@ -6801,14 +7640,14 @@ "boxpoints": "all", "customdata": [ [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/d538cc2f3f644b6e97b611c1d96801ac/artifacts", - "2024-07-21T15:30:56.969000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/b92f959ab1564eb897e2f66f7089f573/artifacts", + "2024-12-09T21:26:06.933000", + "892046783494697990", "active", - "d538cc2f3f644b6e97b611c1d96801ac", + "b92f959ab1564eb897e2f66f7089f573", "Promotion", - "d538cc2f3f644b6e97b611c1d96801ac", - "2024-07-21T15:30:51.594000", + "b92f959ab1564eb897e2f66f7089f573", + "2024-12-09T21:26:03.382000", "FINISHED", "fmind", {}, @@ -6821,7 +7660,7 @@ "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Promotion", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", @@ -6831,7 +7670,7 @@ "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Promotion", @@ -6841,18 +7680,17 @@ null, null, null, - null, null ], [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/a5dbcb3fc6a24fdc863fb31eb0fc4d7a/artifacts", - "2024-07-21T15:03:12.321000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/0a425df1a36947cc912cc0abdc4c9fe1/artifacts", + "2024-12-09T20:15:55.295000", + "892046783494697990", "active", - "a5dbcb3fc6a24fdc863fb31eb0fc4d7a", + "0a425df1a36947cc912cc0abdc4c9fe1", "Promotion", - "a5dbcb3fc6a24fdc863fb31eb0fc4d7a", - "2024-07-21T15:03:09.011000", + "0a425df1a36947cc912cc0abdc4c9fe1", + "2024-12-09T20:15:50.832000", "FINISHED", "fmind", {}, @@ -6865,7 +7703,7 @@ "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Promotion", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", @@ -6875,7 +7713,7 @@ "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Promotion", @@ -6885,16 +7723,59 @@ null, null, null, + null + ], + [ + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/88e2b857d3734cfe96ea207be49bba2f/artifacts", + "2024-12-09T19:33:15.552000", + "892046783494697990", + "active", + "88e2b857d3734cfe96ea207be49bba2f", + "Promotion", + "88e2b857d3734cfe96ea207be49bba2f", + "2024-12-09T19:33:12.258000", + "FINISHED", + "fmind", + {}, + { + "conf_file": "confs/promotion.yaml" + }, + { + "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.project.backend": "local", + "mlflow.project.entryPoint": "main", + "mlflow.project.env": "virtualenv", + "mlflow.runName": "Promotion", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.source.name": "file:///home/fmind/mlops-python-package", + "mlflow.source.type": "PROJECT", + "mlflow.user": "fmind" + }, + "fmind", + "file:///home/fmind/mlops-python-package", + "PROJECT", + "main", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "git@github.com:fmind/mlops-python-package", + "git@github.com:fmind/mlops-python-package", + "Promotion", + "virtualenv", + "local", + null, + null, + null, null, null ] ], "fillcolor": "rgba(255,255,255,0)", "hoveron": "points", - "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
mlflow.datasets=%{customdata[23]}
estimator_name=%{customdata[24]}
estimator_class=%{customdata[25]}
mlflow.log-model.history=%{customdata[26]}
mlflow.autologging=%{customdata[27]}
mlflow.parentRunId=%{customdata[28]}", + "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
estimator_name=%{customdata[23]}
estimator_class=%{customdata[24]}
mlflow.log-model.history=%{customdata[25]}
mlflow.autologging=%{customdata[26]}
mlflow.parentRunId=%{customdata[27]}", "hovertext": [ - "d538cc2f3f644b6e97b611c1d96801ac", - "a5dbcb3fc6a24fdc863fb31eb0fc4d7a" + "b92f959ab1564eb897e2f66f7089f573", + "0a425df1a36947cc912cc0abdc4c9fe1", + "88e2b857d3734cfe96ea207be49bba2f" ], "legendgroup": "Promotion", "line": { @@ -6910,8 +7791,9 @@ "showlegend": true, "type": "box", "x": [ - 5.375, - 3.31 + 3.551, + 4.463, + 3.294 ], "x0": " ", "xaxis": "x", @@ -6923,26 +7805,26 @@ "boxpoints": "all", "customdata": [ [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/a75ea3e9742c48fd9c34a5b8abf9bd89/artifacts", - "2024-07-21T15:30:46.302000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/fc31f5b645204fdd9ef58fbbc0c105eb/artifacts", + "2024-12-09T21:26:01.071000", + "892046783494697990", "active", - "a75ea3e9742c48fd9c34a5b8abf9bd89", + "fc31f5b645204fdd9ef58fbbc0c105eb", "Training", - "a75ea3e9742c48fd9c34a5b8abf9bd89", - "2024-07-21T15:29:25.495000", + "fc31f5b645204fdd9ef58fbbc0c105eb", + "2024-12-09T21:25:39.001000", "FINISHED", "fmind", { - "mean_squared_error": -1786.7527777777777, - "system/cpu_utilization_percentage": 38.1, - "system/disk_available_megabytes": 32585.5, - "system/disk_usage_megabytes": 73526.3, - "system/disk_usage_percentage": 69.3, - "system/network_receive_megabytes": 0.02063199999997778, - "system/network_transmit_megabytes": 0.00015000000007603376, - "system/system_memory_usage_megabytes": 10535.7, - "system/system_memory_usage_percentage": 69.8, + "mean_squared_error": -1786.7527777777775, + "system/cpu_utilization_percentage": 25, + "system/disk_available_megabytes": 11550.6, + "system/disk_usage_megabytes": 104367.7, + "system/disk_usage_percentage": 90, + "system/network_receive_megabytes": 0, + "system/network_transmit_megabytes": 0, + "system/system_memory_usage_megabytes": 6226.8, + "system/system_memory_usage_percentage": 41.3, "training_mean_absolute_error": 6.8051192198812736, "training_mean_squared_error": 124.51054615575788, "training_r2_score": 0.9948851411922456, @@ -6982,6 +7864,7 @@ "transformer__categoricals__max_categories": "None", "transformer__categoricals__min_frequency": "None", "transformer__categoricals__sparse_output": "False", + "transformer__force_int_remainder_cols": "True", "transformer__n_jobs": "None", "transformer__numericals": "passthrough", "transformer__remainder": "drop", @@ -6996,12 +7879,12 @@ "estimator_class": "sklearn.pipeline.Pipeline", "estimator_name": "Pipeline", "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", - "mlflow.log-model.history": "[{\"run_id\": \"a75ea3e9742c48fd9c34a5b8abf9bd89\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-07-21 15:30:23.365959\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.4\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.4.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}, \"model_uuid\": \"ade01433a8a54ec298de322ba009fa10\", \"mlflow_version\": \"2.14.3\", \"signature\": {\"inputs\": \"[{\\\"type\\\": \\\"datetime\\\", \\\"name\\\": \\\"dteday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"season\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"yr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"mnth\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"hr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"holiday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weekday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"workingday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weathersit\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"temp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"atemp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"hum\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"windspeed\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"casual\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"registered\\\", \\\"required\\\": true}]\", \"outputs\": \"[{\\\"type\\\": \\\"tensor\\\", \\\"tensor-spec\\\": {\\\"dtype\\\": \\\"float64\\\", \\\"shape\\\": [-1]}}]\", \"params\": null}, \"saved_input_example_info\": {\"artifact_path\": \"input_example.json\", \"type\": \"dataframe\", \"pandas_orient\": \"split\"}, \"model_size_bytes\": 203898413}, {\"run_id\": \"a75ea3e9742c48fd9c34a5b8abf9bd89\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-07-21 15:30:35.571973\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.0.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.4\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}, \"model_uuid\": \"06840f30fcdd4553a7aaf17e83232475\", \"mlflow_version\": \"2.14.3\", \"signature\": {\"inputs\": \"[{\\\"type\\\": \\\"datetime\\\", \\\"name\\\": \\\"dteday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"season\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"yr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"mnth\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"hr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"holiday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weekday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"workingday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weathersit\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"temp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"atemp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"hum\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"windspeed\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"casual\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"registered\\\", \\\"required\\\": true}]\", \"outputs\": \"[{\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"prediction\\\", \\\"required\\\": true}]\", \"params\": null}, \"saved_input_example_info\": {\"artifact_path\": \"input_example.json\", \"type\": \"dataframe\", \"pandas_orient\": \"split\"}, \"model_size_bytes\": 205599260}]", + "mlflow.log-model.history": "[{\"run_id\": \"fc31f5b645204fdd9ef58fbbc0c105eb\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 21:25:50.311693\", \"model_uuid\": \"3479cedd4b164da6929b186ac8a40509\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"fc31f5b645204fdd9ef58fbbc0c105eb\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 21:25:53.843399\", \"model_uuid\": \"0b50f33451c845acae155bf366ecebf5\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.1.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}}]", "mlflow.project.backend": "local", "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Training", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", @@ -7011,40 +7894,141 @@ "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Training", "virtualenv", "local", + "Pipeline", + "sklearn.pipeline.Pipeline", + "[{\"run_id\": \"fc31f5b645204fdd9ef58fbbc0c105eb\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 21:25:50.311693\", \"model_uuid\": \"3479cedd4b164da6929b186ac8a40509\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"fc31f5b645204fdd9ef58fbbc0c105eb\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 21:25:53.843399\", \"model_uuid\": \"0b50f33451c845acae155bf366ecebf5\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.1.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}}]", null, + null + ], + [ + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/abad34d51a2a4cffa328136540b455c0/artifacts", + "2024-12-09T20:15:48.530000", + "892046783494697990", + "active", + "abad34d51a2a4cffa328136540b455c0", + "Training", + "abad34d51a2a4cffa328136540b455c0", + "2024-12-09T20:15:23.229000", + "FINISHED", + "fmind", + { + "mean_squared_error": -1786.7527777777775, + "system/cpu_utilization_percentage": 8, + "system/disk_available_megabytes": 11976.9, + "system/disk_usage_megabytes": 103931.2, + "system/disk_usage_percentage": 89.7, + "system/network_receive_megabytes": 0.0021689999994123355, + "system/network_transmit_megabytes": 0.002279000000044107, + "system/system_memory_usage_megabytes": 5892.8, + "system/system_memory_usage_percentage": 39.1, + "training_mean_absolute_error": 6.8051192198812736, + "training_mean_squared_error": 124.51054615575788, + "training_r2_score": 0.9948851411922456, + "training_root_mean_squared_error": 11.158429376742852, + "training_score": 0.9948851411922456 + }, + { + "conf_file": "confs/training.yaml", + "memory": "None", + "regressor": "RandomForestRegressor(max_depth=20, n_estimators=200, random_state=42)", + "regressor__bootstrap": "True", + "regressor__ccp_alpha": "0.0", + "regressor__criterion": "squared_error", + "regressor__max_depth": "20", + "regressor__max_features": "1.0", + "regressor__max_leaf_nodes": "None", + "regressor__max_samples": "None", + "regressor__min_impurity_decrease": "0.0", + "regressor__min_samples_leaf": "1", + "regressor__min_samples_split": "2", + "regressor__min_weight_fraction_leaf": "0.0", + "regressor__monotonic_cst": "None", + "regressor__n_estimators": "200", + "regressor__n_jobs": "None", + "regressor__oob_score": "False", + "regressor__random_state": "42", + "regressor__verbose": "0", + "regressor__warm_start": "False", + "steps": "[('transformer', ColumnTransformer(transformers=[('categoricals',\n OneHotEncoder(handle_unknown='ignore',\n sparse_output=False),\n ['season', 'weathersit']),\n ('numericals', 'passthrough',\n ['yr', 'mnth', 'hr', 'holiday', 'weekday',\n 'workingday', 'temp', 'atemp', 'hum',\n 'windspeed', 'casual'])])), ('regressor', RandomForestRegressor(max_depth=20, n_estimators=200, random_state=42))]", + "transformer": "ColumnTransformer(transformers=[('categoricals',\n OneHotEncoder(handle_unknown='ignore',\n sparse_output=False),\n ['season', 'weathersit']),\n ('numericals', 'passthrough',\n ['yr', 'mnth', 'hr', 'holiday', 'weekday',\n 'workingday', 'temp', 'atemp', 'hum',\n 'windspeed', 'casual'])])", + "transformer__categoricals": "OneHotEncoder(handle_unknown='ignore', sparse_output=False)", + "transformer__categoricals__categories": "auto", + "transformer__categoricals__drop": "None", + "transformer__categoricals__dtype": "", + "transformer__categoricals__feature_name_combiner": "concat", + "transformer__categoricals__handle_unknown": "ignore", + "transformer__categoricals__max_categories": "None", + "transformer__categoricals__min_frequency": "None", + "transformer__categoricals__sparse_output": "False", + "transformer__force_int_remainder_cols": "True", + "transformer__n_jobs": "None", + "transformer__numericals": "passthrough", + "transformer__remainder": "drop", + "transformer__sparse_threshold": "0.3", + "transformer__transformer_weights": "None", + "transformer__transformers": "[('categoricals', OneHotEncoder(handle_unknown='ignore', sparse_output=False), ['season', 'weathersit']), ('numericals', 'passthrough', ['yr', 'mnth', 'hr', 'holiday', 'weekday', 'workingday', 'temp', 'atemp', 'hum', 'windspeed', 'casual'])]", + "transformer__verbose": "False", + "transformer__verbose_feature_names_out": "True", + "verbose": "False" + }, + { + "estimator_class": "sklearn.pipeline.Pipeline", + "estimator_name": "Pipeline", + "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.log-model.history": "[{\"run_id\": \"abad34d51a2a4cffa328136540b455c0\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 20:15:36.204115\", \"model_uuid\": \"fe2207a51a9e4044908492f3b08b501a\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"abad34d51a2a4cffa328136540b455c0\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 20:15:40.634927\", \"model_uuid\": \"f44319bad67247bfbb342d00bb00963e\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.1.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}}]", + "mlflow.project.backend": "local", + "mlflow.project.entryPoint": "main", + "mlflow.project.env": "virtualenv", + "mlflow.runName": "Training", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.source.name": "file:///home/fmind/mlops-python-package", + "mlflow.source.type": "PROJECT", + "mlflow.user": "fmind" + }, + "fmind", + "file:///home/fmind/mlops-python-package", + "PROJECT", + "main", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "git@github.com:fmind/mlops-python-package", + "git@github.com:fmind/mlops-python-package", + "Training", + "virtualenv", + "local", "Pipeline", "sklearn.pipeline.Pipeline", - "[{\"run_id\": \"a75ea3e9742c48fd9c34a5b8abf9bd89\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-07-21 15:30:23.365959\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.4\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.4.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}, \"model_uuid\": \"ade01433a8a54ec298de322ba009fa10\", \"mlflow_version\": \"2.14.3\", \"signature\": {\"inputs\": \"[{\\\"type\\\": \\\"datetime\\\", \\\"name\\\": \\\"dteday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"season\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"yr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"mnth\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"hr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"holiday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weekday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"workingday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weathersit\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"temp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"atemp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"hum\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"windspeed\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"casual\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"registered\\\", \\\"required\\\": true}]\", \"outputs\": \"[{\\\"type\\\": \\\"tensor\\\", \\\"tensor-spec\\\": {\\\"dtype\\\": \\\"float64\\\", \\\"shape\\\": [-1]}}]\", \"params\": null}, \"saved_input_example_info\": {\"artifact_path\": \"input_example.json\", \"type\": \"dataframe\", \"pandas_orient\": \"split\"}, \"model_size_bytes\": 203898413}, {\"run_id\": \"a75ea3e9742c48fd9c34a5b8abf9bd89\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-07-21 15:30:35.571973\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.0.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.4\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}, \"model_uuid\": \"06840f30fcdd4553a7aaf17e83232475\", \"mlflow_version\": \"2.14.3\", \"signature\": {\"inputs\": \"[{\\\"type\\\": \\\"datetime\\\", \\\"name\\\": \\\"dteday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"season\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"yr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"mnth\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"hr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"holiday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weekday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"workingday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weathersit\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"temp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"atemp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"hum\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"windspeed\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"casual\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"registered\\\", \\\"required\\\": true}]\", \"outputs\": \"[{\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"prediction\\\", \\\"required\\\": true}]\", \"params\": null}, \"saved_input_example_info\": {\"artifact_path\": \"input_example.json\", \"type\": \"dataframe\", \"pandas_orient\": \"split\"}, \"model_size_bytes\": 205599260}]", + "[{\"run_id\": \"abad34d51a2a4cffa328136540b455c0\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 20:15:36.204115\", \"model_uuid\": \"fe2207a51a9e4044908492f3b08b501a\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"abad34d51a2a4cffa328136540b455c0\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 20:15:40.634927\", \"model_uuid\": \"f44319bad67247bfbb342d00bb00963e\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.1.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}}]", null, null ], [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/47302e957d8542198a281aad07b2413b/artifacts", - "2024-07-21T15:03:07.098000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/ca4c7550ad354be9a2f10f7eade8d47e/artifacts", + "2024-12-09T19:33:10.574000", + "892046783494697990", "active", - "47302e957d8542198a281aad07b2413b", + "ca4c7550ad354be9a2f10f7eade8d47e", "Training", - "47302e957d8542198a281aad07b2413b", - "2024-07-21T15:02:42.090000", + "ca4c7550ad354be9a2f10f7eade8d47e", + "2024-12-09T19:32:47.406000", "FINISHED", "fmind", { - "mean_squared_error": -1786.7527777777777, - "system/cpu_utilization_percentage": 15.6, - "system/disk_available_megabytes": 35139.3, - "system/disk_usage_megabytes": 70848.1, - "system/disk_usage_percentage": 66.8, - "system/network_receive_megabytes": 0.001855000000034579, - "system/network_transmit_megabytes": 0.003730000000018663, - "system/system_memory_usage_megabytes": 4143.6, - "system/system_memory_usage_percentage": 27.5, + "mean_squared_error": -1786.7527777777775, + "system/cpu_utilization_percentage": 100, + "system/disk_available_megabytes": 13904.4, + "system/disk_usage_megabytes": 101839, + "system/disk_usage_percentage": 88, + "system/network_receive_megabytes": 0, + "system/network_transmit_megabytes": 0, + "system/system_memory_usage_megabytes": 5196, + "system/system_memory_usage_percentage": 34.5, "training_mean_absolute_error": 6.8051192198812736, "training_mean_squared_error": 124.51054615575788, "training_r2_score": 0.9948851411922456, @@ -7074,6 +8058,7 @@ "regressor__verbose": "0", "regressor__warm_start": "False", "steps": "[('transformer', ColumnTransformer(transformers=[('categoricals',\n OneHotEncoder(handle_unknown='ignore',\n sparse_output=False),\n ['season', 'weathersit']),\n ('numericals', 'passthrough',\n ['yr', 'mnth', 'hr', 'holiday', 'weekday',\n 'workingday', 'temp', 'atemp', 'hum',\n 'windspeed', 'casual'])])), ('regressor', RandomForestRegressor(max_depth=20, n_estimators=200, random_state=42))]", + "transform_input": "None", "transformer": "ColumnTransformer(transformers=[('categoricals',\n OneHotEncoder(handle_unknown='ignore',\n sparse_output=False),\n ['season', 'weathersit']),\n ('numericals', 'passthrough',\n ['yr', 'mnth', 'hr', 'holiday', 'weekday',\n 'workingday', 'temp', 'atemp', 'hum',\n 'windspeed', 'casual'])])", "transformer__categoricals": "OneHotEncoder(handle_unknown='ignore', sparse_output=False)", "transformer__categoricals__categories": "auto", @@ -7084,6 +8069,7 @@ "transformer__categoricals__max_categories": "None", "transformer__categoricals__min_frequency": "None", "transformer__categoricals__sparse_output": "False", + "transformer__force_int_remainder_cols": "True", "transformer__n_jobs": "None", "transformer__numericals": "passthrough", "transformer__remainder": "drop", @@ -7095,61 +8081,230 @@ "verbose": "False" }, { - "estimator_class": "sklearn.pipeline.Pipeline", - "estimator_name": "Pipeline", - "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", - "mlflow.log-model.history": "[{\"run_id\": \"47302e957d8542198a281aad07b2413b\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-07-21 15:02:54.863113\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.4\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.4.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}, \"model_uuid\": \"4fd09447dee548f586e05d2edbfbe2d8\", \"mlflow_version\": \"2.14.3\", \"signature\": {\"inputs\": \"[{\\\"type\\\": \\\"datetime\\\", \\\"name\\\": \\\"dteday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"season\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"yr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"mnth\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"hr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"holiday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weekday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"workingday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weathersit\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"temp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"atemp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"hum\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"windspeed\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"casual\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"registered\\\", \\\"required\\\": true}]\", \"outputs\": \"[{\\\"type\\\": \\\"tensor\\\", \\\"tensor-spec\\\": {\\\"dtype\\\": \\\"float64\\\", \\\"shape\\\": [-1]}}]\", \"params\": null}, \"saved_input_example_info\": {\"artifact_path\": \"input_example.json\", \"type\": \"dataframe\", \"pandas_orient\": \"split\"}, \"model_size_bytes\": 203898413}, {\"run_id\": \"47302e957d8542198a281aad07b2413b\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-07-21 15:02:59.278448\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.0.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.4\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}, \"model_uuid\": \"c18c304506ec438c9937a5804b4e19bc\", \"mlflow_version\": \"2.14.3\", \"signature\": {\"inputs\": \"[{\\\"type\\\": \\\"datetime\\\", \\\"name\\\": \\\"dteday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"season\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"yr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"mnth\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"hr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"holiday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weekday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"workingday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weathersit\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"temp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"atemp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"hum\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"windspeed\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"casual\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"registered\\\", \\\"required\\\": true}]\", \"outputs\": \"[{\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"prediction\\\", \\\"required\\\": true}]\", \"params\": null}, \"saved_input_example_info\": {\"artifact_path\": \"input_example.json\", \"type\": \"dataframe\", \"pandas_orient\": \"split\"}, \"model_size_bytes\": 205599260}]", - "mlflow.project.backend": "local", - "mlflow.project.entryPoint": "main", - "mlflow.project.env": "virtualenv", - "mlflow.runName": "Training", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", - "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", - "mlflow.source.name": "file:///home/fmind/mlops-python-package", - "mlflow.source.type": "PROJECT", + "estimator_class": "sklearn.pipeline.Pipeline", + "estimator_name": "Pipeline", + "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.log-model.history": "[{\"run_id\": \"ca4c7550ad354be9a2f10f7eade8d47e\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 19:32:59.722969\", \"model_uuid\": \"d925b66d7b954d01aeee5c19cbdf12cd\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.6.0\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"ca4c7550ad354be9a2f10f7eade8d47e\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 19:33:04.014747\", \"model_uuid\": \"31d6dd9554bf41f79dea63dfea57b515\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.1.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}}]", + "mlflow.project.backend": "local", + "mlflow.project.entryPoint": "main", + "mlflow.project.env": "virtualenv", + "mlflow.runName": "Training", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.source.name": "file:///home/fmind/mlops-python-package", + "mlflow.source.type": "PROJECT", + "mlflow.user": "fmind" + }, + "fmind", + "file:///home/fmind/mlops-python-package", + "PROJECT", + "main", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "git@github.com:fmind/mlops-python-package", + "git@github.com:fmind/mlops-python-package", + "Training", + "virtualenv", + "local", + "Pipeline", + "sklearn.pipeline.Pipeline", + "[{\"run_id\": \"ca4c7550ad354be9a2f10f7eade8d47e\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 19:32:59.722969\", \"model_uuid\": \"d925b66d7b954d01aeee5c19cbdf12cd\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.6.0\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"ca4c7550ad354be9a2f10f7eade8d47e\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 19:33:04.014747\", \"model_uuid\": \"31d6dd9554bf41f79dea63dfea57b515\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.1.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}}]", + null, + null + ] + ], + "fillcolor": "rgba(255,255,255,0)", + "hoveron": "points", + "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
estimator_name=%{customdata[23]}
estimator_class=%{customdata[24]}
mlflow.log-model.history=%{customdata[25]}
mlflow.autologging=%{customdata[26]}
mlflow.parentRunId=%{customdata[27]}", + "hovertext": [ + "fc31f5b645204fdd9ef58fbbc0c105eb", + "abad34d51a2a4cffa328136540b455c0", + "ca4c7550ad354be9a2f10f7eade8d47e" + ], + "legendgroup": "Training", + "line": { + "color": "rgba(255,255,255,0)" + }, + "marker": { + "color": "#FFA15A" + }, + "name": "Training", + "offsetgroup": "Training", + "orientation": "h", + "pointpos": 0, + "showlegend": true, + "type": "box", + "x": [ + 22.07, + 25.301, + 23.168 + ], + "x0": " ", + "xaxis": "x", + "y0": " ", + "yaxis": "y" + }, + { + "alignmentgroup": "True", + "boxpoints": "all", + "customdata": [ + [ + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/2d2ec19f48a040e4af90b20fdf7e6575/artifacts", + "2024-12-09T21:25:36.982000", + "892046783494697990", + "active", + "2d2ec19f48a040e4af90b20fdf7e6575", + "angry-dog-423", + "2d2ec19f48a040e4af90b20fdf7e6575", + "2024-12-09T21:25:03.572000", + "FINISHED", + "fmind", + { + "mean_fit_time": 1.0932143330574036, + "mean_score_time": 0.038968682289123535, + "mean_test_score": -16644.957118055558, + "rank_test_score": 3, + "std_fit_time": 0.15177696215903197, + "std_score_time": 0.0005394662396354217, + "std_test_score": 5315.459715152708 + }, + { + "max_depth": "3", + "n_estimators": "200", + "random_state": "42" + }, + { + "estimator_class": "bikes.core.models.BaselineSklearnModel", + "estimator_name": "BaselineSklearnModel", + "mlflow.autologging": "sklearn", + "mlflow.parentRunId": "5ded1a1700cc4e0ea786ed96cc15c410", + "mlflow.runName": "angry-dog-423", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", + "mlflow.source.type": "LOCAL", + "mlflow.user": "fmind" + }, + "fmind", + "/home/fmind/mlops-python-package/src/bikes/__main__.py", + "LOCAL", + null, + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + null, + null, + "angry-dog-423", + null, + null, + "BaselineSklearnModel", + "bikes.core.models.BaselineSklearnModel", + null, + "sklearn", + "5ded1a1700cc4e0ea786ed96cc15c410" + ] + ], + "fillcolor": "rgba(255,255,255,0)", + "hoveron": "points", + "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
estimator_name=%{customdata[23]}
estimator_class=%{customdata[24]}
mlflow.log-model.history=%{customdata[25]}
mlflow.autologging=%{customdata[26]}
mlflow.parentRunId=%{customdata[27]}", + "hovertext": [ + "2d2ec19f48a040e4af90b20fdf7e6575" + ], + "legendgroup": "angry-dog-423", + "line": { + "color": "rgba(255,255,255,0)" + }, + "marker": { + "color": "#19d3f3" + }, + "name": "angry-dog-423", + "offsetgroup": "angry-dog-423", + "orientation": "h", + "pointpos": 0, + "showlegend": true, + "type": "box", + "x": [ + 33.41 + ], + "x0": " ", + "xaxis": "x", + "y0": " ", + "yaxis": "y" + }, + { + "alignmentgroup": "True", + "boxpoints": "all", + "customdata": [ + [ + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/352518f26eef4fa38bcd37c0e91c9f97/artifacts", + "2024-12-09T21:25:36.982000", + "892046783494697990", + "active", + "352518f26eef4fa38bcd37c0e91c9f97", + "lyrical-snail-804", + "352518f26eef4fa38bcd37c0e91c9f97", + "2024-12-09T21:25:03.572000", + "FINISHED", + "fmind", + { + "mean_fit_time": 2.202679216861725, + "mean_score_time": 0.041945457458496094, + "mean_test_score": -5517.252604166667, + "rank_test_score": 1, + "std_fit_time": 0.32352226262719747, + "std_score_time": 0.0005519371825696691, + "std_test_score": 1613.520146542553 + }, + { + "max_depth": "7", + "n_estimators": "200", + "random_state": "42" + }, + { + "estimator_class": "bikes.core.models.BaselineSklearnModel", + "estimator_name": "BaselineSklearnModel", + "mlflow.autologging": "sklearn", + "mlflow.parentRunId": "5ded1a1700cc4e0ea786ed96cc15c410", + "mlflow.runName": "lyrical-snail-804", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", + "mlflow.source.type": "LOCAL", "mlflow.user": "fmind" }, "fmind", - "file:///home/fmind/mlops-python-package", - "PROJECT", - "main", - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", - "git@github.com:fmind/mlops-python-package", - "git@github.com:fmind/mlops-python-package", - "Training", - "virtualenv", - "local", + "/home/fmind/mlops-python-package/src/bikes/__main__.py", + "LOCAL", null, - "Pipeline", - "sklearn.pipeline.Pipeline", - "[{\"run_id\": \"47302e957d8542198a281aad07b2413b\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-07-21 15:02:54.863113\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.4\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.4.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}, \"model_uuid\": \"4fd09447dee548f586e05d2edbfbe2d8\", \"mlflow_version\": \"2.14.3\", \"signature\": {\"inputs\": \"[{\\\"type\\\": \\\"datetime\\\", \\\"name\\\": \\\"dteday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"season\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"yr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"mnth\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"hr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"holiday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weekday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"workingday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weathersit\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"temp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"atemp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"hum\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"windspeed\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"casual\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"registered\\\", \\\"required\\\": true}]\", \"outputs\": \"[{\\\"type\\\": \\\"tensor\\\", \\\"tensor-spec\\\": {\\\"dtype\\\": \\\"float64\\\", \\\"shape\\\": [-1]}}]\", \"params\": null}, \"saved_input_example_info\": {\"artifact_path\": \"input_example.json\", \"type\": \"dataframe\", \"pandas_orient\": \"split\"}, \"model_size_bytes\": 203898413}, {\"run_id\": \"47302e957d8542198a281aad07b2413b\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-07-21 15:02:59.278448\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.0.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.4\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}, \"model_uuid\": \"c18c304506ec438c9937a5804b4e19bc\", \"mlflow_version\": \"2.14.3\", \"signature\": {\"inputs\": \"[{\\\"type\\\": \\\"datetime\\\", \\\"name\\\": \\\"dteday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"season\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"yr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"mnth\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"hr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"holiday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weekday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"workingday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weathersit\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"temp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"atemp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"hum\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"windspeed\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"casual\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"registered\\\", \\\"required\\\": true}]\", \"outputs\": \"[{\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"prediction\\\", \\\"required\\\": true}]\", \"params\": null}, \"saved_input_example_info\": {\"artifact_path\": \"input_example.json\", \"type\": \"dataframe\", \"pandas_orient\": \"split\"}, \"model_size_bytes\": 205599260}]", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", null, - null + null, + "lyrical-snail-804", + null, + null, + "BaselineSklearnModel", + "bikes.core.models.BaselineSklearnModel", + null, + "sklearn", + "5ded1a1700cc4e0ea786ed96cc15c410" ] ], "fillcolor": "rgba(255,255,255,0)", "hoveron": "points", - "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
mlflow.datasets=%{customdata[23]}
estimator_name=%{customdata[24]}
estimator_class=%{customdata[25]}
mlflow.log-model.history=%{customdata[26]}
mlflow.autologging=%{customdata[27]}
mlflow.parentRunId=%{customdata[28]}", + "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
estimator_name=%{customdata[23]}
estimator_class=%{customdata[24]}
mlflow.log-model.history=%{customdata[25]}
mlflow.autologging=%{customdata[26]}
mlflow.parentRunId=%{customdata[27]}", "hovertext": [ - "a75ea3e9742c48fd9c34a5b8abf9bd89", - "47302e957d8542198a281aad07b2413b" + "352518f26eef4fa38bcd37c0e91c9f97" ], - "legendgroup": "Training", + "legendgroup": "lyrical-snail-804", "line": { "color": "rgba(255,255,255,0)" }, "marker": { - "color": "#FFA15A" + "color": "#FF6692" }, - "name": "Training", - "offsetgroup": "Training", + "name": "lyrical-snail-804", + "offsetgroup": "lyrical-snail-804", "orientation": "h", "pointpos": 0, "showlegend": true, "type": "box", "x": [ - 80.807, - 25.008 + 33.41 ], "x0": " ", "xaxis": "x", @@ -7161,26 +8316,26 @@ "boxpoints": "all", "customdata": [ [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/005e2f5532664a7aa7aafaa1509c3575/artifacts", - "2024-07-21T15:29:11.193000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/5ded1a1700cc4e0ea786ed96cc15c410/artifacts", + "2024-12-09T21:25:37.702000", + "892046783494697990", "active", - "005e2f5532664a7aa7aafaa1509c3575", + "5ded1a1700cc4e0ea786ed96cc15c410", "Tuning", - "005e2f5532664a7aa7aafaa1509c3575", - "2024-07-21T15:27:31.082000", + "5ded1a1700cc4e0ea786ed96cc15c410", + "2024-12-09T21:25:03.572000", "FINISHED", "fmind", { "best_cv_score": -5517.252604166667, - "system/cpu_utilization_percentage": 47.2, - "system/disk_available_megabytes": 34093.7, - "system/disk_usage_megabytes": 71913, - "system/disk_usage_percentage": 67.8, - "system/network_receive_megabytes": 254.222282, - "system/network_transmit_megabytes": 507.10717, - "system/system_memory_usage_megabytes": 8470.1, - "system/system_memory_usage_percentage": 56.2, + "system/cpu_utilization_percentage": 9.7, + "system/disk_available_megabytes": 11550.6, + "system/disk_usage_megabytes": 104367.7, + "system/disk_usage_percentage": 90, + "system/network_receive_megabytes": 0.00699700000041048, + "system/network_transmit_megabytes": 0.007774000000154047, + "system/system_memory_usage_megabytes": 6252.9, + "system/system_memory_usage_percentage": 41.5, "training_score": -1951.0630079838884 }, { @@ -7201,12 +8356,12 @@ "estimator_class": "sklearn.model_selection._search.GridSearchCV", "estimator_name": "GridSearchCV", "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", - "mlflow.log-model.history": "[{\"run_id\": \"005e2f5532664a7aa7aafaa1509c3575\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-07-21 15:28:24.521733\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.4\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.4.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}, \"model_uuid\": \"c800dd5b2d1f49ce98281338d9abbd29\", \"mlflow_version\": \"2.14.3\", \"signature\": {\"inputs\": \"[{\\\"type\\\": \\\"datetime\\\", \\\"name\\\": \\\"dteday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"season\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"yr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"mnth\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"hr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"holiday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weekday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"workingday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weathersit\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"temp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"atemp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"hum\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"windspeed\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"casual\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"registered\\\", \\\"required\\\": true}]\", \"outputs\": \"[{\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"prediction\\\", \\\"required\\\": true}]\", \"params\": null}, \"saved_input_example_info\": {\"artifact_path\": \"input_example.json\", \"type\": \"dataframe\", \"pandas_orient\": \"split\"}, \"model_size_bytes\": 3726525}, {\"run_id\": \"005e2f5532664a7aa7aafaa1509c3575\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-07-21 15:28:50.044236\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.4\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.4.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}, \"model_uuid\": \"acb76eef9e5e4a56aa84e634b7d7444c\", \"mlflow_version\": \"2.14.3\", \"signature\": {\"inputs\": \"[{\\\"type\\\": \\\"datetime\\\", \\\"name\\\": \\\"dteday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"season\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"yr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"mnth\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"hr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"holiday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weekday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"workingday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weathersit\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"temp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"atemp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"hum\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"windspeed\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"casual\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"registered\\\", \\\"required\\\": true}]\", \"outputs\": \"[{\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"prediction\\\", \\\"required\\\": true}]\", \"params\": null}, \"saved_input_example_info\": {\"artifact_path\": \"input_example.json\", \"type\": \"dataframe\", \"pandas_orient\": \"split\"}, \"model_size_bytes\": 3713919}]", + "mlflow.log-model.history": "[{\"run_id\": \"5ded1a1700cc4e0ea786ed96cc15c410\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 21:25:30.717827\", \"model_uuid\": \"aa3b9d7746ac436d86292c4c55d3ce29\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"5ded1a1700cc4e0ea786ed96cc15c410\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-12-09 21:25:34.349513\", \"model_uuid\": \"0406ff5b9abe4e68b91a8c55af172213\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}]", "mlflow.project.backend": "local", "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Tuning", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", @@ -7216,40 +8371,39 @@ "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Tuning", "virtualenv", "local", - null, "GridSearchCV", "sklearn.model_selection._search.GridSearchCV", - "[{\"run_id\": \"005e2f5532664a7aa7aafaa1509c3575\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-07-21 15:28:24.521733\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.4\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.4.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}, \"model_uuid\": \"c800dd5b2d1f49ce98281338d9abbd29\", \"mlflow_version\": \"2.14.3\", \"signature\": {\"inputs\": \"[{\\\"type\\\": \\\"datetime\\\", \\\"name\\\": \\\"dteday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"season\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"yr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"mnth\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"hr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"holiday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weekday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"workingday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weathersit\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"temp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"atemp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"hum\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"windspeed\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"casual\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"registered\\\", \\\"required\\\": true}]\", \"outputs\": \"[{\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"prediction\\\", \\\"required\\\": true}]\", \"params\": null}, \"saved_input_example_info\": {\"artifact_path\": \"input_example.json\", \"type\": \"dataframe\", \"pandas_orient\": \"split\"}, \"model_size_bytes\": 3726525}, {\"run_id\": \"005e2f5532664a7aa7aafaa1509c3575\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-07-21 15:28:50.044236\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.4\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.4.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}, \"model_uuid\": \"acb76eef9e5e4a56aa84e634b7d7444c\", \"mlflow_version\": \"2.14.3\", \"signature\": {\"inputs\": \"[{\\\"type\\\": \\\"datetime\\\", \\\"name\\\": \\\"dteday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"season\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"yr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"mnth\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"hr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"holiday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weekday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"workingday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weathersit\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"temp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"atemp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"hum\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"windspeed\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"casual\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"registered\\\", \\\"required\\\": true}]\", \"outputs\": \"[{\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"prediction\\\", \\\"required\\\": true}]\", \"params\": null}, \"saved_input_example_info\": {\"artifact_path\": \"input_example.json\", \"type\": \"dataframe\", \"pandas_orient\": \"split\"}, \"model_size_bytes\": 3713919}]", + "[{\"run_id\": \"5ded1a1700cc4e0ea786ed96cc15c410\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 21:25:30.717827\", \"model_uuid\": \"aa3b9d7746ac436d86292c4c55d3ce29\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"5ded1a1700cc4e0ea786ed96cc15c410\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-12-09 21:25:34.349513\", \"model_uuid\": \"0406ff5b9abe4e68b91a8c55af172213\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}]", null, null ], [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/38a4df3abf194e06b5eeaaa0bb383ee8/artifacts", - "2024-07-21T15:02:40.466000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/2bb5da83357d443eb0346606326770ae/artifacts", + "2024-12-09T20:15:21.479000", + "892046783494697990", "active", - "38a4df3abf194e06b5eeaaa0bb383ee8", + "2bb5da83357d443eb0346606326770ae", "Tuning", - "38a4df3abf194e06b5eeaaa0bb383ee8", - "2024-07-21T15:02:02.378000", + "2bb5da83357d443eb0346606326770ae", + "2024-12-09T20:11:34.899000", "FINISHED", "fmind", { "best_cv_score": -5517.252604166667, - "system/cpu_utilization_percentage": 17.1, - "system/disk_available_megabytes": 35143.4, - "system/disk_usage_megabytes": 70843.7, - "system/disk_usage_percentage": 66.8, - "system/network_receive_megabytes": 0.012593999999978678, - "system/network_transmit_megabytes": 0.006136999999995396, - "system/system_memory_usage_megabytes": 4245, - "system/system_memory_usage_percentage": 28.1, + "system/cpu_utilization_percentage": 19.1, + "system/disk_available_megabytes": 12079.1, + "system/disk_usage_megabytes": 103828.7, + "system/disk_usage_percentage": 89.6, + "system/network_receive_megabytes": 0.006941999999980908, + "system/network_transmit_megabytes": 0.00029599999993479287, + "system/system_memory_usage_megabytes": 11827.8, + "system/system_memory_usage_percentage": 78.4, "training_score": -1951.0630079838884 }, { @@ -7270,12 +8424,12 @@ "estimator_class": "sklearn.model_selection._search.GridSearchCV", "estimator_name": "GridSearchCV", "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", - "mlflow.log-model.history": "[{\"run_id\": \"38a4df3abf194e06b5eeaaa0bb383ee8\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-07-21 15:02:33.521812\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.4\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.4.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}, \"model_uuid\": \"67c6c33385b04cb5ad03402d17d4e377\", \"mlflow_version\": \"2.14.3\", \"signature\": {\"inputs\": \"[{\\\"type\\\": \\\"datetime\\\", \\\"name\\\": \\\"dteday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"season\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"yr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"mnth\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"hr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"holiday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weekday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"workingday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weathersit\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"temp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"atemp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"hum\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"windspeed\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"casual\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"registered\\\", \\\"required\\\": true}]\", \"outputs\": \"[{\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"prediction\\\", \\\"required\\\": true}]\", \"params\": null}, \"saved_input_example_info\": {\"artifact_path\": \"input_example.json\", \"type\": \"dataframe\", \"pandas_orient\": \"split\"}, \"model_size_bytes\": 3726525}, {\"run_id\": \"38a4df3abf194e06b5eeaaa0bb383ee8\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-07-21 15:02:37.041779\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.4\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.4.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}, \"model_uuid\": \"301cd67b8f704f2280ce6b59d6846c7c\", \"mlflow_version\": \"2.14.3\", \"signature\": {\"inputs\": \"[{\\\"type\\\": \\\"datetime\\\", \\\"name\\\": \\\"dteday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"season\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"yr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"mnth\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"hr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"holiday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weekday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"workingday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weathersit\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"temp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"atemp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"hum\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"windspeed\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"casual\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"registered\\\", \\\"required\\\": true}]\", \"outputs\": \"[{\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"prediction\\\", \\\"required\\\": true}]\", \"params\": null}, \"saved_input_example_info\": {\"artifact_path\": \"input_example.json\", \"type\": \"dataframe\", \"pandas_orient\": \"split\"}, \"model_size_bytes\": 3713919}]", + "mlflow.log-model.history": "[{\"run_id\": \"2bb5da83357d443eb0346606326770ae\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 20:15:01.134394\", \"model_uuid\": \"c98c0f4df45649ca8721179a65a45f05\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"2bb5da83357d443eb0346606326770ae\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-12-09 20:15:17.229920\", \"model_uuid\": \"ed1ae8f113754da49fd14448fb88d32a\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}]", "mlflow.project.backend": "local", "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Tuning", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", @@ -7285,33 +8439,101 @@ "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Tuning", "virtualenv", "local", + "GridSearchCV", + "sklearn.model_selection._search.GridSearchCV", + "[{\"run_id\": \"2bb5da83357d443eb0346606326770ae\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 20:15:01.134394\", \"model_uuid\": \"c98c0f4df45649ca8721179a65a45f05\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"2bb5da83357d443eb0346606326770ae\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-12-09 20:15:17.229920\", \"model_uuid\": \"ed1ae8f113754da49fd14448fb88d32a\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}]", null, + null + ], + [ + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/d8d365de957c46098b7cf2e251b486fb/artifacts", + "2024-12-09T19:32:45.822000", + "892046783494697990", + "active", + "d8d365de957c46098b7cf2e251b486fb", + "Tuning", + "d8d365de957c46098b7cf2e251b486fb", + "2024-12-09T19:31:03.107000", + "FINISHED", + "fmind", + { + "best_cv_score": -5517.252604166667, + "system/cpu_utilization_percentage": 13.7, + "system/disk_available_megabytes": 13904.4, + "system/disk_usage_megabytes": 101839, + "system/disk_usage_percentage": 88, + "system/network_receive_megabytes": 0.0017000000007101337, + "system/network_transmit_megabytes": 0.002966000000014901, + "system/system_memory_usage_megabytes": 5151.2, + "system/system_memory_usage_percentage": 34.2, + "training_score": -1951.0630079838884 + }, + { + "best_max_depth": "7", + "conf_file": "confs/tuning.yaml", + "cv": "KIND='TimeSeriesSplitter' gap=0 n_splits=4 test_size=1440", + "error_score": "raise", + "estimator": "KIND='BaselineSklearnModel' max_depth=20 n_estimators=200 random_state=42", + "n_jobs": "None", + "param_grid": "{'max_depth': [3, 5, 7]}", + "pre_dispatch": "2*n_jobs", + "refit": "True", + "return_train_score": "False", + "scoring": "", + "verbose": "3" + }, + { + "estimator_class": "sklearn.model_selection._search.GridSearchCV", + "estimator_name": "GridSearchCV", + "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.log-model.history": "[{\"run_id\": \"d8d365de957c46098b7cf2e251b486fb\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 19:32:38.556552\", \"model_uuid\": \"409d881ce0dd4efc8439d95e9d2fa9f3\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.6.0\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"d8d365de957c46098b7cf2e251b486fb\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-12-09 19:32:42.268804\", \"model_uuid\": \"244b00e5d67f40a8876cd3b5eb18a39f\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.6.0\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}]", + "mlflow.project.backend": "local", + "mlflow.project.entryPoint": "main", + "mlflow.project.env": "virtualenv", + "mlflow.runName": "Tuning", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.source.name": "file:///home/fmind/mlops-python-package", + "mlflow.source.type": "PROJECT", + "mlflow.user": "fmind" + }, + "fmind", + "file:///home/fmind/mlops-python-package", + "PROJECT", + "main", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "git@github.com:fmind/mlops-python-package", + "git@github.com:fmind/mlops-python-package", + "Tuning", + "virtualenv", + "local", "GridSearchCV", "sklearn.model_selection._search.GridSearchCV", - "[{\"run_id\": \"38a4df3abf194e06b5eeaaa0bb383ee8\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-07-21 15:02:33.521812\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.4\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.4.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}, \"model_uuid\": \"67c6c33385b04cb5ad03402d17d4e377\", \"mlflow_version\": \"2.14.3\", \"signature\": {\"inputs\": \"[{\\\"type\\\": \\\"datetime\\\", \\\"name\\\": \\\"dteday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"season\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"yr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"mnth\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"hr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"holiday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weekday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"workingday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weathersit\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"temp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"atemp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"hum\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"windspeed\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"casual\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"registered\\\", \\\"required\\\": true}]\", \"outputs\": \"[{\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"prediction\\\", \\\"required\\\": true}]\", \"params\": null}, \"saved_input_example_info\": {\"artifact_path\": \"input_example.json\", \"type\": \"dataframe\", \"pandas_orient\": \"split\"}, \"model_size_bytes\": 3726525}, {\"run_id\": \"38a4df3abf194e06b5eeaaa0bb383ee8\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-07-21 15:02:37.041779\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.4\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.4.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}, \"model_uuid\": \"301cd67b8f704f2280ce6b59d6846c7c\", \"mlflow_version\": \"2.14.3\", \"signature\": {\"inputs\": \"[{\\\"type\\\": \\\"datetime\\\", \\\"name\\\": \\\"dteday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"season\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"yr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"mnth\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"hr\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"holiday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weekday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"boolean\\\", \\\"name\\\": \\\"workingday\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"integer\\\", \\\"name\\\": \\\"weathersit\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"temp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"atemp\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"hum\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"float\\\", \\\"name\\\": \\\"windspeed\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"casual\\\", \\\"required\\\": true}, {\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"registered\\\", \\\"required\\\": true}]\", \"outputs\": \"[{\\\"type\\\": \\\"long\\\", \\\"name\\\": \\\"prediction\\\", \\\"required\\\": true}]\", \"params\": null}, \"saved_input_example_info\": {\"artifact_path\": \"input_example.json\", \"type\": \"dataframe\", \"pandas_orient\": \"split\"}, \"model_size_bytes\": 3713919}]", + "[{\"run_id\": \"d8d365de957c46098b7cf2e251b486fb\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-09 19:32:38.556552\", \"model_uuid\": \"409d881ce0dd4efc8439d95e9d2fa9f3\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.6.0\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"d8d365de957c46098b7cf2e251b486fb\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-12-09 19:32:42.268804\", \"model_uuid\": \"244b00e5d67f40a8876cd3b5eb18a39f\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.6.0\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}]", null, null ] ], "fillcolor": "rgba(255,255,255,0)", "hoveron": "points", - "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
mlflow.datasets=%{customdata[23]}
estimator_name=%{customdata[24]}
estimator_class=%{customdata[25]}
mlflow.log-model.history=%{customdata[26]}
mlflow.autologging=%{customdata[27]}
mlflow.parentRunId=%{customdata[28]}", + "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
estimator_name=%{customdata[23]}
estimator_class=%{customdata[24]}
mlflow.log-model.history=%{customdata[25]}
mlflow.autologging=%{customdata[26]}
mlflow.parentRunId=%{customdata[27]}", "hovertext": [ - "005e2f5532664a7aa7aafaa1509c3575", - "38a4df3abf194e06b5eeaaa0bb383ee8" + "5ded1a1700cc4e0ea786ed96cc15c410", + "2bb5da83357d443eb0346606326770ae", + "d8d365de957c46098b7cf2e251b486fb" ], "legendgroup": "Tuning", "line": { "color": "rgba(255,255,255,0)" }, "marker": { - "color": "#19d3f3" + "color": "#B6E880" }, "name": "Tuning", "offsetgroup": "Tuning", @@ -7320,8 +8542,9 @@ "showlegend": true, "type": "box", "x": [ - 100.111, - 38.088 + 34.13, + 226.58, + 102.715 ], "x0": " ", "xaxis": "x", @@ -7333,27 +8556,27 @@ "boxpoints": "all", "customdata": [ [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/9867f954f07b448a901844dae9fb8d23/artifacts", - "2024-07-21T15:29:05.256000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/eb21e4c57e3047dd9fbace349ddfc701/artifacts", + "2024-12-09T21:25:36.982000", + "892046783494697990", "active", - "9867f954f07b448a901844dae9fb8d23", - "rumbling-bass-180", - "9867f954f07b448a901844dae9fb8d23", - "2024-07-21T15:27:31.082000", + "eb21e4c57e3047dd9fbace349ddfc701", + "capable-asp-689", + "eb21e4c57e3047dd9fbace349ddfc701", + "2024-12-09T21:25:03.572000", "FINISHED", "fmind", { - "mean_fit_time": 1.2907636165618896, - "mean_score_time": 0.04417002201080322, - "mean_test_score": -16644.957118055558, - "rank_test_score": 3, - "std_fit_time": 0.20825952588936553, - "std_score_time": 0.005795796359843565, - "std_test_score": 5315.459715152708 + "mean_fit_time": 1.6217315793037417, + "mean_score_time": 0.03804677724838257, + "mean_test_score": -8287.860416666666, + "rank_test_score": 2, + "std_fit_time": 0.19954826138452603, + "std_score_time": 0.00046356596170521295, + "std_test_score": 1045.7595024691311 }, { - "max_depth": "3", + "max_depth": "5", "n_estimators": "200", "random_state": "42" }, @@ -7361,9 +8584,9 @@ "estimator_class": "bikes.core.models.BaselineSklearnModel", "estimator_name": "BaselineSklearnModel", "mlflow.autologging": "sklearn", - "mlflow.parentRunId": "005e2f5532664a7aa7aafaa1509c3575", - "mlflow.runName": "rumbling-bass-180", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "mlflow.parentRunId": "5ded1a1700cc4e0ea786ed96cc15c410", + "mlflow.runName": "capable-asp-689", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", "mlflow.source.type": "LOCAL", "mlflow.user": "fmind" @@ -7372,41 +8595,40 @@ "/home/fmind/mlops-python-package/src/bikes/__main__.py", "LOCAL", null, - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", - null, + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", null, - "rumbling-bass-180", null, + "capable-asp-689", null, null, "BaselineSklearnModel", "bikes.core.models.BaselineSklearnModel", null, "sklearn", - "005e2f5532664a7aa7aafaa1509c3575" + "5ded1a1700cc4e0ea786ed96cc15c410" ] ], "fillcolor": "rgba(255,255,255,0)", "hoveron": "points", - "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
mlflow.datasets=%{customdata[23]}
estimator_name=%{customdata[24]}
estimator_class=%{customdata[25]}
mlflow.log-model.history=%{customdata[26]}
mlflow.autologging=%{customdata[27]}
mlflow.parentRunId=%{customdata[28]}", + "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
estimator_name=%{customdata[23]}
estimator_class=%{customdata[24]}
mlflow.log-model.history=%{customdata[25]}
mlflow.autologging=%{customdata[26]}
mlflow.parentRunId=%{customdata[27]}", "hovertext": [ - "9867f954f07b448a901844dae9fb8d23" + "eb21e4c57e3047dd9fbace349ddfc701" ], - "legendgroup": "rumbling-bass-180", + "legendgroup": "capable-asp-689", "line": { "color": "rgba(255,255,255,0)" }, "marker": { - "color": "#FF6692" + "color": "#FF97FF" }, - "name": "rumbling-bass-180", - "offsetgroup": "rumbling-bass-180", + "name": "capable-asp-689", + "offsetgroup": "capable-asp-689", "orientation": "h", "pointpos": 0, "showlegend": true, "type": "box", "x": [ - 94.174 + 33.41 ], "x0": " ", "xaxis": "x", @@ -7418,27 +8640,27 @@ "boxpoints": "all", "customdata": [ [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/9b9c55b6f0874d0eb97963fff97c172c/artifacts", - "2024-07-21T15:29:05.256000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/0f3fb536c019419ba34c04dfb4357f55/artifacts", + "2024-12-09T20:15:20.354000", + "892046783494697990", "active", - "9b9c55b6f0874d0eb97963fff97c172c", - "redolent-koi-314", - "9b9c55b6f0874d0eb97963fff97c172c", - "2024-07-21T15:27:31.082000", + "0f3fb536c019419ba34c04dfb4357f55", + "youthful-carp-377", + "0f3fb536c019419ba34c04dfb4357f55", + "2024-12-09T20:11:34.899000", "FINISHED", "fmind", { - "mean_fit_time": 1.8935438394546509, - "mean_score_time": 0.04412144422531128, - "mean_test_score": -8287.860416666666, - "rank_test_score": 2, - "std_fit_time": 0.35395270632391435, - "std_score_time": 0.001845193435988503, - "std_test_score": 1045.7595024691313 + "mean_fit_time": 2.5905266404151917, + "mean_score_time": 0.06293588876724243, + "mean_test_score": -5517.252604166667, + "rank_test_score": 1, + "std_fit_time": 0.3868199607236693, + "std_score_time": 0.02203671973427432, + "std_test_score": 1613.520146542553 }, { - "max_depth": "5", + "max_depth": "7", "n_estimators": "200", "random_state": "42" }, @@ -7446,9 +8668,9 @@ "estimator_class": "bikes.core.models.BaselineSklearnModel", "estimator_name": "BaselineSklearnModel", "mlflow.autologging": "sklearn", - "mlflow.parentRunId": "005e2f5532664a7aa7aafaa1509c3575", - "mlflow.runName": "redolent-koi-314", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "mlflow.parentRunId": "2bb5da83357d443eb0346606326770ae", + "mlflow.runName": "youthful-carp-377", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", "mlflow.source.type": "LOCAL", "mlflow.user": "fmind" @@ -7457,41 +8679,40 @@ "/home/fmind/mlops-python-package/src/bikes/__main__.py", "LOCAL", null, - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", - null, + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", null, - "redolent-koi-314", null, + "youthful-carp-377", null, null, "BaselineSklearnModel", "bikes.core.models.BaselineSklearnModel", null, "sklearn", - "005e2f5532664a7aa7aafaa1509c3575" + "2bb5da83357d443eb0346606326770ae" ] ], "fillcolor": "rgba(255,255,255,0)", "hoveron": "points", - "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
mlflow.datasets=%{customdata[23]}
estimator_name=%{customdata[24]}
estimator_class=%{customdata[25]}
mlflow.log-model.history=%{customdata[26]}
mlflow.autologging=%{customdata[27]}
mlflow.parentRunId=%{customdata[28]}", + "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
estimator_name=%{customdata[23]}
estimator_class=%{customdata[24]}
mlflow.log-model.history=%{customdata[25]}
mlflow.autologging=%{customdata[26]}
mlflow.parentRunId=%{customdata[27]}", "hovertext": [ - "9b9c55b6f0874d0eb97963fff97c172c" + "0f3fb536c019419ba34c04dfb4357f55" ], - "legendgroup": "redolent-koi-314", + "legendgroup": "youthful-carp-377", "line": { "color": "rgba(255,255,255,0)" }, "marker": { - "color": "#B6E880" + "color": "#FECB52" }, - "name": "redolent-koi-314", - "offsetgroup": "redolent-koi-314", + "name": "youthful-carp-377", + "offsetgroup": "youthful-carp-377", "orientation": "h", "pointpos": 0, "showlegend": true, "type": "box", "x": [ - 94.174 + 225.455 ], "x0": " ", "xaxis": "x", @@ -7503,27 +8724,27 @@ "boxpoints": "all", "customdata": [ [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/b8cf5f33d9ac429fab195d32a9326725/artifacts", - "2024-07-21T15:29:05.256000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/1460078c4b1a4e9eacc1284ef88fb01d/artifacts", + "2024-12-09T20:15:20.354000", + "892046783494697990", "active", - "b8cf5f33d9ac429fab195d32a9326725", - "languid-eel-151", - "b8cf5f33d9ac429fab195d32a9326725", - "2024-07-21T15:27:31.082000", + "1460078c4b1a4e9eacc1284ef88fb01d", + "enchanting-pig-738", + "1460078c4b1a4e9eacc1284ef88fb01d", + "2024-12-09T20:11:34.899000", "FINISHED", "fmind", { - "mean_fit_time": 4.7537882924079895, - "mean_score_time": 0.1421765685081482, - "mean_test_score": -5517.252604166667, - "rank_test_score": 1, - "std_fit_time": 3.0094242269462623, - "std_score_time": 0.10171904359731292, - "std_test_score": 1613.520146542553 + "mean_fit_time": 1.890411198139191, + "mean_score_time": 0.05750620365142822, + "mean_test_score": -16644.957118055558, + "rank_test_score": 3, + "std_fit_time": 0.3518040426866576, + "std_score_time": 0.007664776865110902, + "std_test_score": 5315.459715152708 }, { - "max_depth": "7", + "max_depth": "3", "n_estimators": "200", "random_state": "42" }, @@ -7531,9 +8752,9 @@ "estimator_class": "bikes.core.models.BaselineSklearnModel", "estimator_name": "BaselineSklearnModel", "mlflow.autologging": "sklearn", - "mlflow.parentRunId": "005e2f5532664a7aa7aafaa1509c3575", - "mlflow.runName": "languid-eel-151", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "mlflow.parentRunId": "2bb5da83357d443eb0346606326770ae", + "mlflow.runName": "enchanting-pig-738", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", "mlflow.source.type": "LOCAL", "mlflow.user": "fmind" @@ -7542,41 +8763,124 @@ "/home/fmind/mlops-python-package/src/bikes/__main__.py", "LOCAL", null, - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + null, + null, + "enchanting-pig-738", + null, + null, + "BaselineSklearnModel", + "bikes.core.models.BaselineSklearnModel", + null, + "sklearn", + "2bb5da83357d443eb0346606326770ae" + ] + ], + "fillcolor": "rgba(255,255,255,0)", + "hoveron": "points", + "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
estimator_name=%{customdata[23]}
estimator_class=%{customdata[24]}
mlflow.log-model.history=%{customdata[25]}
mlflow.autologging=%{customdata[26]}
mlflow.parentRunId=%{customdata[27]}", + "hovertext": [ + "1460078c4b1a4e9eacc1284ef88fb01d" + ], + "legendgroup": "enchanting-pig-738", + "line": { + "color": "rgba(255,255,255,0)" + }, + "marker": { + "color": "#636efa" + }, + "name": "enchanting-pig-738", + "offsetgroup": "enchanting-pig-738", + "orientation": "h", + "pointpos": 0, + "showlegend": true, + "type": "box", + "x": [ + 225.455 + ], + "x0": " ", + "xaxis": "x", + "y0": " ", + "yaxis": "y" + }, + { + "alignmentgroup": "True", + "boxpoints": "all", + "customdata": [ + [ + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/fe06e9a76b124cdb8d95a70d0e0807e1/artifacts", + "2024-12-09T20:15:20.354000", + "892046783494697990", + "active", + "fe06e9a76b124cdb8d95a70d0e0807e1", + "youthful-shoat-928", + "fe06e9a76b124cdb8d95a70d0e0807e1", + "2024-12-09T20:11:34.899000", + "FINISHED", + "fmind", + { + "mean_fit_time": 1.954506516456604, + "mean_score_time": 0.04336249828338623, + "mean_test_score": -8287.860416666666, + "rank_test_score": 2, + "std_fit_time": 0.1713001550642603, + "std_score_time": 0.002758689884238117, + "std_test_score": 1045.7595024691311 + }, + { + "max_depth": "5", + "n_estimators": "200", + "random_state": "42" + }, + { + "estimator_class": "bikes.core.models.BaselineSklearnModel", + "estimator_name": "BaselineSklearnModel", + "mlflow.autologging": "sklearn", + "mlflow.parentRunId": "2bb5da83357d443eb0346606326770ae", + "mlflow.runName": "youthful-shoat-928", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", + "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", + "mlflow.source.type": "LOCAL", + "mlflow.user": "fmind" + }, + "fmind", + "/home/fmind/mlops-python-package/src/bikes/__main__.py", + "LOCAL", null, + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", null, - "languid-eel-151", null, + "youthful-shoat-928", null, null, "BaselineSklearnModel", "bikes.core.models.BaselineSklearnModel", null, "sklearn", - "005e2f5532664a7aa7aafaa1509c3575" + "2bb5da83357d443eb0346606326770ae" ] ], "fillcolor": "rgba(255,255,255,0)", "hoveron": "points", - "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
mlflow.datasets=%{customdata[23]}
estimator_name=%{customdata[24]}
estimator_class=%{customdata[25]}
mlflow.log-model.history=%{customdata[26]}
mlflow.autologging=%{customdata[27]}
mlflow.parentRunId=%{customdata[28]}", + "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
estimator_name=%{customdata[23]}
estimator_class=%{customdata[24]}
mlflow.log-model.history=%{customdata[25]}
mlflow.autologging=%{customdata[26]}
mlflow.parentRunId=%{customdata[27]}", "hovertext": [ - "b8cf5f33d9ac429fab195d32a9326725" + "fe06e9a76b124cdb8d95a70d0e0807e1" ], - "legendgroup": "languid-eel-151", + "legendgroup": "youthful-shoat-928", "line": { "color": "rgba(255,255,255,0)" }, "marker": { - "color": "#FF97FF" + "color": "#EF553B" }, - "name": "languid-eel-151", - "offsetgroup": "languid-eel-151", + "name": "youthful-shoat-928", + "offsetgroup": "youthful-shoat-928", "orientation": "h", "pointpos": 0, "showlegend": true, "type": "box", "x": [ - 94.174 + 225.455 ], "x0": " ", "xaxis": "x", @@ -7588,23 +8892,23 @@ "boxpoints": "all", "customdata": [ [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/38c04e59e8344096bf574faf63b10cd1/artifacts", - "2024-07-21T15:02:39.624000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/3c3f2883be0643b9800e8c161764bb5f/artifacts", + "2024-12-09T19:32:45.039000", + "892046783494697990", "active", - "38c04e59e8344096bf574faf63b10cd1", - "charming-boar-572", - "38c04e59e8344096bf574faf63b10cd1", - "2024-07-21T15:02:02.378000", + "3c3f2883be0643b9800e8c161764bb5f", + "resilient-doe-203", + "3c3f2883be0643b9800e8c161764bb5f", + "2024-12-09T19:31:03.107000", "FINISHED", "fmind", { - "mean_fit_time": 1.0880586504936218, - "mean_score_time": 0.03774416446685791, + "mean_fit_time": 1.1269992589950562, + "mean_score_time": 0.04589015245437622, "mean_test_score": -16644.957118055558, "rank_test_score": 3, - "std_fit_time": 0.15489854371698458, - "std_score_time": 0.001806776770578061, + "std_fit_time": 0.1527565842379814, + "std_score_time": 0.002551598470194752, "std_test_score": 5315.459715152708 }, { @@ -7616,9 +8920,9 @@ "estimator_class": "bikes.core.models.BaselineSklearnModel", "estimator_name": "BaselineSklearnModel", "mlflow.autologging": "sklearn", - "mlflow.parentRunId": "38a4df3abf194e06b5eeaaa0bb383ee8", - "mlflow.runName": "charming-boar-572", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "mlflow.parentRunId": "d8d365de957c46098b7cf2e251b486fb", + "mlflow.runName": "resilient-doe-203", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", "mlflow.source.type": "LOCAL", "mlflow.user": "fmind" @@ -7627,41 +8931,40 @@ "/home/fmind/mlops-python-package/src/bikes/__main__.py", "LOCAL", null, - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", - null, + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", null, - "charming-boar-572", null, + "resilient-doe-203", null, null, "BaselineSklearnModel", "bikes.core.models.BaselineSklearnModel", null, "sklearn", - "38a4df3abf194e06b5eeaaa0bb383ee8" + "d8d365de957c46098b7cf2e251b486fb" ] ], "fillcolor": "rgba(255,255,255,0)", "hoveron": "points", - "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
mlflow.datasets=%{customdata[23]}
estimator_name=%{customdata[24]}
estimator_class=%{customdata[25]}
mlflow.log-model.history=%{customdata[26]}
mlflow.autologging=%{customdata[27]}
mlflow.parentRunId=%{customdata[28]}", + "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
estimator_name=%{customdata[23]}
estimator_class=%{customdata[24]}
mlflow.log-model.history=%{customdata[25]}
mlflow.autologging=%{customdata[26]}
mlflow.parentRunId=%{customdata[27]}", "hovertext": [ - "38c04e59e8344096bf574faf63b10cd1" + "3c3f2883be0643b9800e8c161764bb5f" ], - "legendgroup": "charming-boar-572", + "legendgroup": "resilient-doe-203", "line": { "color": "rgba(255,255,255,0)" }, "marker": { - "color": "#FECB52" + "color": "#00cc96" }, - "name": "charming-boar-572", - "offsetgroup": "charming-boar-572", + "name": "resilient-doe-203", + "offsetgroup": "resilient-doe-203", "orientation": "h", "pointpos": 0, "showlegend": true, "type": "box", "x": [ - 37.246 + 101.932 ], "x0": " ", "xaxis": "x", @@ -7673,23 +8976,23 @@ "boxpoints": "all", "customdata": [ [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/82f77216b8ee4a2d8dc0869d4a6bfc48/artifacts", - "2024-07-21T15:02:39.624000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/846fb4b5ca654800b2cb0592c6c2e999/artifacts", + "2024-12-09T19:32:45.039000", + "892046783494697990", "active", - "82f77216b8ee4a2d8dc0869d4a6bfc48", - "luxuriant-bird-233", - "82f77216b8ee4a2d8dc0869d4a6bfc48", - "2024-07-21T15:02:02.378000", + "846fb4b5ca654800b2cb0592c6c2e999", + "unequaled-conch-92", + "846fb4b5ca654800b2cb0592c6c2e999", + "2024-12-09T19:31:03.107000", "FINISHED", "fmind", { - "mean_fit_time": 2.5814242362976074, - "mean_score_time": 0.04819995164871216, + "mean_fit_time": 2.39922958612442, + "mean_score_time": 0.05329245328903198, "mean_test_score": -5517.252604166667, "rank_test_score": 1, - "std_fit_time": 0.41318261395357886, - "std_score_time": 0.00042696711729265627, + "std_fit_time": 0.36662621678955415, + "std_score_time": 0.0019089998263635895, "std_test_score": 1613.520146542553 }, { @@ -7701,9 +9004,9 @@ "estimator_class": "bikes.core.models.BaselineSklearnModel", "estimator_name": "BaselineSklearnModel", "mlflow.autologging": "sklearn", - "mlflow.parentRunId": "38a4df3abf194e06b5eeaaa0bb383ee8", - "mlflow.runName": "luxuriant-bird-233", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "mlflow.parentRunId": "d8d365de957c46098b7cf2e251b486fb", + "mlflow.runName": "unequaled-conch-92", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", "mlflow.source.type": "LOCAL", "mlflow.user": "fmind" @@ -7712,41 +9015,40 @@ "/home/fmind/mlops-python-package/src/bikes/__main__.py", "LOCAL", null, - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", null, null, - "luxuriant-bird-233", - null, + "unequaled-conch-92", null, null, "BaselineSklearnModel", "bikes.core.models.BaselineSklearnModel", null, "sklearn", - "38a4df3abf194e06b5eeaaa0bb383ee8" + "d8d365de957c46098b7cf2e251b486fb" ] ], "fillcolor": "rgba(255,255,255,0)", "hoveron": "points", - "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
mlflow.datasets=%{customdata[23]}
estimator_name=%{customdata[24]}
estimator_class=%{customdata[25]}
mlflow.log-model.history=%{customdata[26]}
mlflow.autologging=%{customdata[27]}
mlflow.parentRunId=%{customdata[28]}", + "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
estimator_name=%{customdata[23]}
estimator_class=%{customdata[24]}
mlflow.log-model.history=%{customdata[25]}
mlflow.autologging=%{customdata[26]}
mlflow.parentRunId=%{customdata[27]}", "hovertext": [ - "82f77216b8ee4a2d8dc0869d4a6bfc48" + "846fb4b5ca654800b2cb0592c6c2e999" ], - "legendgroup": "luxuriant-bird-233", + "legendgroup": "unequaled-conch-92", "line": { "color": "rgba(255,255,255,0)" }, "marker": { - "color": "#636efa" + "color": "#ab63fa" }, - "name": "luxuriant-bird-233", - "offsetgroup": "luxuriant-bird-233", + "name": "unequaled-conch-92", + "offsetgroup": "unequaled-conch-92", "orientation": "h", "pointpos": 0, "showlegend": true, "type": "box", "x": [ - 37.246 + 101.932 ], "x0": " ", "xaxis": "x", @@ -7758,24 +9060,24 @@ "boxpoints": "all", "customdata": [ [ - "file:///home/fmind/mlops-python-package/mlruns/598443335336095652/e110400581f846d08f802c970ae25458/artifacts", - "2024-07-21T15:02:39.624000", - "598443335336095652", + "file:///home/fmind/mlops-python-package/mlruns/892046783494697990/ed9728cf10d74fe6a053231b54e82e16/artifacts", + "2024-12-09T19:32:45.039000", + "892046783494697990", "active", - "e110400581f846d08f802c970ae25458", - "capricious-bear-977", - "e110400581f846d08f802c970ae25458", - "2024-07-21T15:02:02.378000", + "ed9728cf10d74fe6a053231b54e82e16", + "adventurous-fowl-590", + "ed9728cf10d74fe6a053231b54e82e16", + "2024-12-09T19:31:03.107000", "FINISHED", "fmind", { - "mean_fit_time": 1.7571877837181091, - "mean_score_time": 0.0408632755279541, + "mean_fit_time": 1.6259471774101255, + "mean_score_time": 0.045266807079315186, "mean_test_score": -8287.860416666666, "rank_test_score": 2, - "std_fit_time": 0.2750353199252692, - "std_score_time": 0.0028638736758093077, - "std_test_score": 1045.7595024691313 + "std_fit_time": 0.24068743297866052, + "std_score_time": 0.00025423702187683014, + "std_test_score": 1045.7595024691311 }, { "max_depth": "5", @@ -7786,9 +9088,9 @@ "estimator_class": "bikes.core.models.BaselineSklearnModel", "estimator_name": "BaselineSklearnModel", "mlflow.autologging": "sklearn", - "mlflow.parentRunId": "38a4df3abf194e06b5eeaaa0bb383ee8", - "mlflow.runName": "capricious-bear-977", - "mlflow.source.git.commit": "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", + "mlflow.parentRunId": "d8d365de957c46098b7cf2e251b486fb", + "mlflow.runName": "adventurous-fowl-590", + "mlflow.source.git.commit": "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", "mlflow.source.type": "LOCAL", "mlflow.user": "fmind" @@ -7797,41 +9099,40 @@ "/home/fmind/mlops-python-package/src/bikes/__main__.py", "LOCAL", null, - "ee17d0a9de59efd2eb99d667786ac417ec8b3b63", - null, + "6baa64548d67a5bcf0a7f1422dfc8d45ed229aed", null, - "capricious-bear-977", null, + "adventurous-fowl-590", null, null, "BaselineSklearnModel", "bikes.core.models.BaselineSklearnModel", null, "sklearn", - "38a4df3abf194e06b5eeaaa0bb383ee8" + "d8d365de957c46098b7cf2e251b486fb" ] ], "fillcolor": "rgba(255,255,255,0)", "hoveron": "points", - "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
mlflow.datasets=%{customdata[23]}
estimator_name=%{customdata[24]}
estimator_class=%{customdata[25]}
mlflow.log-model.history=%{customdata[26]}
mlflow.autologging=%{customdata[27]}
mlflow.parentRunId=%{customdata[28]}", + "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
estimator_name=%{customdata[23]}
estimator_class=%{customdata[24]}
mlflow.log-model.history=%{customdata[25]}
mlflow.autologging=%{customdata[26]}
mlflow.parentRunId=%{customdata[27]}", "hovertext": [ - "e110400581f846d08f802c970ae25458" + "ed9728cf10d74fe6a053231b54e82e16" ], - "legendgroup": "capricious-bear-977", + "legendgroup": "adventurous-fowl-590", "line": { "color": "rgba(255,255,255,0)" }, "marker": { - "color": "#EF553B" + "color": "#FFA15A" }, - "name": "capricious-bear-977", - "offsetgroup": "capricious-bear-977", + "name": "adventurous-fowl-590", + "offsetgroup": "adventurous-fowl-590", "orientation": "h", "pointpos": 0, "showlegend": true, "type": "box", "x": [ - 37.246 + 101.932 ], "x0": " ", "xaxis": "x", @@ -8735,18 +10036,29 @@ null, null, "sklearn.pipeline.Pipeline", - "sklearn.model_selection._search.GridSearchCV", "bikes.core.models.BaselineSklearnModel", "bikes.core.models.BaselineSklearnModel", + "sklearn.model_selection._search.GridSearchCV", "bikes.core.models.BaselineSklearnModel", null, null, null, null, "sklearn.pipeline.Pipeline", + "bikes.core.models.BaselineSklearnModel", + "bikes.core.models.BaselineSklearnModel", "sklearn.model_selection._search.GridSearchCV", "bikes.core.models.BaselineSklearnModel", + null, + null, + null, + null, + null, + null, + "sklearn.pipeline.Pipeline", + "bikes.core.models.BaselineSklearnModel", "bikes.core.models.BaselineSklearnModel", + "sklearn.model_selection._search.GridSearchCV", "bikes.core.models.BaselineSklearnModel" ], "xaxis": "x", @@ -8768,6 +10080,17 @@ 1, 1, 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, 1 ], "yaxis": "y" @@ -9645,7 +10968,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.4" + "version": "3.12.5" } }, "nbformat": 4, diff --git a/notebooks/processing.ipynb b/notebooks/processing.ipynb index 78f28c4..cf0ced5 100644 --- a/notebooks/processing.ipynb +++ b/notebooks/processing.ipynb @@ -20,7 +20,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -65,7 +65,7 @@ "outputs": [], "source": [ "INDEX_COL = \"instant\"\n", - "TARGET_COL = 'cnt'" + "TARGET_COL = \"cnt\"" ] }, { @@ -81,7 +81,7 @@ "metadata": {}, "outputs": [], "source": [ - "SHUFFLE = False # time-sensitive\n", + "SHUFFLE = False # time-sensitive\n", "TEST_SIZE = 0.2" ] }, @@ -98,8 +98,7 @@ "metadata": {}, "outputs": [], "source": [ - "SAMPLE_RATIO = 0.15\n", - "SAMPLE_RANDOM_STATE = 0" + "SAMPLE_SIZE = 2000" ] }, { @@ -659,7 +658,7 @@ { "data": { "text/plain": [ - "((2085, 15), (2085, 1))" + "((2000, 15), (2000, 1))" ] }, "execution_count": 11, @@ -668,8 +667,8 @@ } ], "source": [ - "inputs_train_sample = inputs_train.sample(frac=SAMPLE_RATIO, random_state=SAMPLE_RANDOM_STATE)\n", - "targets_train_sample = targets_train.sample(frac=SAMPLE_RATIO, random_state=SAMPLE_RANDOM_STATE)\n", + "inputs_train_sample = inputs_train.tail(SAMPLE_SIZE)\n", + "targets_train_sample = targets_train.tail(SAMPLE_SIZE)\n", "inputs_train_sample.shape, targets_train_sample.shape" ] }, @@ -711,7 +710,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.4" + "version": "3.12.5" } }, "nbformat": 4, diff --git a/notebooks/prototype.ipynb b/notebooks/prototype.ipynb index 7d222f6..503a335 100644 --- a/notebooks/prototype.ipynb +++ b/notebooks/prototype.ipynb @@ -45,9 +45,9 @@ "outputs": [], "source": [ "import pandas as pd\n", - "import sklearn as sk\n", - "import plotly.io as pio\n", "import plotly.express as px\n", + "import plotly.io as pio\n", + "import sklearn as sk\n", "from sklearn import compose, ensemble, metrics, model_selection, pipeline, preprocessing" ] }, @@ -90,7 +90,7 @@ "source": [ "ROOT = Path(\"../\")\n", "DATA = str(ROOT / \"data\")\n", - "CACHE = str(ROOT / \".cache\")" + "CACHE = str(ROOT / \".cache\")" ] }, { @@ -141,7 +141,7 @@ "source": [ "SPLITS = 4\n", "SHUFFLE = False # required (time sensitive)\n", - "TEST_SIZE = 24 * 30 * 2 # use 2 months for backtesting" + "TEST_SIZE = 24 * 30 * 2 # use 2 months for backtesting" ] }, { @@ -575,7 +575,7 @@ " \n", " \n", " top\n", - " 2011-01-01\n", + " 2012-12-31\n", " NaN\n", " NaN\n", " NaN\n", @@ -752,7 +752,7 @@ " dteday season yr mnth hr \\\n", "count 17379 17379.000000 17379.000000 17379.000000 17379.000000 \n", "unique 731 NaN NaN NaN NaN \n", - "top 2011-01-01 NaN NaN NaN NaN \n", + "top 2012-12-31 NaN NaN NaN NaN \n", "freq 24 NaN NaN NaN NaN \n", "mean NaN 2.501640 0.502561 6.537775 11.546752 \n", "std NaN 1.106918 0.500008 3.438776 6.914405 \n", @@ -106052,8 +106052,11 @@ ], "source": [ "px.scatter_matrix(\n", - " hour, dimensions=[\"registered\", \"casual\", \"cnt\", \"mnth\", \"hr\"], color=TARGET,\n", - " height=800, title=\"Analysis of top features\",\n", + " hour,\n", + " dimensions=[\"registered\", \"casual\", \"cnt\", \"mnth\", \"hr\"],\n", + " color=TARGET,\n", + " height=800,\n", + " title=\"Analysis of top features\",\n", ")" ] }, @@ -106087,7 +106090,7 @@ ], "source": [ "inputs, targets = hour.drop(columns=TARGET), hour[TARGET]\n", - "print('Inputs:', inputs.shape, '; Targets:', targets.shape)" + "print(\"Inputs:\", inputs.shape, \"; Targets:\", targets.shape)" ] }, { @@ -106125,8 +106128,12 @@ "metadata": {}, "outputs": [], "source": [ - "assert inputs_train.index.max() < inputs_test.index.min(), \"Inputs train should be before inputs test\"\n", - "assert targets_train.index.max() < targets_test.index.min(), \"Targets train should be before targets test\"" + "assert (\n", + " inputs_train.index.max() < inputs_test.index.min()\n", + "), \"Inputs train should be before inputs test\"\n", + "assert (\n", + " targets_train.index.max() < targets_test.index.min()\n", + "), \"Targets train should be before targets test\"" ] }, { @@ -106154,7 +106161,9 @@ " \"season\",\n", " \"weathersit\",\n", "]\n", - "assert all(col in inputs.columns for col in categoricals), \"All categorical columns should be in inputs.\"" + "assert all(\n", + " col in inputs.columns for col in categoricals\n", + "), \"All categorical columns should be in inputs.\"" ] }, { @@ -106177,7 +106186,9 @@ " \"casual\",\n", " # \"registered\", # too correlated with target\n", "]\n", - "assert all(col in inputs.columns for col in numericals), \"All numerical columns should be in inputs.\"" + "assert all(\n", + " col in inputs.columns for col in numericals\n", + "), \"All numerical columns should be in inputs.\"" ] }, { @@ -106206,7 +106217,8 @@ "text/html": [ "
Pipeline(memory='../.cache',\n",
+       "
Pipeline(memory='../.cache',\n",
        "         steps=[('transformer',\n",
        "                 ColumnTransformer(transformers=[('categoricals',\n",
        "                                                  OneHotEncoder(handle_unknown='ignore',\n",
@@ -106642,7 +106644,7 @@
        "                                                   'workingday', 'temp',\n",
        "                                                   'atemp', 'hum', 'windspeed',\n",
        "                                                   'casual'])])),\n",
-       "                ('regressor', RandomForestRegressor(random_state=42))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
['season', 'weathersit']
OneHotEncoder(handle_unknown='ignore', sparse_output=False)
['yr', 'mnth', 'hr', 'holiday', 'weekday', 'workingday', 'temp', 'atemp', 'hum', 'windspeed', 'casual']
passthrough
RandomForestRegressor(random_state=42)
" ], "text/plain": [ "Pipeline(memory='../.cache',\n", @@ -106679,7 +106681,7 @@ " ('regressor', RandomForestRegressor(random_state=42))])" ] }, - "execution_count": 22, + "execution_count": 60, "metadata": {}, "output_type": "execute_result" } @@ -106724,7 +106726,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 61, "metadata": {}, "outputs": [ { @@ -106755,7 +106757,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 62, "metadata": {}, "outputs": [ { @@ -106775,29 +106777,24 @@ "\n", "/home/fmind/mlops-python-package/.venv/lib/python3.12/site-packages/joblib/memory.py:577: UserWarning:\n", "\n", - "Persisting input arguments took 0.51s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function.\n", - "\n", - "/home/fmind/mlops-python-package/.venv/lib/python3.12/site-packages/joblib/memory.py:577: UserWarning:\n", - "\n", - "Persisting input arguments took 0.57s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function.\n", + "Persisting input arguments took 0.56s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function.\n", "\n", "/home/fmind/mlops-python-package/.venv/lib/python3.12/site-packages/joblib/memory.py:577: UserWarning:\n", "\n", - "Persisting input arguments took 0.74s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function.\n", + "Persisting input arguments took 0.63s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function.\n", "\n", "/home/fmind/mlops-python-package/.venv/lib/python3.12/site-packages/joblib/memory.py:577: UserWarning:\n", "\n", - "Persisting input arguments took 0.70s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function.\n", + "Persisting input arguments took 0.76s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function.\n", "\n" ] }, { "data": { "text/html": [ - "
GridSearchCV(cv=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=4, test_size=1440),\n",
+       "
GridSearchCV(cv=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=4, test_size=1440),\n",
        "             estimator=Pipeline(memory='../.cache',\n",
        "                                steps=[('transformer',\n",
        "                                        ColumnTransformer(transformers=[('categoricals',\n",
@@ -107234,7 +107221,7 @@
        "                                        RandomForestRegressor(random_state=42))]),\n",
        "             param_grid={'regressor__max_depth': [15, 20, 25],\n",
        "                         'regressor__n_estimators': [150, 200, 250]},\n",
-       "             scoring='neg_mean_squared_error', verbose=1)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
['season', 'weathersit']
OneHotEncoder(handle_unknown='ignore', sparse_output=False)
['yr', 'mnth', 'hr', 'holiday', 'weekday', 'workingday', 'temp', 'atemp', 'hum', 'windspeed', 'casual']
passthrough
RandomForestRegressor(max_depth=20, n_estimators=200, random_state=42)
" ], "text/plain": [ "GridSearchCV(cv=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=4, test_size=1440),\n", @@ -107311,7 +107298,7 @@ " scoring='neg_mean_squared_error', verbose=1)" ] }, - "execution_count": 24, + "execution_count": 62, "metadata": {}, "output_type": "execute_result" } @@ -107332,7 +107319,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 63, "metadata": {}, "outputs": [ { @@ -107375,10 +107362,10 @@ " \n", " \n", " 4\n", - " 8.268552\n", - " 1.109317\n", - " 0.052984\n", - " 0.006613\n", + " 8.197777\n", + " 1.114588\n", + " 0.049695\n", + " 0.005310\n", " 20\n", " 200\n", " {'regressor__max_depth': 20, 'regressor__n_est...\n", @@ -107392,10 +107379,10 @@ " \n", " \n", " 1\n", - " 6.722793\n", - " 0.772110\n", - " 0.045184\n", - " 0.005341\n", + " 7.157419\n", + " 1.018962\n", + " 0.045709\n", + " 0.005739\n", " 15\n", " 200\n", " {'regressor__max_depth': 15, 'regressor__n_est...\n", @@ -107409,10 +107396,10 @@ " \n", " \n", " 5\n", - " 9.990789\n", - " 1.255146\n", - " 0.062621\n", - " 0.007046\n", + " 10.689916\n", + " 1.444524\n", + " 0.064643\n", + " 0.012777\n", " 20\n", " 250\n", " {'regressor__max_depth': 20, 'regressor__n_est...\n", @@ -107426,10 +107413,10 @@ " \n", " \n", " 7\n", - " 8.600052\n", - " 1.220360\n", - " 0.054089\n", - " 0.007172\n", + " 8.259196\n", + " 0.936581\n", + " 0.048372\n", + " 0.004113\n", " 25\n", " 200\n", " {'regressor__max_depth': 25, 'regressor__n_est...\n", @@ -107443,10 +107430,10 @@ " \n", " \n", " 2\n", - " 8.170008\n", - " 1.052943\n", - " 0.054579\n", - " 0.006842\n", + " 9.029868\n", + " 1.144401\n", + " 0.055069\n", + " 0.004822\n", " 15\n", " 250\n", " {'regressor__max_depth': 15, 'regressor__n_est...\n", @@ -107464,11 +107451,11 @@ ], "text/plain": [ " mean_fit_time std_fit_time mean_score_time std_score_time \\\n", - "4 8.268552 1.109317 0.052984 0.006613 \n", - "1 6.722793 0.772110 0.045184 0.005341 \n", - "5 9.990789 1.255146 0.062621 0.007046 \n", - "7 8.600052 1.220360 0.054089 0.007172 \n", - "2 8.170008 1.052943 0.054579 0.006842 \n", + "4 8.197777 1.114588 0.049695 0.005310 \n", + "1 7.157419 1.018962 0.045709 0.005739 \n", + "5 10.689916 1.444524 0.064643 0.012777 \n", + "7 8.259196 0.936581 0.048372 0.004113 \n", + "2 9.029868 1.144401 0.055069 0.004822 \n", "\n", " param_regressor__max_depth param_regressor__n_estimators \\\n", "4 20 200 \n", @@ -107499,7 +107486,7 @@ "2 2504.611918 5 " ] }, - "execution_count": 25, + "execution_count": 63, "metadata": {}, "output_type": "execute_result" } @@ -107527,16 +107514,15 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 64, "metadata": {}, "outputs": [ { "data": { "text/html": [ - "
Pipeline(memory='../.cache',\n",
+       "
Pipeline(memory='../.cache',\n",
        "         steps=[('transformer',\n",
        "                 ColumnTransformer(transformers=[('categoricals',\n",
        "                                                  OneHotEncoder(handle_unknown='ignore',\n",
@@ -107962,7 +107938,7 @@
        "                                                   'casual'])])),\n",
        "                ('regressor',\n",
        "                 RandomForestRegressor(max_depth=20, n_estimators=200,\n",
-       "                                       random_state=42))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
['season', 'weathersit']
OneHotEncoder(handle_unknown='ignore', sparse_output=False)
['yr', 'mnth', 'hr', 'holiday', 'weekday', 'workingday', 'temp', 'atemp', 'hum', 'windspeed', 'casual']
passthrough
RandomForestRegressor(max_depth=20, n_estimators=200, random_state=42)
" ], "text/plain": [ "Pipeline(memory='../.cache',\n", @@ -108003,7 +107979,7 @@ " random_state=42))])" ] }, - "execution_count": 26, + "execution_count": 64, "metadata": {}, "output_type": "execute_result" } @@ -108022,7 +107998,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 65, "metadata": {}, "outputs": [ { @@ -108036,7 +108012,7 @@ " ('numericals', 'passthrough',\n", " ['yr', 'mnth', 'hr', 'holiday', 'weekday',\n", " 'workingday', 'temp', 'atemp', 'hum',\n", - " 'windspeed', 'casual'])])), ('regressor', RandomForestRegressor(max_depth=20, n_estimators=200, random_state=42))], 'transform_input': None, 'verbose': False, 'transformer': ColumnTransformer(transformers=[('categoricals',\n", + " 'windspeed', 'casual'])])), ('regressor', RandomForestRegressor(max_depth=20, n_estimators=200, random_state=42))], 'verbose': False, 'transformer': ColumnTransformer(transformers=[('categoricals',\n", " OneHotEncoder(handle_unknown='ignore',\n", " sparse_output=False),\n", " ['season', 'weathersit']),\n", @@ -108067,7 +108043,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 66, "metadata": {}, "outputs": [ { @@ -108089,7 +108065,7 @@ "dtype: float64" ] }, - "execution_count": 28, + "execution_count": 66, "metadata": {}, "output_type": "execute_result" } @@ -108109,7 +108085,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 67, "metadata": {}, "outputs": [ { @@ -108126,7 +108102,7 @@ "dtype: float64" ] }, - "execution_count": 29, + "execution_count": 67, "metadata": {}, "output_type": "execute_result" } @@ -108152,7 +108128,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 68, "metadata": {}, "outputs": [ { @@ -108190,7 +108166,7 @@ ], "xaxis": "x", "y": [ - -4088.298264818843, + -4088.2982648188436, -4091.734465025292, -4098.164381497614, -4105.714045881979, @@ -108212,14 +108188,14 @@ "bar": [ { "error_x": { - "color": "#f2f5fa" + "color": "#2a3f5f" }, "error_y": { - "color": "#f2f5fa" + "color": "#2a3f5f" }, "marker": { "line": { - "color": "rgb(17,17,17)", + "color": "white", "width": 0.5 }, "pattern": { @@ -108235,7 +108211,7 @@ { "marker": { "line": { - "color": "rgb(17,17,17)", + "color": "white", "width": 0.5 }, "pattern": { @@ -108250,18 +108226,18 @@ "carpet": [ { "aaxis": { - "endlinecolor": "#A2B1C6", - "gridcolor": "#506784", - "linecolor": "#506784", - "minorgridcolor": "#506784", - "startlinecolor": "#A2B1C6" + "endlinecolor": "#2a3f5f", + "gridcolor": "#C8D4E3", + "linecolor": "#C8D4E3", + "minorgridcolor": "#C8D4E3", + "startlinecolor": "#2a3f5f" }, "baxis": { - "endlinecolor": "#A2B1C6", - "gridcolor": "#506784", - "linecolor": "#506784", - "minorgridcolor": "#506784", - "startlinecolor": "#A2B1C6" + "endlinecolor": "#2a3f5f", + "gridcolor": "#C8D4E3", + "linecolor": "#C8D4E3", + "minorgridcolor": "#C8D4E3", + "startlinecolor": "#2a3f5f" }, "type": "carpet" } @@ -108579,10 +108555,10 @@ ], "scatter": [ { - "marker": { - "line": { - "color": "#283442" - } + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 }, "type": "scatter" } @@ -108629,8 +108605,9 @@ "scattergl": [ { "marker": { - "line": { - "color": "#283442" + "colorbar": { + "outlinewidth": 0, + "ticks": "" } }, "type": "scattergl" @@ -108735,18 +108712,18 @@ { "cells": { "fill": { - "color": "#506784" + "color": "#EBF0F8" }, "line": { - "color": "rgb(17,17,17)" + "color": "white" } }, "header": { "fill": { - "color": "#2a3f5f" + "color": "#C8D4E3" }, "line": { - "color": "rgb(17,17,17)" + "color": "white" } }, "type": "table" @@ -108755,7 +108732,7 @@ }, "layout": { "annotationdefaults": { - "arrowcolor": "#f2f5fa", + "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, @@ -108911,123 +108888,113 @@ "#FECB52" ], "font": { - "color": "#f2f5fa" + "color": "#2a3f5f" }, "geo": { - "bgcolor": "rgb(17,17,17)", - "lakecolor": "rgb(17,17,17)", - "landcolor": "rgb(17,17,17)", + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "white", "showlakes": true, "showland": true, - "subunitcolor": "#506784" + "subunitcolor": "#C8D4E3" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { - "style": "dark" + "style": "light" }, - "paper_bgcolor": "rgb(17,17,17)", - "plot_bgcolor": "rgb(17,17,17)", + "paper_bgcolor": "white", + "plot_bgcolor": "white", "polar": { "angularaxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#EBF0F8", + "linecolor": "#EBF0F8", "ticks": "" }, - "bgcolor": "rgb(17,17,17)", + "bgcolor": "white", "radialaxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#EBF0F8", + "linecolor": "#EBF0F8", "ticks": "" } }, "scene": { "xaxis": { - "backgroundcolor": "rgb(17,17,17)", - "gridcolor": "#506784", + "backgroundcolor": "white", + "gridcolor": "#DFE8F3", "gridwidth": 2, - "linecolor": "#506784", + "linecolor": "#EBF0F8", "showbackground": true, "ticks": "", - "zerolinecolor": "#C8D4E3" + "zerolinecolor": "#EBF0F8" }, "yaxis": { - "backgroundcolor": "rgb(17,17,17)", - "gridcolor": "#506784", + "backgroundcolor": "white", + "gridcolor": "#DFE8F3", "gridwidth": 2, - "linecolor": "#506784", + "linecolor": "#EBF0F8", "showbackground": true, "ticks": "", - "zerolinecolor": "#C8D4E3" + "zerolinecolor": "#EBF0F8" }, "zaxis": { - "backgroundcolor": "rgb(17,17,17)", - "gridcolor": "#506784", + "backgroundcolor": "white", + "gridcolor": "#DFE8F3", "gridwidth": 2, - "linecolor": "#506784", + "linecolor": "#EBF0F8", "showbackground": true, "ticks": "", - "zerolinecolor": "#C8D4E3" + "zerolinecolor": "#EBF0F8" } }, "shapedefaults": { "line": { - "color": "#f2f5fa" + "color": "#2a3f5f" } }, - "sliderdefaults": { - "bgcolor": "#C8D4E3", - "bordercolor": "rgb(17,17,17)", - "borderwidth": 1, - "tickwidth": 0 - }, "ternary": { "aaxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#DFE8F3", + "linecolor": "#A2B1C6", "ticks": "" }, "baxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#DFE8F3", + "linecolor": "#A2B1C6", "ticks": "" }, - "bgcolor": "rgb(17,17,17)", + "bgcolor": "white", "caxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#DFE8F3", + "linecolor": "#A2B1C6", "ticks": "" } }, "title": { "x": 0.05 }, - "updatemenudefaults": { - "bgcolor": "#506784", - "borderwidth": 0 - }, "xaxis": { "automargin": true, - "gridcolor": "#283442", - "linecolor": "#506784", + "gridcolor": "#EBF0F8", + "linecolor": "#EBF0F8", "ticks": "", "title": { "standoff": 15 }, - "zerolinecolor": "#283442", + "zerolinecolor": "#EBF0F8", "zerolinewidth": 2 }, "yaxis": { "automargin": true, - "gridcolor": "#283442", - "linecolor": "#506784", + "gridcolor": "#EBF0F8", + "linecolor": "#EBF0F8", "ticks": "", "title": { "standoff": 15 }, - "zerolinecolor": "#283442", + "zerolinecolor": "#EBF0F8", "zerolinewidth": 2 } } @@ -109075,7 +109042,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 69, "metadata": {}, "outputs": [ { @@ -109128,7 +109095,7 @@ }, "line": { "color": [ - -4088.298264818843, + -4088.2982648188436, -4091.734465025292, -4098.164381497614, -4105.714045881979, @@ -109202,14 +109169,14 @@ "bar": [ { "error_x": { - "color": "#f2f5fa" + "color": "#2a3f5f" }, "error_y": { - "color": "#f2f5fa" + "color": "#2a3f5f" }, "marker": { "line": { - "color": "rgb(17,17,17)", + "color": "white", "width": 0.5 }, "pattern": { @@ -109225,7 +109192,7 @@ { "marker": { "line": { - "color": "rgb(17,17,17)", + "color": "white", "width": 0.5 }, "pattern": { @@ -109240,18 +109207,18 @@ "carpet": [ { "aaxis": { - "endlinecolor": "#A2B1C6", - "gridcolor": "#506784", - "linecolor": "#506784", - "minorgridcolor": "#506784", - "startlinecolor": "#A2B1C6" + "endlinecolor": "#2a3f5f", + "gridcolor": "#C8D4E3", + "linecolor": "#C8D4E3", + "minorgridcolor": "#C8D4E3", + "startlinecolor": "#2a3f5f" }, "baxis": { - "endlinecolor": "#A2B1C6", - "gridcolor": "#506784", - "linecolor": "#506784", - "minorgridcolor": "#506784", - "startlinecolor": "#A2B1C6" + "endlinecolor": "#2a3f5f", + "gridcolor": "#C8D4E3", + "linecolor": "#C8D4E3", + "minorgridcolor": "#C8D4E3", + "startlinecolor": "#2a3f5f" }, "type": "carpet" } @@ -109569,10 +109536,10 @@ ], "scatter": [ { - "marker": { - "line": { - "color": "#283442" - } + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 }, "type": "scatter" } @@ -109619,8 +109586,9 @@ "scattergl": [ { "marker": { - "line": { - "color": "#283442" + "colorbar": { + "outlinewidth": 0, + "ticks": "" } }, "type": "scattergl" @@ -109725,18 +109693,18 @@ { "cells": { "fill": { - "color": "#506784" + "color": "#EBF0F8" }, "line": { - "color": "rgb(17,17,17)" + "color": "white" } }, "header": { "fill": { - "color": "#2a3f5f" + "color": "#C8D4E3" }, "line": { - "color": "rgb(17,17,17)" + "color": "white" } }, "type": "table" @@ -109745,7 +109713,7 @@ }, "layout": { "annotationdefaults": { - "arrowcolor": "#f2f5fa", + "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, @@ -109901,123 +109869,113 @@ "#FECB52" ], "font": { - "color": "#f2f5fa" + "color": "#2a3f5f" }, "geo": { - "bgcolor": "rgb(17,17,17)", - "lakecolor": "rgb(17,17,17)", - "landcolor": "rgb(17,17,17)", + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "white", "showlakes": true, "showland": true, - "subunitcolor": "#506784" + "subunitcolor": "#C8D4E3" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { - "style": "dark" + "style": "light" }, - "paper_bgcolor": "rgb(17,17,17)", - "plot_bgcolor": "rgb(17,17,17)", + "paper_bgcolor": "white", + "plot_bgcolor": "white", "polar": { "angularaxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#EBF0F8", + "linecolor": "#EBF0F8", "ticks": "" }, - "bgcolor": "rgb(17,17,17)", + "bgcolor": "white", "radialaxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#EBF0F8", + "linecolor": "#EBF0F8", "ticks": "" } }, "scene": { "xaxis": { - "backgroundcolor": "rgb(17,17,17)", - "gridcolor": "#506784", + "backgroundcolor": "white", + "gridcolor": "#DFE8F3", "gridwidth": 2, - "linecolor": "#506784", + "linecolor": "#EBF0F8", "showbackground": true, "ticks": "", - "zerolinecolor": "#C8D4E3" + "zerolinecolor": "#EBF0F8" }, "yaxis": { - "backgroundcolor": "rgb(17,17,17)", - "gridcolor": "#506784", + "backgroundcolor": "white", + "gridcolor": "#DFE8F3", "gridwidth": 2, - "linecolor": "#506784", + "linecolor": "#EBF0F8", "showbackground": true, "ticks": "", - "zerolinecolor": "#C8D4E3" + "zerolinecolor": "#EBF0F8" }, "zaxis": { - "backgroundcolor": "rgb(17,17,17)", - "gridcolor": "#506784", + "backgroundcolor": "white", + "gridcolor": "#DFE8F3", "gridwidth": 2, - "linecolor": "#506784", + "linecolor": "#EBF0F8", "showbackground": true, "ticks": "", - "zerolinecolor": "#C8D4E3" + "zerolinecolor": "#EBF0F8" } }, "shapedefaults": { "line": { - "color": "#f2f5fa" + "color": "#2a3f5f" } }, - "sliderdefaults": { - "bgcolor": "#C8D4E3", - "bordercolor": "rgb(17,17,17)", - "borderwidth": 1, - "tickwidth": 0 - }, "ternary": { "aaxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#DFE8F3", + "linecolor": "#A2B1C6", "ticks": "" }, "baxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#DFE8F3", + "linecolor": "#A2B1C6", "ticks": "" }, - "bgcolor": "rgb(17,17,17)", + "bgcolor": "white", "caxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#DFE8F3", + "linecolor": "#A2B1C6", "ticks": "" } }, "title": { "x": 0.05 }, - "updatemenudefaults": { - "bgcolor": "#506784", - "borderwidth": 0 - }, "xaxis": { "automargin": true, - "gridcolor": "#283442", - "linecolor": "#506784", + "gridcolor": "#EBF0F8", + "linecolor": "#EBF0F8", "ticks": "", "title": { "standoff": 15 }, - "zerolinecolor": "#283442", + "zerolinecolor": "#EBF0F8", "zerolinewidth": 2 }, "yaxis": { "automargin": true, - "gridcolor": "#283442", - "linecolor": "#506784", + "gridcolor": "#EBF0F8", + "linecolor": "#EBF0F8", "ticks": "", "title": { "standoff": 15 }, - "zerolinecolor": "#283442", + "zerolinecolor": "#EBF0F8", "zerolinewidth": 2 } } @@ -110048,16 +110006,16 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 70, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "4706.147416021958" + "np.float64(4706.147416021958)" ] }, - "execution_count": 32, + "execution_count": 70, "metadata": {}, "output_type": "execute_result" } @@ -110076,7 +110034,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 71, "metadata": {}, "outputs": [ { @@ -110156,7 +110114,7 @@ "15944 50 63.895000 -13.895000" ] }, - "execution_count": 33, + "execution_count": 71, "metadata": {}, "output_type": "execute_result" } @@ -110169,7 +110127,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 72, "metadata": {}, "outputs": [ { @@ -110199,14 +110157,14 @@ 59.126666666666665, -14.488333333333344, -6.511500000000012, - 9.549999999999995, + 9.549999999999997, -13.895000000000003, -4.106111111111112, -5.241333333333335, -3.129369047619048, - 0.21326461988304143, + 0.21326461988304146, -6.270000000000003, - -14.069999999999991, + -14.069999999999993, -43.82499999999999, -88.88, 0.8000000000000114, @@ -110214,22 +110172,22 @@ -22.67500000000001, 10.915500000000009, -9.437708333333376, - -23.793571428571457, + -23.793571428571454, 37.28125, -14.08499999999998, - -59.41499999999997, + -59.414999999999964, -31.94749999999999, -121.14249999999998, 16.965000000000003, -57.50999999999999, -8.370000000000005, - 1.4599999999999935, + 1.4599999999999937, 9.855000000000004, 32.90375, -35.605000000000004, -2.8286904761904736, -6.449999999999999, - 1.0549999999999995, + 1.0549999999999997, -9.25, 27.32, 55.72, @@ -110251,7 +110209,7 @@ 40.015, 12.330000000000013, -12.596944444444446, - -9.743055555555555, + -9.743055555555557, -1.8949999999999996, -2.2437500000000004, -3.370000000000001, @@ -110259,14 +110217,14 @@ -38.650000000000006, -35.44499999999999, 66.42000000000002, - 13.944999999999991, + 13.944999999999993, 51.5, 76.08625, 74.42500000000001, 8.935000000000002, 17.204999999999984, 50.98686363636364, - 44.22166666666664, + 44.221666666666636, 58.81, 51.95, -42.903333333333336, @@ -110285,8 +110243,8 @@ -29.63749999999999, -23.21083333333337, 61.381497493734344, - 39.20549749373435, - 13.182807017543864, + 39.205497493734356, + 13.182807017543865, 58.02151465201467, 39.14999999999998, 27.974166666666633, @@ -110301,7 +110259,7 @@ -3.053570873570873, 0.45706435231435183, 2.039468253968254, - 11.37, + 11.370000000000001, -5.444999999999993, -67.89499999999998, -107.04999999999995, @@ -110318,13 +110276,13 @@ 71.77999999999997, 14.349999999999994, -15.625999999999976, - -1.8100000000000025, + -1.8100000000000023, 52.13499999999999, 191.245, 65.58500000000001, 56.59, 4.515, - 3.9734999999999983, + 3.9734999999999987, -1.2800000000000011, -28.319999999999993, -63.94499999999999, @@ -110354,9 +110312,9 @@ 12.25, -36.80500000000001, 24.193138528138547, - 3.741680555555575, + 3.7416805555555754, 21.2619861111111, - 13.471152777777776, + 13.471152777777775, -24.133803571428587, 25.683613095238115, 87.63999999999999, @@ -110385,7 +110343,7 @@ -2.5516666666666197, -12.41500000000002, -48.825000000000045, - -90.40999999999995, + -90.40999999999997, -119.37, -19.634583333333353, -7.490000000000009, @@ -110395,7 +110353,7 @@ 1.269999999999996, 12.14, -5.405000000000001, - -3.671130952380953, + -3.6711309523809526, 3.165, -13.145, -5.150000000000006, @@ -110430,14 +110388,14 @@ 9.595000000000027, -21.690000000000055, -39.47500000000002, - 10.225000000000025, + 10.225000000000023, -2.0249999999999773, 4.644999999999982, - 24.31, + 24.310000000000002, -35.610000000000014, -45.81593589743588, -11.995000000000005, - 20.81, + 20.810000000000002, 9.969166666666666, -8.049999999999997, 4.827763888888889, @@ -110462,7 +110420,7 @@ 93.555, 63.3, 15.515, - 22.565, + 22.564999999999998, -13.68, -4.260833333333334, -10.112261904761905, @@ -110476,7 +110434,7 @@ -21.66946428571427, -2.0200000000000102, 45.62308918128656, - 27.858176587301617, + 27.858176587301614, 16.225164160400993, 20.67360714285715, -7.545000000000016, @@ -110493,7 +110451,7 @@ 0.8040198412698398, 0.8855396825396822, 10.2, - -9.49875, + -9.498750000000001, -38.17500000000001, -108.27499999999998, 26.410000000000025, @@ -110503,7 +110461,7 @@ 13.19422097858282, 20.84803697691197, 70.26716396103896, - -0.9049999999999728, + -0.9049999999999727, 165.27324999999996, 94.30925000000002, -76.52226190476193, @@ -110511,27 +110469,27 @@ 81.91, 61.2405, -36.05500000000001, - 10.199166666666668, + 10.199166666666667, 5.332000000000001, - -0.12383333333333192, + -0.12383333333333191, -2.6186313131313135, -0.8143888888888897, -7.895000000000003, 18.960000000000008, 5.7450000000000045, -57.565000000000055, - 22.19, + 22.189999999999998, 33.02602922077921, -17.53450000000001, - 22.344166666666663, + 22.344166666666666, 41.958654526029534, 8.567416666666674, 26.498333333333363, - 102.835, + 102.83500000000001, 138.82999999999998, 182.0743571428572, - 92.84500000000004, - -23.769999999999985, + 92.84500000000003, + -23.769999999999982, 27.879999999999995, -3.5749999999999886, 32.459999999999994, @@ -110540,9 +110498,9 @@ -1.0399999999999991, -0.426805555555557, -2.02175, - 0.9200000000000016, + 0.9200000000000017, -6.409999999999997, - -26.31, + -26.310000000000002, 61.01999999999998, 32.954999999999984, 9.624166666666667, @@ -110554,7 +110512,7 @@ 42.44, -38.85500000000002, 94.5675, - -123.77999999999996, + -123.77999999999997, -49.72000000000003, -25.090000000000003, -4.952499999999986, @@ -110572,7 +110530,7 @@ 59.202575757575744, 85.61500000000001, 56.339999999999975, - -1.8099999999999457, + -1.8099999999999454, 46.435, 40.670000000000016, 24.220000000000027, @@ -110582,7 +110540,7 @@ -27.30000000000001, 33.33, 31.405, - 11.489999999999997, + 11.489999999999995, 25.095, 0.3228571428571314, 11.68, @@ -110590,16 +110548,16 @@ -1.1349999999999998, -0.2959999999999994, -5.155000000000001, - -13.275, + -13.274999999999999, 5.8799999999999955, - -30.099000000000014, + -30.099000000000018, 35.13333333333338, 56.35000000000002, 37.82499999999999, 24.58499999999998, 10.20999999999998, 60.065, - 120.23125, + 120.23124999999999, 22.117857142857133, 71.52000000000001, 81.55166666666665, @@ -110613,7 +110571,7 @@ -2.624545454545454, 5.169202380952381, 2.395000000000003, - -19.52500000000001, + -19.525000000000006, -3.105000000000018, 29.784999999999968, -23.125, @@ -110621,7 +110579,7 @@ 25.686140350877167, 63.81364035087722, 16.245000000000005, - -28.56, + -28.560000000000002, 18.364166666666648, -55.89499999999998, 23.781111111111045, @@ -110630,7 +110588,7 @@ 89.91, 15.078499999999991, -14.8335, - 24.615, + 24.615000000000002, -1.6224999999999987, -0.41443589743589726, 0.6064020493395494, @@ -110645,7 +110603,7 @@ -31.805833333333368, -8.29200000000003, -6.9705392156862445, - -23.590539215686302, + -23.590539215686306, -4.130000000000052, -40.95999999999998, -81.54199999999992, @@ -110673,8 +110631,8 @@ 139.14980769230772, 2.305000000000007, -314.04999999999995, - -201.76016666666655, - -106.366, + -201.76016666666658, + -106.36599999999999, -90.61149999999998, -62.70800000000003, -24.707499999999996, @@ -110693,7 +110651,7 @@ -71.85500000000002, -157.74, -140.005, - -187.9, + -187.89999999999998, -175.055, -222.925, -202.12, @@ -110707,33 +110665,33 @@ -0.6475000000000009, -4.131761904761905, -6.041880952380953, - -2.671532999164578, + -2.6715329991645786, -21.105, -106.92, -297.975, - -473.835, + -473.83500000000004, -269.85, -103.42000000000002, -161.25625000000002, -166.235, -209.96000000000004, - -191.55999999999997, + -191.55999999999995, -190.89, -196.76, -501.5, - -407.4249999999999, + -407.42499999999995, -351.3574999999999, - -207.48, + -207.48000000000002, -128.89500000000004, -91.1, - -102.39, + -102.38999999999999, -56.275000000000006, - -23.51, + -23.509999999999998, -39.489999999999995, -20.05, -8.065, -3.4000000000000004, - -13.97, + -13.969999999999999, -55.879999999999995, -38.525000000000006, -55.80000000000001, @@ -110749,12 +110707,12 @@ -29.700000000000003, -23.03, -14.015, - -14.174999999999995, + -14.174999999999997, -45.834999999999994, -26.555, -20.79166666666667, -6.895000000000003, - -1.958333333333332, + -1.9583333333333321, -6.224722222222221, -3.4299999999999997, -9.48, @@ -110763,20 +110721,20 @@ -11.735, 9.810000000000002, -46.590343137254905, - -13.740000000000007, + -13.740000000000009, -24.254999999999995, - -15.305000000000009, - 29.94, - 24.389999999999983, + -15.305000000000007, + 29.939999999999998, + 24.389999999999986, 54, 26.319999999999993, 5.424999999999997, 15.620000000000005, -4.209999999999994, - -1.9299999999999995, + -1.9299999999999997, 7.369999999999997, -7.600000000000001, - 1.8308333333333329, + 1.8308333333333326, -0.5107808857808855, -0.3450819099378881, 4.054749999999999, @@ -110791,7 +110749,7 @@ 47.732694444444434, -41.06400000000002, -41.99000000000001, - -106.66000000000004, + -106.66000000000003, 68.48916666666673, 90.04884523809523, 70.88999999999999, @@ -110815,19 +110773,19 @@ 10.8275, -17.626998168498176, 37.098386363636365, - 126.265, + 126.26499999999999, 156.7678571428571, - 188.67, + 188.67000000000002, 60.84500000000003, 93.37, 63.785, 27.22, 18.880000000000003, 0.49666666666666615, - 3.664, + 3.6639999999999997, -4.529222222222222, -1.0037983091787446, - -0.9474603174603172, + -0.9474603174603171, 11.010000000000002, -19.72999999999999, 12.675000000000011, @@ -110836,15 +110794,15 @@ 23.987660554357916, 1.8658050348774395, 49.87054166666667, - 28.28980303030303, + 28.289803030303034, 27.68035042735039, 43.78558333333336, - 96.96, + 96.96000000000001, 133.05425000000002, 129.75150000000002, 90.055, 87.40849999999998, - 93.39, + 93.38999999999999, 45.790000000000006, -0.21250000000000568, -12.215000000000003, @@ -110856,13 +110814,13 @@ -47.870000000000005, 34.440000000000055, 45.792, - 0.9350000000000024, + 0.9350000000000023, 17.499864558686937, 80.79876839826838, 44.64690681540685, 49.35851330613829, 67.63133653846154, - 108.71499999999996, + 108.71499999999997, 144.25066666666663, 138.42400000000004, 40.85500000000002, @@ -110876,7 +110834,7 @@ -1.7184523809523808, -3.0258690476190475, 8.45, - -25.81, + -25.810000000000002, -32.079999999999984, 53.84500000000003, 40.410000000000025, @@ -110888,13 +110846,13 @@ 88.72927380952379, 30.61500000000001, 18.137500000000045, - 103.5725, + 103.57249999999999, 101.52499999999998, 40.485000000000014, - 31.065, + 31.064999999999998, -15.014999999999986, -17.795, - 10.28, + 10.280000000000001, 17.880000000000003, 5.3400000000000105, -5.835000000000001, @@ -110918,7 +110876,7 @@ 32.69499999999999, 25.989999999999995, 19.230000000000004, - 21.34999999999999, + 21.349999999999994, 5.775000000000006, 41.845, 1.0025000000000013, @@ -110927,10 +110885,10 @@ 2.965, -21.965000000000003, 18.269999999999996, - -20.19, + -20.189999999999998, 104.745, 65.45999999999998, - 110.40333333333332, + 110.40333333333331, 78.07, 32.17500000000001, 17.303333333333285, @@ -110947,10 +110905,10 @@ 3.852998702686204, 1.5182316849816848, -2.03846681929182, - 1.3049999999999995, + 1.3049999999999997, -10.669999999999987, -7.654999999999973, - 117.72000000000004, + 117.72000000000003, -17.394999999999982, -30.12416666666664, -3.2700000000000102, @@ -110971,9 +110929,9 @@ -4.099404761904761, -1.9041608966294312, 1.4723962346992536, - 3.93, + 3.9299999999999997, -3.1837500000000034, - 108.96499999999996, + 108.96499999999997, -2.69500000000005, -0.4900000000000091, -19.98497023809523, @@ -110981,37 +110939,37 @@ 106.97380701754383, 71.34518201754389, 73.91509868421053, - 10.77947222222224, + 10.779472222222239, -5.264999999999986, 44.81111111111113, 42.38277777777785, -64.34073809523807, -79.88999999999999, -2.019999999999982, - -18.891250000000017, + -18.891250000000014, 19.333, -4.594999999999999, -3.753333333333332, 0.9908809523809534, - 0.20017359886845296, + 0.20017359886845298, 2.5085570175438594, 2.2550000000000026, -14.985000000000014, - 3.8999999999999777, + 3.8999999999999773, 25.91999999999996, - 26.485000000000017, + 26.485000000000014, -8.210511904761887, 32.797909090909116, 26.822468253968225, 44.62663468475969, 18.00002380952381, 114.92515277777775, - 110.45, + 110.44999999999999, 1.4941666666666151, 22.50666666666666, 85.274, 51.724999999999994, - 20.6335, + 20.633499999999998, 0.4650000000000034, -7.174999999999997, 20.4225, @@ -111019,7 +110977,7 @@ 2.2085989010989007, -2.458341269841271, 2.275333333333333, - 0.9299999999999996, + 0.9299999999999997, -6.6699999999999875, -18.839999999999975, 77.495, @@ -111034,7 +110992,7 @@ 24.58000000000004, 164.5625, 86.46499999999997, - 91.93708333333332, + 91.93708333333333, 60.05000000000001, 59.182500000000005, 43.585, @@ -111045,7 +111003,7 @@ 3.878805555555555, -4.385000000000002, -41.474999999999994, - 1.4399999999999975, + 1.4399999999999977, -151.69500000000005, 39.26999999999998, 31.45422013366749, @@ -111053,7 +111011,7 @@ 40.236214285714254, 29.56333333333336, 23.272380952380956, - 112.92188095238096, + 112.92188095238097, -1.5749999999999886, 5.690000000000055, 33.13749999999999, @@ -111064,14 +111022,14 @@ 28.25, 33.435, -4.950000000000003, - 20.885, + 20.884999999999998, -1.192045454545454, -0.7149999999999999, -3.789999999999999, 3.41, -33.34, 40.845, - 48.895, + 48.894999999999996, 73.489, 203.96, 77.64125000000001, @@ -111084,14 +111042,14 @@ 51.985000000000014, 59.870000000000005, 14.629999999999995, - 40.77, + 40.769999999999996, 47.525000000000006, 3.5600000000000023, -0.26533333333333076, 8.980000000000004, 2.115000000000002, 1.855555555555556, - 0.9299999999999996, + 0.9299999999999997, -8.6, -2.2600000000000016, 23.39, @@ -111103,18 +111061,18 @@ 17.414999999999992, 65.405, 42.249000000000024, - 95.675, + 95.67500000000001, 74.69, 22.209999999999994, 39.739999999999995, 11.019999999999996, - 19.865, + 19.865000000000002, 3.789999999999999, - 3.734999999999999, + 3.7349999999999994, -4.41, -1.843, -0.8498498964803307, - 2.484999999999999, + 2.4849999999999994, -5.520000000000003, -25.22, -35.620000000000005, @@ -111122,7 +111080,7 @@ 61.599999999999994, 29.596168498168524, 39.35208516483516, - 23.815, + 23.814999999999998, 60.845, 44.363249999999965, 67.36403846153843, @@ -111148,16 +111106,16 @@ -5.698026315789463, 78.53095833333336, 64.24591812865495, - 48.95317658730155, + 48.953176587301556, 113.47246230158729, 115.005, - 170.6251785714285, + 170.62517857142853, 112.78517857142856, - 99.16000000000004, + 99.16000000000003, 42.91999999999999, 32.75941666666665, -6.219999999999999, - 1.7424999999999995, + 1.7424999999999997, 8.501666666666665, 5.67873076923077, -7.617083333333333, @@ -111165,7 +111123,7 @@ -1.0108710317460323, 7.260000000000002, -3.0600000000000023, - -0.9150000000000204, + -0.9150000000000205, 25.92999999999995, 40.24000000000001, -6.883890977443627, @@ -111185,7 +111143,7 @@ 8.317499999999999, 1.7927272727272694, -4.92, - -1.832119047619048, + -1.8321190476190479, 2.424555555555555, -1.4549999999999983, -18.120000000000005, @@ -111199,7 +111157,7 @@ 50.61834848484847, 82.53609848484848, -25.850000000000023, - -122.21500000000005, + -122.21500000000003, 61.139999999999986, 17.774999999999977, 68.11599999999999, @@ -111207,7 +111165,7 @@ 26.819999999999993, 29.715000000000003, 1.3800000000000026, - 15.286428571428573, + 15.286428571428571, -6.270333333333333, 6.610208333333333, 3.7972170008354222, @@ -111220,7 +111178,7 @@ 21.397999999999996, 72.8549704184704, 113.84790097402598, - 27.38276190476188, + 27.382761904761878, 24.67883333333333, 4.180000000000007, 1.3600000000000136, @@ -111235,14 +111193,14 @@ 19.880833333333342, 0.5899999999999999, -2.6549999999999994, - -3.68625, + -3.6862500000000002, -6.059999999999999, 13.32, 41.56999999999999, 86.875, - 103.98, + 103.97999999999999, 110.87, - 91.925, + 91.92500000000001, 82.625, 64.94999999999999, 82.185, @@ -111259,7 +111217,7 @@ 20.67, 16.935555555555556, 1.6951010101010109, - 2.31375, + 2.3137499999999998, -8.445, -24.455, 16.504999999999995, @@ -111285,7 +111243,7 @@ -3.1899999999999995, -9.645000000000003, -33.474999999999994, - -28.889999999999983, + -28.889999999999986, 8.330000000000041, 43.995000000000005, 1.7279166666666583, @@ -111298,9 +111256,9 @@ 274.47833333333335, 266.39250000000004, 132.21, - 19.871428571428535, + 19.871428571428538, -9.889999999999986, - -42.77, + -42.769999999999996, -31.597499999999997, -3.245000000000001, 5.215357142857142, @@ -111339,13 +111297,13 @@ 31.57413283208018, 13.43922368421056, 29.583262645249476, - 9.35609796270984, + 9.356097962709839, 12.301963042074846, 41.446232905982896, -37.22000000000003, -46.72833333333335, - 118.31083333333332, - 91.30333333333336, + 118.31083333333333, + 91.30333333333337, 12.159999999999997, 38.900000000000006, -35.28999999999999, @@ -111353,19 +111311,19 @@ 7.575000000000003, 8.610809523809523, -0.6750000000000007, - -1.7279312456866809, + -1.7279312456866807, 0.565440476190477, 3.844999999999999, -37.435, -45.839999999999975, - -36.71000000000003, + -36.710000000000036, 65.99200000000002, -7.544375000000002, 8.862500000000011, 14.846666666666692, -24.41900000000001, -34.809000000000026, - 60.898875, + 60.898875000000004, 96.32, -15.442499999999995, -27.42916666666673, @@ -111373,7 +111331,7 @@ -24.239999999999995, -39.42, -23.68833333333334, - -24.72125, + -24.721249999999998, -1.5249999999999986, -7.765000000000001, -8.213636363636365, @@ -111381,7 +111339,7 @@ -0.23500000000000032, -18.56, -47.405, - -142.28500000000005, + -142.28500000000003, -33.17500000000001, -14.189999999999998, 20.581714285714327, @@ -111415,16 +111373,16 @@ -31.553333333333313, 7.292416666666696, -49.03230769230768, - -28.389999999999983, + -28.389999999999986, -34.78, -54.345, -22.959999999999994, -20.955, - -11.405, + -11.405000000000001, -20.655, -31.994999999999997, -23.325000000000003, - -14.063055555555556, + -14.063055555555557, -2.378, -4.414722222222222, 1.0499999999999998, @@ -111435,10 +111393,10 @@ -84.91499999999999, -77.55964285714288, -69.50547950089123, - -93.48697950089128, - -99.3651764705882, + -93.48697950089127, + -99.36517647058821, -75.945, - -99.30900000000004, + -99.30900000000003, -41.54499999999999, -13.540000000000006, -21.72, @@ -111454,7 +111412,7 @@ -102.41, -305.685, -414.56, - -198.1, + -198.10000000000002, -46.155833333333334, -3.982202380952387, -31.859166666666653, @@ -111471,7 +111429,7 @@ -22.744999999999997, -30.655, -20.752142857142857, - -2.702500000000001, + -2.7025000000000006, -4.910833333333333, -7.25, -2.8550000000000004, @@ -111485,16 +111443,16 @@ -177.56617647058823, -205.56617647058823, -258.72, - -101.615, - -121.123, + -101.61500000000001, + -121.12299999999999, -105.07, -72.535, - -53.895, + -53.894999999999996, -48.650000000000006, -34.155, -10.93357142857143, -1.8086666666666673, - -3.9717857142857143, + -3.9717857142857147, -1.7958714651077825, -2.7899988095238095, -16.55, @@ -111506,7 +111464,7 @@ -27.200000000000003, -28.026249999999997, -22.80625, - -23.16625, + -23.166249999999998, -26.566249999999997, -29.96125, -42.965, @@ -111518,10 +111476,10 @@ -29.43, -11.495, -4.055, - -3.983, + -3.9829999999999997, -3.0281666666666665, -1.1042320261437908, - -21.115, + -21.115000000000002, -67.355, -229.22000000000003, -171.8, @@ -111538,18 +111496,18 @@ -167.615, -116.81, -90.156, - -95.675, - -25.135, + -95.67500000000001, + -25.134999999999998, -11.454999999999998, -2.7681249999999995, -4.768888888888888, -3.6702783882783887, - -1.9277988131149904, - -14.15, + -1.9277988131149906, + -14.149999999999999, -70.975, -215.90499999999997, -153.54000000000002, - -94.16000000000004, + -94.16000000000003, -119.14999999999998, -96.37937499999998, -105.3220673076923, @@ -111559,7 +111517,7 @@ -164.27499999999998, -305.125, -142.9225, - -130.66000000000005, + -130.66000000000003, -92.85, -68.94, -79.97999999999999, @@ -111567,15 +111525,15 @@ -14.784999999999997, -13.443333333333328, -11.355, - -13.38, + -13.379999999999999, -3.0812857142857135, - -2.03, + -2.0300000000000002, -2.8949999999999996, -10.670000000000002, - -42.98, + -42.980000000000004, -86.72999999999999, -48.55, - -41.52, + -41.519999999999996, -33.2, -24.004999999999995, -5.797000000000011, @@ -111590,7 +111548,7 @@ -11.979999999999997, 4.146666666666668, -8.79, - 0.9675000000000012, + 0.9675000000000011, -7.295000000000002, 2.2228571428571424, -2.365, @@ -111614,22 +111572,22 @@ -38.215, 6.795000000000002, -1.7950000000000017, - 0.9455000000000008, + 0.9455000000000009, -2.783342424242424, -2.48574880952381, -18.62, -80.21, - -230.1, + -230.10000000000002, -300.61, -65.255, -42.08666666666667, -68.28, -33.153039215686306, - 20.07187500000001, + 20.071875000000006, -25.20476190476188, 9.242166666666662, -76.57, - -212.78500000000005, + -212.78500000000003, -238.2, -164.92000000000002, -89.38, @@ -111651,14 +111609,14 @@ "bar": [ { "error_x": { - "color": "#f2f5fa" + "color": "#2a3f5f" }, "error_y": { - "color": "#f2f5fa" + "color": "#2a3f5f" }, "marker": { "line": { - "color": "rgb(17,17,17)", + "color": "white", "width": 0.5 }, "pattern": { @@ -111674,7 +111632,7 @@ { "marker": { "line": { - "color": "rgb(17,17,17)", + "color": "white", "width": 0.5 }, "pattern": { @@ -111689,18 +111647,18 @@ "carpet": [ { "aaxis": { - "endlinecolor": "#A2B1C6", - "gridcolor": "#506784", - "linecolor": "#506784", - "minorgridcolor": "#506784", - "startlinecolor": "#A2B1C6" + "endlinecolor": "#2a3f5f", + "gridcolor": "#C8D4E3", + "linecolor": "#C8D4E3", + "minorgridcolor": "#C8D4E3", + "startlinecolor": "#2a3f5f" }, "baxis": { - "endlinecolor": "#A2B1C6", - "gridcolor": "#506784", - "linecolor": "#506784", - "minorgridcolor": "#506784", - "startlinecolor": "#A2B1C6" + "endlinecolor": "#2a3f5f", + "gridcolor": "#C8D4E3", + "linecolor": "#C8D4E3", + "minorgridcolor": "#C8D4E3", + "startlinecolor": "#2a3f5f" }, "type": "carpet" } @@ -112018,10 +111976,10 @@ ], "scatter": [ { - "marker": { - "line": { - "color": "#283442" - } + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 }, "type": "scatter" } @@ -112068,8 +112026,9 @@ "scattergl": [ { "marker": { - "line": { - "color": "#283442" + "colorbar": { + "outlinewidth": 0, + "ticks": "" } }, "type": "scattergl" @@ -112174,18 +112133,18 @@ { "cells": { "fill": { - "color": "#506784" + "color": "#EBF0F8" }, "line": { - "color": "rgb(17,17,17)" + "color": "white" } }, "header": { "fill": { - "color": "#2a3f5f" + "color": "#C8D4E3" }, "line": { - "color": "rgb(17,17,17)" + "color": "white" } }, "type": "table" @@ -112194,7 +112153,7 @@ }, "layout": { "annotationdefaults": { - "arrowcolor": "#f2f5fa", + "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, @@ -112350,123 +112309,113 @@ "#FECB52" ], "font": { - "color": "#f2f5fa" + "color": "#2a3f5f" }, "geo": { - "bgcolor": "rgb(17,17,17)", - "lakecolor": "rgb(17,17,17)", - "landcolor": "rgb(17,17,17)", + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "white", "showlakes": true, "showland": true, - "subunitcolor": "#506784" + "subunitcolor": "#C8D4E3" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { - "style": "dark" + "style": "light" }, - "paper_bgcolor": "rgb(17,17,17)", - "plot_bgcolor": "rgb(17,17,17)", + "paper_bgcolor": "white", + "plot_bgcolor": "white", "polar": { "angularaxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#EBF0F8", + "linecolor": "#EBF0F8", "ticks": "" }, - "bgcolor": "rgb(17,17,17)", + "bgcolor": "white", "radialaxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#EBF0F8", + "linecolor": "#EBF0F8", "ticks": "" } }, "scene": { "xaxis": { - "backgroundcolor": "rgb(17,17,17)", - "gridcolor": "#506784", + "backgroundcolor": "white", + "gridcolor": "#DFE8F3", "gridwidth": 2, - "linecolor": "#506784", + "linecolor": "#EBF0F8", "showbackground": true, "ticks": "", - "zerolinecolor": "#C8D4E3" + "zerolinecolor": "#EBF0F8" }, "yaxis": { - "backgroundcolor": "rgb(17,17,17)", - "gridcolor": "#506784", + "backgroundcolor": "white", + "gridcolor": "#DFE8F3", "gridwidth": 2, - "linecolor": "#506784", + "linecolor": "#EBF0F8", "showbackground": true, "ticks": "", - "zerolinecolor": "#C8D4E3" + "zerolinecolor": "#EBF0F8" }, "zaxis": { - "backgroundcolor": "rgb(17,17,17)", - "gridcolor": "#506784", + "backgroundcolor": "white", + "gridcolor": "#DFE8F3", "gridwidth": 2, - "linecolor": "#506784", + "linecolor": "#EBF0F8", "showbackground": true, "ticks": "", - "zerolinecolor": "#C8D4E3" + "zerolinecolor": "#EBF0F8" } }, "shapedefaults": { "line": { - "color": "#f2f5fa" + "color": "#2a3f5f" } }, - "sliderdefaults": { - "bgcolor": "#C8D4E3", - "bordercolor": "rgb(17,17,17)", - "borderwidth": 1, - "tickwidth": 0 - }, "ternary": { "aaxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#DFE8F3", + "linecolor": "#A2B1C6", "ticks": "" }, "baxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#DFE8F3", + "linecolor": "#A2B1C6", "ticks": "" }, - "bgcolor": "rgb(17,17,17)", + "bgcolor": "white", "caxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#DFE8F3", + "linecolor": "#A2B1C6", "ticks": "" } }, "title": { "x": 0.05 }, - "updatemenudefaults": { - "bgcolor": "#506784", - "borderwidth": 0 - }, "xaxis": { "automargin": true, - "gridcolor": "#283442", - "linecolor": "#506784", + "gridcolor": "#EBF0F8", + "linecolor": "#EBF0F8", "ticks": "", "title": { "standoff": 15 }, - "zerolinecolor": "#283442", + "zerolinecolor": "#EBF0F8", "zerolinewidth": 2 }, "yaxis": { "automargin": true, - "gridcolor": "#283442", - "linecolor": "#506784", + "gridcolor": "#EBF0F8", + "linecolor": "#EBF0F8", "ticks": "", "title": { "standoff": 15 }, - "zerolinecolor": "#283442", + "zerolinecolor": "#EBF0F8", "zerolinewidth": 2 } } @@ -112514,7 +112463,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 73, "metadata": {}, "outputs": [ { @@ -112535,7 +112484,7 @@ "dtype: float64" ] }, - "execution_count": 35, + "execution_count": 73, "metadata": {}, "output_type": "execute_result" } @@ -112551,7 +112500,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 74, "metadata": {}, "outputs": [ { @@ -112615,10 +112564,10 @@ 0.0009222499647799248, 0.0009157961219602414, 0.0007241245983027822, - 0.0004666076607662229, + 0.00046660766076622284, 0.000465833261483762, 0.00029656107014607654, - 2.035477454700951e-6 + 0.000002035477454700951 ], "yaxis": "y" } @@ -112636,14 +112585,14 @@ "bar": [ { "error_x": { - "color": "#f2f5fa" + "color": "#2a3f5f" }, "error_y": { - "color": "#f2f5fa" + "color": "#2a3f5f" }, "marker": { "line": { - "color": "rgb(17,17,17)", + "color": "white", "width": 0.5 }, "pattern": { @@ -112659,7 +112608,7 @@ { "marker": { "line": { - "color": "rgb(17,17,17)", + "color": "white", "width": 0.5 }, "pattern": { @@ -112674,18 +112623,18 @@ "carpet": [ { "aaxis": { - "endlinecolor": "#A2B1C6", - "gridcolor": "#506784", - "linecolor": "#506784", - "minorgridcolor": "#506784", - "startlinecolor": "#A2B1C6" + "endlinecolor": "#2a3f5f", + "gridcolor": "#C8D4E3", + "linecolor": "#C8D4E3", + "minorgridcolor": "#C8D4E3", + "startlinecolor": "#2a3f5f" }, "baxis": { - "endlinecolor": "#A2B1C6", - "gridcolor": "#506784", - "linecolor": "#506784", - "minorgridcolor": "#506784", - "startlinecolor": "#A2B1C6" + "endlinecolor": "#2a3f5f", + "gridcolor": "#C8D4E3", + "linecolor": "#C8D4E3", + "minorgridcolor": "#C8D4E3", + "startlinecolor": "#2a3f5f" }, "type": "carpet" } @@ -113003,10 +112952,10 @@ ], "scatter": [ { - "marker": { - "line": { - "color": "#283442" - } + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 }, "type": "scatter" } @@ -113053,8 +113002,9 @@ "scattergl": [ { "marker": { - "line": { - "color": "#283442" + "colorbar": { + "outlinewidth": 0, + "ticks": "" } }, "type": "scattergl" @@ -113159,18 +113109,18 @@ { "cells": { "fill": { - "color": "#506784" + "color": "#EBF0F8" }, "line": { - "color": "rgb(17,17,17)" + "color": "white" } }, "header": { "fill": { - "color": "#2a3f5f" + "color": "#C8D4E3" }, "line": { - "color": "rgb(17,17,17)" + "color": "white" } }, "type": "table" @@ -113179,7 +113129,7 @@ }, "layout": { "annotationdefaults": { - "arrowcolor": "#f2f5fa", + "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, @@ -113335,123 +113285,113 @@ "#FECB52" ], "font": { - "color": "#f2f5fa" + "color": "#2a3f5f" }, "geo": { - "bgcolor": "rgb(17,17,17)", - "lakecolor": "rgb(17,17,17)", - "landcolor": "rgb(17,17,17)", + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "white", "showlakes": true, "showland": true, - "subunitcolor": "#506784" + "subunitcolor": "#C8D4E3" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { - "style": "dark" + "style": "light" }, - "paper_bgcolor": "rgb(17,17,17)", - "plot_bgcolor": "rgb(17,17,17)", + "paper_bgcolor": "white", + "plot_bgcolor": "white", "polar": { "angularaxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#EBF0F8", + "linecolor": "#EBF0F8", "ticks": "" }, - "bgcolor": "rgb(17,17,17)", + "bgcolor": "white", "radialaxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#EBF0F8", + "linecolor": "#EBF0F8", "ticks": "" } }, "scene": { "xaxis": { - "backgroundcolor": "rgb(17,17,17)", - "gridcolor": "#506784", + "backgroundcolor": "white", + "gridcolor": "#DFE8F3", "gridwidth": 2, - "linecolor": "#506784", + "linecolor": "#EBF0F8", "showbackground": true, "ticks": "", - "zerolinecolor": "#C8D4E3" + "zerolinecolor": "#EBF0F8" }, "yaxis": { - "backgroundcolor": "rgb(17,17,17)", - "gridcolor": "#506784", + "backgroundcolor": "white", + "gridcolor": "#DFE8F3", "gridwidth": 2, - "linecolor": "#506784", + "linecolor": "#EBF0F8", "showbackground": true, "ticks": "", - "zerolinecolor": "#C8D4E3" + "zerolinecolor": "#EBF0F8" }, "zaxis": { - "backgroundcolor": "rgb(17,17,17)", - "gridcolor": "#506784", + "backgroundcolor": "white", + "gridcolor": "#DFE8F3", "gridwidth": 2, - "linecolor": "#506784", + "linecolor": "#EBF0F8", "showbackground": true, "ticks": "", - "zerolinecolor": "#C8D4E3" + "zerolinecolor": "#EBF0F8" } }, "shapedefaults": { "line": { - "color": "#f2f5fa" + "color": "#2a3f5f" } }, - "sliderdefaults": { - "bgcolor": "#C8D4E3", - "bordercolor": "rgb(17,17,17)", - "borderwidth": 1, - "tickwidth": 0 - }, "ternary": { "aaxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#DFE8F3", + "linecolor": "#A2B1C6", "ticks": "" }, "baxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#DFE8F3", + "linecolor": "#A2B1C6", "ticks": "" }, - "bgcolor": "rgb(17,17,17)", + "bgcolor": "white", "caxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#DFE8F3", + "linecolor": "#A2B1C6", "ticks": "" } }, "title": { "x": 0.05 }, - "updatemenudefaults": { - "bgcolor": "#506784", - "borderwidth": 0 - }, "xaxis": { "automargin": true, - "gridcolor": "#283442", - "linecolor": "#506784", + "gridcolor": "#EBF0F8", + "linecolor": "#EBF0F8", "ticks": "", "title": { "standoff": 15 }, - "zerolinecolor": "#283442", + "zerolinecolor": "#EBF0F8", "zerolinewidth": 2 }, "yaxis": { "automargin": true, - "gridcolor": "#283442", - "linecolor": "#506784", + "gridcolor": "#EBF0F8", + "linecolor": "#EBF0F8", "ticks": "", "title": { "standoff": 15 }, - "zerolinecolor": "#283442", + "zerolinecolor": "#EBF0F8", "zerolinewidth": 2 } } @@ -113506,7 +113446,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 75, "metadata": {}, "outputs": [ { @@ -113541,7 +113481,7 @@ "xaxis": "x", "y": [ -42275.73835281745, - -15635.5593762851, + -15635.559376285099, -13100.12372365238, -10785.358703379774, -4170.025882012518 @@ -113575,7 +113515,7 @@ -34.428947397934934, -72.32451490478466, -80.60674215971036, - -97.40430424479256, + -97.40430424479257, -115.67026325900858 ], "yaxis": "y" @@ -113593,14 +113533,14 @@ "bar": [ { "error_x": { - "color": "#f2f5fa" + "color": "#2a3f5f" }, "error_y": { - "color": "#f2f5fa" + "color": "#2a3f5f" }, "marker": { "line": { - "color": "rgb(17,17,17)", + "color": "white", "width": 0.5 }, "pattern": { @@ -113616,7 +113556,7 @@ { "marker": { "line": { - "color": "rgb(17,17,17)", + "color": "white", "width": 0.5 }, "pattern": { @@ -113631,18 +113571,18 @@ "carpet": [ { "aaxis": { - "endlinecolor": "#A2B1C6", - "gridcolor": "#506784", - "linecolor": "#506784", - "minorgridcolor": "#506784", - "startlinecolor": "#A2B1C6" + "endlinecolor": "#2a3f5f", + "gridcolor": "#C8D4E3", + "linecolor": "#C8D4E3", + "minorgridcolor": "#C8D4E3", + "startlinecolor": "#2a3f5f" }, "baxis": { - "endlinecolor": "#A2B1C6", - "gridcolor": "#506784", - "linecolor": "#506784", - "minorgridcolor": "#506784", - "startlinecolor": "#A2B1C6" + "endlinecolor": "#2a3f5f", + "gridcolor": "#C8D4E3", + "linecolor": "#C8D4E3", + "minorgridcolor": "#C8D4E3", + "startlinecolor": "#2a3f5f" }, "type": "carpet" } @@ -113960,10 +113900,10 @@ ], "scatter": [ { - "marker": { - "line": { - "color": "#283442" - } + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 }, "type": "scatter" } @@ -114010,8 +113950,9 @@ "scattergl": [ { "marker": { - "line": { - "color": "#283442" + "colorbar": { + "outlinewidth": 0, + "ticks": "" } }, "type": "scattergl" @@ -114116,18 +114057,18 @@ { "cells": { "fill": { - "color": "#506784" + "color": "#EBF0F8" }, "line": { - "color": "rgb(17,17,17)" + "color": "white" } }, "header": { "fill": { - "color": "#2a3f5f" + "color": "#C8D4E3" }, "line": { - "color": "rgb(17,17,17)" + "color": "white" } }, "type": "table" @@ -114136,7 +114077,7 @@ }, "layout": { "annotationdefaults": { - "arrowcolor": "#f2f5fa", + "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, @@ -114292,123 +114233,113 @@ "#FECB52" ], "font": { - "color": "#f2f5fa" + "color": "#2a3f5f" }, "geo": { - "bgcolor": "rgb(17,17,17)", - "lakecolor": "rgb(17,17,17)", - "landcolor": "rgb(17,17,17)", + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "white", "showlakes": true, "showland": true, - "subunitcolor": "#506784" + "subunitcolor": "#C8D4E3" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { - "style": "dark" + "style": "light" }, - "paper_bgcolor": "rgb(17,17,17)", - "plot_bgcolor": "rgb(17,17,17)", + "paper_bgcolor": "white", + "plot_bgcolor": "white", "polar": { "angularaxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#EBF0F8", + "linecolor": "#EBF0F8", "ticks": "" }, - "bgcolor": "rgb(17,17,17)", + "bgcolor": "white", "radialaxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#EBF0F8", + "linecolor": "#EBF0F8", "ticks": "" } }, "scene": { "xaxis": { - "backgroundcolor": "rgb(17,17,17)", - "gridcolor": "#506784", + "backgroundcolor": "white", + "gridcolor": "#DFE8F3", "gridwidth": 2, - "linecolor": "#506784", + "linecolor": "#EBF0F8", "showbackground": true, "ticks": "", - "zerolinecolor": "#C8D4E3" + "zerolinecolor": "#EBF0F8" }, "yaxis": { - "backgroundcolor": "rgb(17,17,17)", - "gridcolor": "#506784", + "backgroundcolor": "white", + "gridcolor": "#DFE8F3", "gridwidth": 2, - "linecolor": "#506784", + "linecolor": "#EBF0F8", "showbackground": true, "ticks": "", - "zerolinecolor": "#C8D4E3" + "zerolinecolor": "#EBF0F8" }, "zaxis": { - "backgroundcolor": "rgb(17,17,17)", - "gridcolor": "#506784", + "backgroundcolor": "white", + "gridcolor": "#DFE8F3", "gridwidth": 2, - "linecolor": "#506784", + "linecolor": "#EBF0F8", "showbackground": true, "ticks": "", - "zerolinecolor": "#C8D4E3" + "zerolinecolor": "#EBF0F8" } }, "shapedefaults": { "line": { - "color": "#f2f5fa" + "color": "#2a3f5f" } }, - "sliderdefaults": { - "bgcolor": "#C8D4E3", - "bordercolor": "rgb(17,17,17)", - "borderwidth": 1, - "tickwidth": 0 - }, "ternary": { "aaxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#DFE8F3", + "linecolor": "#A2B1C6", "ticks": "" }, "baxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#DFE8F3", + "linecolor": "#A2B1C6", "ticks": "" }, - "bgcolor": "rgb(17,17,17)", + "bgcolor": "white", "caxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#DFE8F3", + "linecolor": "#A2B1C6", "ticks": "" } }, "title": { "x": 0.05 }, - "updatemenudefaults": { - "bgcolor": "#506784", - "borderwidth": 0 - }, "xaxis": { "automargin": true, - "gridcolor": "#283442", - "linecolor": "#506784", + "gridcolor": "#EBF0F8", + "linecolor": "#EBF0F8", "ticks": "", "title": { "standoff": 15 }, - "zerolinecolor": "#283442", + "zerolinecolor": "#EBF0F8", "zerolinewidth": 2 }, "yaxis": { "automargin": true, - "gridcolor": "#283442", - "linecolor": "#506784", + "gridcolor": "#EBF0F8", + "linecolor": "#EBF0F8", "ticks": "", "title": { "standoff": 15 }, - "zerolinecolor": "#283442", + "zerolinecolor": "#EBF0F8", "zerolinewidth": 2 } } @@ -114471,7 +114402,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 76, "metadata": {}, "outputs": [ { @@ -114539,7 +114470,7 @@ "xaxis": "x", "y": [ -160.74528587684654, - -123.29846931759148, + -123.29846931759147, -122.26306371153298 ], "yaxis": "y" @@ -114557,14 +114488,14 @@ "bar": [ { "error_x": { - "color": "#f2f5fa" + "color": "#2a3f5f" }, "error_y": { - "color": "#f2f5fa" + "color": "#2a3f5f" }, "marker": { "line": { - "color": "rgb(17,17,17)", + "color": "white", "width": 0.5 }, "pattern": { @@ -114580,7 +114511,7 @@ { "marker": { "line": { - "color": "rgb(17,17,17)", + "color": "white", "width": 0.5 }, "pattern": { @@ -114595,18 +114526,18 @@ "carpet": [ { "aaxis": { - "endlinecolor": "#A2B1C6", - "gridcolor": "#506784", - "linecolor": "#506784", - "minorgridcolor": "#506784", - "startlinecolor": "#A2B1C6" + "endlinecolor": "#2a3f5f", + "gridcolor": "#C8D4E3", + "linecolor": "#C8D4E3", + "minorgridcolor": "#C8D4E3", + "startlinecolor": "#2a3f5f" }, "baxis": { - "endlinecolor": "#A2B1C6", - "gridcolor": "#506784", - "linecolor": "#506784", - "minorgridcolor": "#506784", - "startlinecolor": "#A2B1C6" + "endlinecolor": "#2a3f5f", + "gridcolor": "#C8D4E3", + "linecolor": "#C8D4E3", + "minorgridcolor": "#C8D4E3", + "startlinecolor": "#2a3f5f" }, "type": "carpet" } @@ -114924,10 +114855,10 @@ ], "scatter": [ { - "marker": { - "line": { - "color": "#283442" - } + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 }, "type": "scatter" } @@ -114974,8 +114905,9 @@ "scattergl": [ { "marker": { - "line": { - "color": "#283442" + "colorbar": { + "outlinewidth": 0, + "ticks": "" } }, "type": "scattergl" @@ -115080,18 +115012,18 @@ { "cells": { "fill": { - "color": "#506784" + "color": "#EBF0F8" }, "line": { - "color": "rgb(17,17,17)" + "color": "white" } }, "header": { "fill": { - "color": "#2a3f5f" + "color": "#C8D4E3" }, "line": { - "color": "rgb(17,17,17)" + "color": "white" } }, "type": "table" @@ -115100,7 +115032,7 @@ }, "layout": { "annotationdefaults": { - "arrowcolor": "#f2f5fa", + "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, @@ -115256,123 +115188,113 @@ "#FECB52" ], "font": { - "color": "#f2f5fa" + "color": "#2a3f5f" }, "geo": { - "bgcolor": "rgb(17,17,17)", - "lakecolor": "rgb(17,17,17)", - "landcolor": "rgb(17,17,17)", + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "white", "showlakes": true, "showland": true, - "subunitcolor": "#506784" + "subunitcolor": "#C8D4E3" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { - "style": "dark" + "style": "light" }, - "paper_bgcolor": "rgb(17,17,17)", - "plot_bgcolor": "rgb(17,17,17)", + "paper_bgcolor": "white", + "plot_bgcolor": "white", "polar": { "angularaxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#EBF0F8", + "linecolor": "#EBF0F8", "ticks": "" }, - "bgcolor": "rgb(17,17,17)", + "bgcolor": "white", "radialaxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#EBF0F8", + "linecolor": "#EBF0F8", "ticks": "" } }, "scene": { "xaxis": { - "backgroundcolor": "rgb(17,17,17)", - "gridcolor": "#506784", + "backgroundcolor": "white", + "gridcolor": "#DFE8F3", "gridwidth": 2, - "linecolor": "#506784", + "linecolor": "#EBF0F8", "showbackground": true, "ticks": "", - "zerolinecolor": "#C8D4E3" + "zerolinecolor": "#EBF0F8" }, "yaxis": { - "backgroundcolor": "rgb(17,17,17)", - "gridcolor": "#506784", + "backgroundcolor": "white", + "gridcolor": "#DFE8F3", "gridwidth": 2, - "linecolor": "#506784", + "linecolor": "#EBF0F8", "showbackground": true, "ticks": "", - "zerolinecolor": "#C8D4E3" + "zerolinecolor": "#EBF0F8" }, "zaxis": { - "backgroundcolor": "rgb(17,17,17)", - "gridcolor": "#506784", + "backgroundcolor": "white", + "gridcolor": "#DFE8F3", "gridwidth": 2, - "linecolor": "#506784", + "linecolor": "#EBF0F8", "showbackground": true, "ticks": "", - "zerolinecolor": "#C8D4E3" + "zerolinecolor": "#EBF0F8" } }, "shapedefaults": { "line": { - "color": "#f2f5fa" + "color": "#2a3f5f" } }, - "sliderdefaults": { - "bgcolor": "#C8D4E3", - "bordercolor": "rgb(17,17,17)", - "borderwidth": 1, - "tickwidth": 0 - }, "ternary": { "aaxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#DFE8F3", + "linecolor": "#A2B1C6", "ticks": "" }, "baxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#DFE8F3", + "linecolor": "#A2B1C6", "ticks": "" }, - "bgcolor": "rgb(17,17,17)", + "bgcolor": "white", "caxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#DFE8F3", + "linecolor": "#A2B1C6", "ticks": "" } }, "title": { "x": 0.05 }, - "updatemenudefaults": { - "bgcolor": "#506784", - "borderwidth": 0 - }, "xaxis": { "automargin": true, - "gridcolor": "#283442", - "linecolor": "#506784", + "gridcolor": "#EBF0F8", + "linecolor": "#EBF0F8", "ticks": "", "title": { "standoff": 15 }, - "zerolinecolor": "#283442", + "zerolinecolor": "#EBF0F8", "zerolinewidth": 2 }, "yaxis": { "automargin": true, - "gridcolor": "#283442", - "linecolor": "#506784", + "gridcolor": "#EBF0F8", + "linecolor": "#EBF0F8", "ticks": "", "title": { "standoff": 15 }, - "zerolinecolor": "#283442", + "zerolinecolor": "#EBF0F8", "zerolinewidth": 2 } } @@ -115471,7 +115393,7 @@ "xaxis": "x", "y": [ -123.54151793514892, - -123.29846931759148, + -123.29846931759147, -123.50331434659162 ], "yaxis": "y" @@ -115489,14 +115411,14 @@ "bar": [ { "error_x": { - "color": "#f2f5fa" + "color": "#2a3f5f" }, "error_y": { - "color": "#f2f5fa" + "color": "#2a3f5f" }, "marker": { "line": { - "color": "rgb(17,17,17)", + "color": "white", "width": 0.5 }, "pattern": { @@ -115512,7 +115434,7 @@ { "marker": { "line": { - "color": "rgb(17,17,17)", + "color": "white", "width": 0.5 }, "pattern": { @@ -115527,18 +115449,18 @@ "carpet": [ { "aaxis": { - "endlinecolor": "#A2B1C6", - "gridcolor": "#506784", - "linecolor": "#506784", - "minorgridcolor": "#506784", - "startlinecolor": "#A2B1C6" + "endlinecolor": "#2a3f5f", + "gridcolor": "#C8D4E3", + "linecolor": "#C8D4E3", + "minorgridcolor": "#C8D4E3", + "startlinecolor": "#2a3f5f" }, "baxis": { - "endlinecolor": "#A2B1C6", - "gridcolor": "#506784", - "linecolor": "#506784", - "minorgridcolor": "#506784", - "startlinecolor": "#A2B1C6" + "endlinecolor": "#2a3f5f", + "gridcolor": "#C8D4E3", + "linecolor": "#C8D4E3", + "minorgridcolor": "#C8D4E3", + "startlinecolor": "#2a3f5f" }, "type": "carpet" } @@ -115856,10 +115778,10 @@ ], "scatter": [ { - "marker": { - "line": { - "color": "#283442" - } + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 }, "type": "scatter" } @@ -115906,8 +115828,9 @@ "scattergl": [ { "marker": { - "line": { - "color": "#283442" + "colorbar": { + "outlinewidth": 0, + "ticks": "" } }, "type": "scattergl" @@ -116012,18 +115935,18 @@ { "cells": { "fill": { - "color": "#506784" + "color": "#EBF0F8" }, "line": { - "color": "rgb(17,17,17)" + "color": "white" } }, "header": { "fill": { - "color": "#2a3f5f" + "color": "#C8D4E3" }, "line": { - "color": "rgb(17,17,17)" + "color": "white" } }, "type": "table" @@ -116032,7 +115955,7 @@ }, "layout": { "annotationdefaults": { - "arrowcolor": "#f2f5fa", + "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, @@ -116188,123 +116111,113 @@ "#FECB52" ], "font": { - "color": "#f2f5fa" + "color": "#2a3f5f" }, "geo": { - "bgcolor": "rgb(17,17,17)", - "lakecolor": "rgb(17,17,17)", - "landcolor": "rgb(17,17,17)", + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "white", "showlakes": true, "showland": true, - "subunitcolor": "#506784" + "subunitcolor": "#C8D4E3" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { - "style": "dark" + "style": "light" }, - "paper_bgcolor": "rgb(17,17,17)", - "plot_bgcolor": "rgb(17,17,17)", + "paper_bgcolor": "white", + "plot_bgcolor": "white", "polar": { "angularaxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#EBF0F8", + "linecolor": "#EBF0F8", "ticks": "" }, - "bgcolor": "rgb(17,17,17)", + "bgcolor": "white", "radialaxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#EBF0F8", + "linecolor": "#EBF0F8", "ticks": "" } }, "scene": { "xaxis": { - "backgroundcolor": "rgb(17,17,17)", - "gridcolor": "#506784", + "backgroundcolor": "white", + "gridcolor": "#DFE8F3", "gridwidth": 2, - "linecolor": "#506784", + "linecolor": "#EBF0F8", "showbackground": true, "ticks": "", - "zerolinecolor": "#C8D4E3" + "zerolinecolor": "#EBF0F8" }, "yaxis": { - "backgroundcolor": "rgb(17,17,17)", - "gridcolor": "#506784", + "backgroundcolor": "white", + "gridcolor": "#DFE8F3", "gridwidth": 2, - "linecolor": "#506784", + "linecolor": "#EBF0F8", "showbackground": true, "ticks": "", - "zerolinecolor": "#C8D4E3" + "zerolinecolor": "#EBF0F8" }, "zaxis": { - "backgroundcolor": "rgb(17,17,17)", - "gridcolor": "#506784", + "backgroundcolor": "white", + "gridcolor": "#DFE8F3", "gridwidth": 2, - "linecolor": "#506784", + "linecolor": "#EBF0F8", "showbackground": true, "ticks": "", - "zerolinecolor": "#C8D4E3" + "zerolinecolor": "#EBF0F8" } }, "shapedefaults": { "line": { - "color": "#f2f5fa" + "color": "#2a3f5f" } }, - "sliderdefaults": { - "bgcolor": "#C8D4E3", - "bordercolor": "rgb(17,17,17)", - "borderwidth": 1, - "tickwidth": 0 - }, "ternary": { "aaxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#DFE8F3", + "linecolor": "#A2B1C6", "ticks": "" }, "baxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#DFE8F3", + "linecolor": "#A2B1C6", "ticks": "" }, - "bgcolor": "rgb(17,17,17)", + "bgcolor": "white", "caxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "#DFE8F3", + "linecolor": "#A2B1C6", "ticks": "" } }, "title": { "x": 0.05 }, - "updatemenudefaults": { - "bgcolor": "#506784", - "borderwidth": 0 - }, "xaxis": { "automargin": true, - "gridcolor": "#283442", - "linecolor": "#506784", + "gridcolor": "#EBF0F8", + "linecolor": "#EBF0F8", "ticks": "", "title": { "standoff": 15 }, - "zerolinecolor": "#283442", + "zerolinecolor": "#EBF0F8", "zerolinewidth": 2 }, "yaxis": { "automargin": true, - "gridcolor": "#283442", - "linecolor": "#506784", + "gridcolor": "#EBF0F8", + "linecolor": "#EBF0F8", "ticks": "", "title": { "standoff": 15 }, - "zerolinecolor": "#283442", + "zerolinecolor": "#EBF0F8", "zerolinewidth": 2 } } diff --git a/pyproject.toml b/pyproject.toml index f67dbd4..58f66e0 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -13,7 +13,7 @@ requires-python = ">=3.12" dependencies = [ "loguru>=0.7.2", "matplotlib>=3.9.3", - "mlflow>=2.18.0", + "mlflow>=2.19.0", "numba>=0.60.0", "numpy>=2.0.2", "omegaconf>=2.3.0", diff --git a/python_env.yaml b/python_env.yaml index 2834cb9..9210229 100644 --- a/python_env.yaml +++ b/python_env.yaml @@ -23,7 +23,7 @@ "contourpy==1.3.1", "coverage==7.6.9", "cycler==0.12.1", - "databricks-sdk==0.38.0", + "databricks-sdk==0.39.0", "debugpy==1.8.9", "decli==0.6.2", "decorator==5.1.1", @@ -35,10 +35,10 @@ "fastjsonschema==2.21.1", "filelock==3.16.1", "flask==3.1.0", - "fonttools==4.55.2", + "fonttools==4.55.3", "gitdb==4.0.11", "gitpython==3.1.43", - "google-auth==2.36.0", + "google-auth==2.37.0", "graphene==3.4.3", "graphql-core==3.2.5", "graphql-relay==3.2.0", @@ -68,8 +68,8 @@ "matplotlib==3.9.3", "matplotlib-inline==0.1.7", "mdurl==0.1.2", - "mlflow==2.18.0", - "mlflow-skinny==2.18.0", + "mlflow==2.19.0", + "mlflow-skinny==2.19.0", "multimethod==1.12", "mypy==1.13.0", "mypy-extensions==1.0.0", @@ -80,16 +80,16 @@ "numpy==2.0.2", "nvidia-ml-py==12.560.30", "omegaconf==2.3.0", - "opentelemetry-api==1.28.2", - "opentelemetry-sdk==1.28.2", - "opentelemetry-semantic-conventions==0.49b2", + "opentelemetry-api==1.29.0", + "opentelemetry-sdk==1.29.0", + "opentelemetry-semantic-conventions==0.50b0", "packaging==24.2", "pandas==2.2.3", "pandas-stubs==2.2.3.241126", "pandera==0.21.1", "parso==0.8.4", "pbr==6.1.0", - "pdoc==15.0.0", + "pdoc==15.0.1", "pexpect==4.9.0", "pillow==11.0.0", "platformdirs==4.3.6", @@ -127,7 +127,7 @@ "rich==13.9.4", "rpds-py==0.22.3", "rsa==4.9", - "ruff==0.8.2", + "ruff==0.8.3", "scikit-learn==1.5.2", "scipy==1.14.1", "setuptools==75.6.0", @@ -136,7 +136,7 @@ "slicer==0.0.8", "smmap==5.0.1", "sqlalchemy==2.0.36", - "sqlparse==0.5.2", + "sqlparse==0.5.3", "stack-data==0.6.3", "stevedore==5.4.0", "tenacity==9.0.0", diff --git a/requirements.txt b/requirements.txt index af15138..e86c4d6 100644 --- a/requirements.txt +++ b/requirements.txt @@ -22,7 +22,7 @@ commitizen==4.1.0 contourpy==1.3.1 coverage==7.6.9 cycler==0.12.1 -databricks-sdk==0.38.0 +databricks-sdk==0.39.0 debugpy==1.8.9 decli==0.6.2 decorator==5.1.1 @@ -34,14 +34,14 @@ executing==2.1.0 fastjsonschema==2.21.1 filelock==3.16.1 flask==3.1.0 -fonttools==4.55.2 +fonttools==4.55.3 gitdb==4.0.11 gitpython==3.1.43 -google-auth==2.36.0 +google-auth==2.37.0 graphene==3.4.3 graphql-core==3.2.5 graphql-relay==3.2.0 -greenlet==3.1.1 ; (python_full_version == '3.12.*' and platform_machine == 'AMD64') or (python_full_version == '3.12.*' and platform_machine == 'WIN32') or (python_full_version == '3.12.*' and platform_machine == 'aarch64') or (python_full_version == '3.12.*' and platform_machine == 'amd64') or (python_full_version == '3.12.*' and platform_machine == 'ppc64le') or (python_full_version == '3.12.*' and platform_machine == 'win32') or (python_full_version == '3.12.*' and platform_machine == 'x86_64') +greenlet==3.1.1 ; (python_full_version < '3.13' and platform_machine == 'AMD64') or (python_full_version < '3.13' and platform_machine == 'WIN32') or (python_full_version < '3.13' and platform_machine == 'aarch64') or (python_full_version < '3.13' and platform_machine == 'amd64') or (python_full_version < '3.13' and platform_machine == 'ppc64le') or (python_full_version < '3.13' and platform_machine == 'win32') or (python_full_version < '3.13' and platform_machine == 'x86_64') gunicorn==23.0.0 ; platform_system != 'Windows' identify==2.6.3 idna==3.10 @@ -67,8 +67,8 @@ markupsafe==3.0.2 matplotlib==3.9.3 matplotlib-inline==0.1.7 mdurl==0.1.2 -mlflow==2.18.0 -mlflow-skinny==2.18.0 +mlflow==2.19.0 +mlflow-skinny==2.19.0 multimethod==1.12 mypy==1.13.0 mypy-extensions==1.0.0 @@ -79,16 +79,16 @@ numba==0.60.0 numpy==2.0.2 nvidia-ml-py==12.560.30 omegaconf==2.3.0 -opentelemetry-api==1.28.2 -opentelemetry-sdk==1.28.2 -opentelemetry-semantic-conventions==0.49b2 +opentelemetry-api==1.29.0 +opentelemetry-sdk==1.29.0 +opentelemetry-semantic-conventions==0.50b0 packaging==24.2 pandas==2.2.3 pandas-stubs==2.2.3.241126 pandera==0.21.1 parso==0.8.4 pbr==6.1.0 -pdoc==15.0.0 +pdoc==15.0.1 pexpect==4.9.0 ; sys_platform != 'win32' pillow==11.0.0 platformdirs==4.3.6 @@ -127,7 +127,7 @@ requests==2.32.3 rich==13.9.4 rpds-py==0.22.3 rsa==4.9 -ruff==0.8.2 +ruff==0.8.3 scikit-learn==1.5.2 scipy==1.14.1 setuptools==75.6.0 @@ -136,7 +136,7 @@ six==1.17.0 slicer==0.0.8 smmap==5.0.1 sqlalchemy==2.0.36 -sqlparse==0.5.2 +sqlparse==0.5.3 stack-data==0.6.3 stevedore==5.4.0 tenacity==9.0.0 diff --git a/uv.lock b/uv.lock index 4047000..48e20d7 100644 --- a/uv.lock +++ b/uv.lock @@ -141,7 +141,7 @@ notebooks = [ requires-dist = [ { name = "loguru", specifier = ">=0.7.2" }, { name = "matplotlib", specifier = ">=3.9.3" }, - { name = "mlflow", specifier = ">=2.18.0" }, + { name = "mlflow", specifier = ">=2.19.0" }, { name = "numba", specifier = ">=0.60.0" }, { name = "numpy", specifier = ">=2.0.2" }, { name = "omegaconf", specifier = ">=2.3.0" }, @@ -443,15 +443,15 @@ wheels = [ [[package]] name = "databricks-sdk" -version = "0.38.0" +version = "0.39.0" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "google-auth" }, { name = "requests" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/1d/c2/02fd3dad8d25b8b24a69925f79f04902e906212808e267ce0e39462e525b/databricks_sdk-0.38.0.tar.gz", hash = "sha256:65e505201b65d8a2b4110d3eabfebce5a25426d3ccdd5f8bc69eb03333ea1f39", size = 594528 } +sdist = { url = "https://files.pythonhosted.org/packages/f5/98/15030d8ae0c0607739fab357ff731b54e2771a0dd34585f325a266ed950a/databricks_sdk-0.39.0.tar.gz", hash = "sha256:2e04edbb9e050f4362da804fb5dad07637c5adecfcffb4d0ca8abb5aefa36d06", size = 641468 } wheels = [ - { url = "https://files.pythonhosted.org/packages/ed/0d/d203456eef915a40a90292be49ab87904509606d503eceff7ac8c28dbd8e/databricks_sdk-0.38.0-py3-none-any.whl", hash = "sha256:3cc3808e7a294ccf99a3f19f1e86c8e36a5dc0845ac62112dcae2e625ef97c28", size = 575096 }, + { url = "https://files.pythonhosted.org/packages/9e/a0/3c993a6b468c8a212a45c012c86105ea8ade881662f49382a69ea253a43a/databricks_sdk-0.39.0-py3-none-any.whl", hash = "sha256:915fbf12b249264f74ddae2ca739530e3c4a9c5a454617ac403115d6466c2f99", size = 622955 }, ] [[package]] @@ -578,27 +578,27 @@ wheels = [ [[package]] name = "fonttools" -version = "4.55.2" -source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/f4/3a/6ab28db8f90c99e6b502436fb642912b590c352d5ba83e0b22b46db209da/fonttools-4.55.2.tar.gz", hash = "sha256:45947e7b3f9673f91df125d375eb57b9a23f2a603f438a1aebf3171bffa7a205", size = 3492954 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/3c/62/7ac990a52c2bb249e9de6de0036a24eba5a5a8e8446819ab5a5751a0a45e/fonttools-4.55.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:18f082445b8fe5e91c53e6184f4c1c73f3f965c8bcc614c6cd6effd573ce6c1a", size = 2754521 }, - { url = "https://files.pythonhosted.org/packages/4a/bd/a8034bf5d685f825cec0aca6759639277b1d3b0b1d38842b5f30edfb4176/fonttools-4.55.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:27c0f91adbbd706e8acd1db73e3e510118e62d0ffb651864567dccc5b2339f90", size = 2287092 }, - { url = "https://files.pythonhosted.org/packages/70/ad/edf4f4e0efdda8205893007d30d62da09f92d3f0b0f1a3faf85bd5df9952/fonttools-4.55.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3d8ccce035320d63dba0c35f52499322f5531dbe85bba1514c7cea26297e4c54", size = 4782490 }, - { url = "https://files.pythonhosted.org/packages/7a/5f/f757e5860cc4f187fdf8eacf53abc92613cdbc55355e13ba07e2c937d217/fonttools-4.55.2-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:96e126df9615df214ec7f04bebcf60076297fbc10b75c777ce58b702d7708ffb", size = 4854787 }, - { url = "https://files.pythonhosted.org/packages/92/1b/c647b89e5603f9ae9b8f14885dfaf523351eb9d0b5dcbafaf1512d0d4d97/fonttools-4.55.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:508ebb42956a7a931c4092dfa2d9b4ffd4f94cea09b8211199090d2bd082506b", size = 4763330 }, - { url = "https://files.pythonhosted.org/packages/57/09/117e2b5b2d2fcd607b360e241939a652505577c752f9ca15b2fb9e4fc540/fonttools-4.55.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c1b9de46ef7b683d50400abf9f1578eaceee271ff51c36bf4b7366f2be29f498", size = 4990999 }, - { url = "https://files.pythonhosted.org/packages/b9/e5/9be5bd4bfb83187fb83f46b9be6676f653c08a430b975e0a3355fd248c37/fonttools-4.55.2-cp312-cp312-win32.whl", hash = "sha256:2df61d9fc15199cc86dad29f64dd686874a3a52dda0c2d8597d21f509f95c332", size = 2151234 }, - { url = "https://files.pythonhosted.org/packages/f3/c5/0eda5db19bd5fe3f6b8dc30ca5be512999b4923268b9b82fd14c211217b5/fonttools-4.55.2-cp312-cp312-win_amd64.whl", hash = "sha256:d337ec087da8216a828574aa0525d869df0a2ac217a2efc1890974ddd1fbc5b9", size = 2198133 }, - { url = "https://files.pythonhosted.org/packages/2d/94/f941fa68a1d4a0f2facd5e6476ae91c5683aea7b7cc30d3ef49187cbbc67/fonttools-4.55.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:10aff204e2edee1d312fa595c06f201adf8d528a3b659cfb34cd47eceaaa6a26", size = 2741975 }, - { url = "https://files.pythonhosted.org/packages/c5/61/00015fe3ccc8171b4d4afb0fa5155064f68948138ef5e1a5ac9cb49082c4/fonttools-4.55.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:09fe922a3eff181fd07dd724cdb441fb6b9fc355fd1c0f1aa79aca60faf1fbdd", size = 2280680 }, - { url = "https://files.pythonhosted.org/packages/4e/fe/9bb6cedc47a9e3872e138e4328475d4ff4faea7d87a2316dc5e5e4cd305e/fonttools-4.55.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:487e1e8b524143a799bda0169c48b44a23a6027c1bb1957d5a172a7d3a1dd704", size = 4760147 }, - { url = "https://files.pythonhosted.org/packages/a2/3a/5bbe1b2a01f6bdf911aca48941eb317a678b50fccf63a27298289af79023/fonttools-4.55.2-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9b1726872e09268bbedb14dc02e58b7ea31ecdd1204c6073eda4911746b44797", size = 4834697 }, - { url = "https://files.pythonhosted.org/packages/43/21/6bb77d4c90e0333db2f5059476fe2f74ad706d9117e82508756c78c7b9be/fonttools-4.55.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:6fc88cfb58b0cd7b48718c3e61dd0d0a3ee8e2c86b973342967ce09fbf1db6d4", size = 4743076 }, - { url = "https://files.pythonhosted.org/packages/90/0b/21392ffe6f9ffb1eefd06363401c68815434faed22cebf00337f513ee41f/fonttools-4.55.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e857fe1859901ad8c5cab32e0eebc920adb09f413d2d73b74b677cf47b28590c", size = 4965579 }, - { url = "https://files.pythonhosted.org/packages/f6/c8/c5aed715d3816977451d2eaf4ab3aaad48e8d8a3e25d28a4d29a07b0f841/fonttools-4.55.2-cp313-cp313-win32.whl", hash = "sha256:81ccd2b3a420b8050c7d9db3be0555d71662973b3ef2a1d921a2880b58957db8", size = 2149187 }, - { url = "https://files.pythonhosted.org/packages/c4/07/36df0ee4ba78b8eb4880b8bbc0d96cc97b98d358ff4a74b469bda851f63e/fonttools-4.55.2-cp313-cp313-win_amd64.whl", hash = "sha256:d559eb1744c7dcfa90ae60cb1a4b3595e898e48f4198738c321468c01180cd83", size = 2195113 }, - { url = "https://files.pythonhosted.org/packages/69/94/c4d8dfe26a971e00e34df99b46e9518425f59918c8993830e904171e21f9/fonttools-4.55.2-py3-none-any.whl", hash = "sha256:8e2d89fbe9b08d96e22c7a81ec04a4e8d8439c31223e2dc6f2f9fc8ff14bdf9f", size = 1100792 }, +version = "4.55.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/76/61/a300d1574dc381393424047c0396a0e213db212e28361123af9830d71a8d/fonttools-4.55.3.tar.gz", hash = "sha256:3983313c2a04d6cc1fe9251f8fc647754cf49a61dac6cb1e7249ae67afaafc45", size = 3498155 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/89/58/fbcf5dff7e3ea844bb00c4d806ca1e339e1f2dce5529633bf4842c0c9a1f/fonttools-4.55.3-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:f9e736f60f4911061235603a6119e72053073a12c6d7904011df2d8fad2c0e35", size = 2765380 }, + { url = "https://files.pythonhosted.org/packages/81/dd/da6e329e51919b4f421c8738f3497e2ab08c168e76aaef7b6d5351862bdf/fonttools-4.55.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:7a8aa2c5e5b8b3bcb2e4538d929f6589a5c6bdb84fd16e2ed92649fb5454f11c", size = 2297940 }, + { url = "https://files.pythonhosted.org/packages/00/44/f5ee560858425c99ef07e04919e736db09d6416408e5a8d3bbfb4a6623fd/fonttools-4.55.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:07f8288aacf0a38d174445fc78377a97fb0b83cfe352a90c9d9c1400571963c7", size = 4793327 }, + { url = "https://files.pythonhosted.org/packages/24/da/0a001926d791c55e29ac3c52964957a20dbc1963615446b568b7432891c3/fonttools-4.55.3-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8d5e8916c0970fbc0f6f1bece0063363bb5857a7f170121a4493e31c3db3314", size = 4865624 }, + { url = "https://files.pythonhosted.org/packages/3d/d8/1edd8b13a427a9fb6418373437caa586c0caa57f260af8e0548f4d11e340/fonttools-4.55.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:ae3b6600565b2d80b7c05acb8e24d2b26ac407b27a3f2e078229721ba5698427", size = 4774166 }, + { url = "https://files.pythonhosted.org/packages/9c/ec/ade054097976c3d6debc9032e09a351505a0196aa5493edf021be376f75e/fonttools-4.55.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:54153c49913f45065c8d9e6d0c101396725c5621c8aee744719300f79771d75a", size = 5001832 }, + { url = "https://files.pythonhosted.org/packages/e2/cd/233f0e31ad799bb91fc78099c8b4e5ec43b85a131688519640d6bae46f6a/fonttools-4.55.3-cp312-cp312-win32.whl", hash = "sha256:827e95fdbbd3e51f8b459af5ea10ecb4e30af50221ca103bea68218e9615de07", size = 2162228 }, + { url = "https://files.pythonhosted.org/packages/46/45/a498b5291f6c0d91b2394b1ed7447442a57d1c9b9cf8f439aee3c316a56e/fonttools-4.55.3-cp312-cp312-win_amd64.whl", hash = "sha256:e6e8766eeeb2de759e862004aa11a9ea3d6f6d5ec710551a88b476192b64fd54", size = 2209118 }, + { url = "https://files.pythonhosted.org/packages/9c/9f/00142a19bad96eeeb1aed93f567adc19b7f2c1af6f5bc0a1c3de90b4b1ac/fonttools-4.55.3-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:a430178ad3e650e695167cb53242dae3477b35c95bef6525b074d87493c4bf29", size = 2752812 }, + { url = "https://files.pythonhosted.org/packages/b0/20/14b8250d63ba65e162091fb0dda07730f90c303bbf5257e9ddacec7230d9/fonttools-4.55.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:529cef2ce91dc44f8e407cc567fae6e49a1786f2fefefa73a294704c415322a4", size = 2291521 }, + { url = "https://files.pythonhosted.org/packages/34/47/a681cfd10245eb74f65e491a934053ec75c4af639655446558f29818e45e/fonttools-4.55.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e75f12c82127486fac2d8bfbf5bf058202f54bf4f158d367e41647b972342ca", size = 4770980 }, + { url = "https://files.pythonhosted.org/packages/d2/6c/a7066afc19db0705a12efd812e19c32cde2b9514eb714659522f2ebd60b6/fonttools-4.55.3-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:859c358ebf41db18fb72342d3080bce67c02b39e86b9fbcf1610cca14984841b", size = 4845534 }, + { url = "https://files.pythonhosted.org/packages/0c/a2/3c204fbabbfd845d9bdcab9ae35279d41e9a4bf5c80a0a2708f9c5a195d6/fonttools-4.55.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:546565028e244a701f73df6d8dd6be489d01617863ec0c6a42fa25bf45d43048", size = 4753910 }, + { url = "https://files.pythonhosted.org/packages/6e/8c/b4cb3592880340b89e4ef6601b531780bba73862332a6451d78fe135d6cb/fonttools-4.55.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:aca318b77f23523309eec4475d1fbbb00a6b133eb766a8bdc401faba91261abe", size = 4976411 }, + { url = "https://files.pythonhosted.org/packages/fc/a8/4bf98840ff89fcc188470b59daec57322178bf36d2f4f756cd19a42a826b/fonttools-4.55.3-cp313-cp313-win32.whl", hash = "sha256:8c5ec45428edaa7022f1c949a632a6f298edc7b481312fc7dc258921e9399628", size = 2160178 }, + { url = "https://files.pythonhosted.org/packages/e6/57/4cc35004605416df3225ff362f3455cf09765db00df578ae9e46d0fefd23/fonttools-4.55.3-cp313-cp313-win_amd64.whl", hash = "sha256:11e5de1ee0d95af4ae23c1a138b184b7f06e0b6abacabf1d0db41c90b03d834b", size = 2206102 }, + { url = "https://files.pythonhosted.org/packages/99/3b/406d17b1f63e04a82aa621936e6e1c53a8c05458abd66300ac85ea7f9ae9/fonttools-4.55.3-py3-none-any.whl", hash = "sha256:f412604ccbeee81b091b420272841e5ec5ef68967a9790e80bffd0e30b8e2977", size = 1111638 }, ] [[package]] @@ -627,16 +627,16 @@ wheels = [ [[package]] name = "google-auth" -version = "2.36.0" +version = "2.37.0" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "cachetools" }, { name = "pyasn1-modules" }, { name = "rsa" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/6a/71/4c5387d8a3e46e3526a8190ae396659484377a73b33030614dd3b28e7ded/google_auth-2.36.0.tar.gz", hash = "sha256:545e9618f2df0bcbb7dcbc45a546485b1212624716975a1ea5ae8149ce769ab1", size = 268336 } +sdist = { url = "https://files.pythonhosted.org/packages/46/af/b25763b9d35dfc2c6f9c3ec34d8d3f1ba760af3a7b7e8d5c5f0579522c45/google_auth-2.37.0.tar.gz", hash = "sha256:0054623abf1f9c83492c63d3f47e77f0a544caa3d40b2d98e099a611c2dd5d00", size = 268878 } wheels = [ - { url = "https://files.pythonhosted.org/packages/2d/9a/3d5087d27865c2f0431b942b5c4500b7d1b744dd3262fdc973a4c39d099e/google_auth-2.36.0-py2.py3-none-any.whl", hash = "sha256:51a15d47028b66fd36e5c64a82d2d57480075bccc7da37cde257fc94177a61fb", size = 209519 }, + { url = "https://files.pythonhosted.org/packages/8d/8d/4d5d5f9f500499f7bd4c93903b43e8d6976f3fc6f064637ded1a85d09b07/google_auth-2.37.0-py2.py3-none-any.whl", hash = "sha256:42664f18290a6be591be5329a96fe30184be1a1badb7292a7f686a9659de9ca0", size = 209829 }, ] [[package]] @@ -1108,7 +1108,7 @@ wheels = [ [[package]] name = "mlflow" -version = "2.18.0" +version = "2.19.0" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "alembic" }, @@ -1128,14 +1128,14 @@ dependencies = [ { name = "sqlalchemy" }, { name = "waitress", marker = "platform_system == 'Windows'" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/b9/4e/cff7f16684073cba17cd8c4b838d974b3f1a1fc02d38a7f2081b85e0c7e5/mlflow-2.18.0.tar.gz", hash = "sha256:90f0d04b02e35c0f2fccc88e892e37b84871cb4f766acd3ef904c1c30be63ee3", size = 26750827 } +sdist = { url = "https://files.pythonhosted.org/packages/cd/76/f623312328a8b642fba8b9683e07904ee9f9c59b9e58528e9a9f5bbdcfea/mlflow-2.19.0.tar.gz", hash = "sha256:b860e9d2599a32460968a0a90efdf960b6a6237a08bff44cc5508830017cf70e", size = 26813362 } wheels = [ - { url = "https://files.pythonhosted.org/packages/f2/17/d24ec693ef27ce33f68414872f1f79ad3da62922edc6c6239a6de5336e5a/mlflow-2.18.0-py3-none-any.whl", hash = "sha256:844a5c26ce8f83bbb5e038a7ce5a47be62edee89ad13ecf98ae2dbf0db9fa58f", size = 27330396 }, + { url = "https://files.pythonhosted.org/packages/c2/39/e051e58f35077500fea62adb67c0ff32cab768a5bbc1e0d8c682e30d56ee/mlflow-2.19.0-py3-none-any.whl", hash = "sha256:875364a9c37d2e6e5b6256a3cee314e1e6ada0c253f46b6fcb37d986a2dc2514", size = 27397174 }, ] [[package]] name = "mlflow-skinny" -version = "2.18.0" +version = "2.19.0" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "cachetools" }, @@ -1152,9 +1152,9 @@ dependencies = [ { name = "requests" }, { name = "sqlparse" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/f9/89/3fbcf0e415678029b783d6951373443aa64cb352c4959374f08903710690/mlflow_skinny-2.18.0.tar.gz", hash = "sha256:87e83f56c362a520196b2f0292b24efdca7f8b2068a6a6941f2ec9feb9bfd914", size = 5445516 } +sdist = { url = "https://files.pythonhosted.org/packages/93/69/53c19be8f05574b9955a2930d0c9b04403d5dd35afce05fbe664b5bfbbfc/mlflow_skinny-2.19.0.tar.gz", hash = "sha256:55a464082ecd48961f73f9a0a58b8d44bf2e77bd32632998f1dffd43ef48623c", size = 5503927 } wheels = [ - { url = "https://files.pythonhosted.org/packages/2e/1b/20128a015405fdfda2dce38b975acf19cd532f4c8dc4231fd088fb8553dd/mlflow_skinny-2.18.0-py3-none-any.whl", hash = "sha256:b924730b38cf9a7400737aa3e011c97edf978eed354bb0eb89ccb1f9e42764dc", size = 5793030 }, + { url = "https://files.pythonhosted.org/packages/05/95/75f59715e39aa2224e5ecd8c52d5a305467e16a843ade2235a215599a1fa/mlflow_skinny-2.19.0-py3-none-any.whl", hash = "sha256:72c652545460db09dc5716241d2fcd9a211b7875444632fbe2d0b62a1f057694", size = 5854771 }, ] [[package]] @@ -1290,42 +1290,42 @@ wheels = [ [[package]] name = "opentelemetry-api" -version = "1.28.2" +version = "1.29.0" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "deprecated" }, { name = "importlib-metadata" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/51/34/e4e9245c868c6490a46ffedf6bd5b0f512bbc0a848b19e3a51f6bbad648c/opentelemetry_api-1.28.2.tar.gz", hash = "sha256:ecdc70c7139f17f9b0cf3742d57d7020e3e8315d6cffcdf1a12a905d45b19cc0", size = 62796 } +sdist = { url = "https://files.pythonhosted.org/packages/bc/8e/b886a5e9861afa188d1fe671fb96ff9a1d90a23d57799331e137cc95d573/opentelemetry_api-1.29.0.tar.gz", hash = "sha256:d04a6cf78aad09614f52964ecb38021e248f5714dc32c2e0d8fd99517b4d69cf", size = 62900 } wheels = [ - { url = "https://files.pythonhosted.org/packages/4d/58/b17393cdfc149e14ee84c662abf921993dcce8058628359ef1f49e2abb97/opentelemetry_api-1.28.2-py3-none-any.whl", hash = "sha256:6fcec89e265beb258fe6b1acaaa3c8c705a934bd977b9f534a2b7c0d2d4275a6", size = 64302 }, + { url = "https://files.pythonhosted.org/packages/43/53/5249ea860d417a26a3a6f1bdedfc0748c4f081a3adaec3d398bc0f7c6a71/opentelemetry_api-1.29.0-py3-none-any.whl", hash = "sha256:5fcd94c4141cc49c736271f3e1efb777bebe9cc535759c54c936cca4f1b312b8", size = 64304 }, ] [[package]] name = "opentelemetry-sdk" -version = "1.28.2" +version = "1.29.0" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "opentelemetry-api" }, { name = "opentelemetry-semantic-conventions" }, { name = "typing-extensions" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/4b/f4/840a5af4efe48d7fb4c456ad60fd624673e871a60d6494f7ff8a934755d4/opentelemetry_sdk-1.28.2.tar.gz", hash = "sha256:5fed24c5497e10df30282456fe2910f83377797511de07d14cec0d3e0a1a3110", size = 157272 } +sdist = { url = "https://files.pythonhosted.org/packages/0c/5a/1ed4c3cf6c09f80565fc085f7e8efa0c222712fd2a9412d07424705dcf72/opentelemetry_sdk-1.29.0.tar.gz", hash = "sha256:b0787ce6aade6ab84315302e72bd7a7f2f014b0fb1b7c3295b88afe014ed0643", size = 157229 } wheels = [ - { url = "https://files.pythonhosted.org/packages/da/8b/4f2b418496c08016d4384f9b1c4725a8af7faafa248d624be4bb95993ce1/opentelemetry_sdk-1.28.2-py3-none-any.whl", hash = "sha256:93336c129556f1e3ccd21442b94d3521759541521861b2214c499571b85cb71b", size = 118757 }, + { url = "https://files.pythonhosted.org/packages/d1/1d/512b86af21795fb463726665e2f61db77d384e8779fdcf4cb0ceec47866d/opentelemetry_sdk-1.29.0-py3-none-any.whl", hash = "sha256:173be3b5d3f8f7d671f20ea37056710217959e774e2749d984355d1f9391a30a", size = 118078 }, ] [[package]] name = "opentelemetry-semantic-conventions" -version = "0.49b2" +version = "0.50b0" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "deprecated" }, { name = "opentelemetry-api" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/7d/0a/e3b93f94aa3223c6fd8e743502a1fefd4fb3a753d8f501ce2a418f7c0bd4/opentelemetry_semantic_conventions-0.49b2.tar.gz", hash = "sha256:44e32ce6a5bb8d7c0c617f84b9dc1c8deda1045a07dc16a688cc7cbeab679997", size = 95213 } +sdist = { url = "https://files.pythonhosted.org/packages/e7/4e/d7c7c91ff47cd96fe4095dd7231701aec7347426fd66872ff320d6cd1fcc/opentelemetry_semantic_conventions-0.50b0.tar.gz", hash = "sha256:02dc6dbcb62f082de9b877ff19a3f1ffaa3c306300fa53bfac761c4567c83d38", size = 100459 } wheels = [ - { url = "https://files.pythonhosted.org/packages/b1/be/6661c8f76708bb3ba38c90be8fa8d7ffe17ccbc5cbbc229334f5535f6448/opentelemetry_semantic_conventions-0.49b2-py3-none-any.whl", hash = "sha256:51e7e1d0daa958782b6c2a8ed05e5f0e7dd0716fc327ac058777b8659649ee54", size = 159199 }, + { url = "https://files.pythonhosted.org/packages/da/fb/dc15fad105450a015e913cfa4f5c27b6a5f1bea8fb649f8cae11e699c8af/opentelemetry_semantic_conventions-0.50b0-py3-none-any.whl", hash = "sha256:e87efba8fdb67fb38113efea6a349531e75ed7ffc01562f65b802fcecb5e115e", size = 166602 }, ] [[package]] @@ -1342,7 +1342,7 @@ name = "pandas" version = "2.2.3" source = { registry = "https://pypi.org/simple" } dependencies = [ - { name = "numpy", marker = "python_full_version >= '3.12'" }, + { name = "numpy" }, { name = "python-dateutil" }, { name = "pytz" }, { name = "tzdata" }, @@ -1428,16 +1428,16 @@ wheels = [ [[package]] name = "pdoc" -version = "15.0.0" +version = "15.0.1" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "jinja2" }, { name = "markupsafe" }, { name = "pygments" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/d1/4a/b645514246e487a02f211023d2fc1f019a25cdd2bf2f4266ff5e92c54f41/pdoc-15.0.0.tar.gz", hash = "sha256:b761220d3ba129cd87e6da1bb7b62c8e799973ab9c595de7ba1a514850d86da5", size = 154109 } +sdist = { url = "https://files.pythonhosted.org/packages/bf/16/1b542af6f18a27de059f722c487a596681127897b6d31f78e46d6e5bf2fe/pdoc-15.0.1.tar.gz", hash = "sha256:3b08382c9d312243ee6c2a1813d0ff517a6ab84d596fa2c6c6b5255b17c3d666", size = 154174 } wheels = [ - { url = "https://files.pythonhosted.org/packages/3d/4a/e4a5490bb6d39214cd7778dfd8cf6b353b94f17aafa703bd1d11673ea025/pdoc-15.0.0-py3-none-any.whl", hash = "sha256:151b0187a25eaf827099e981d6dbe3a4f68aeb18d0d637c24edcab788d5540f1", size = 144184 }, + { url = "https://files.pythonhosted.org/packages/2f/4d/60d856a1b12fbf6ac1539efccfa138e57c6b88675c9867d84bbb46455cc1/pdoc-15.0.1-py3-none-any.whl", hash = "sha256:fd437ab8eb55f9b942226af7865a3801e2fb731665199b74fd9a44737dbe20f9", size = 144186 }, ] [[package]] @@ -2039,27 +2039,27 @@ wheels = [ [[package]] name = "ruff" -version = "0.8.2" -source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/5e/2b/01245f4f3a727d60bebeacd7ee6d22586c7f62380a2597ddb22c2f45d018/ruff-0.8.2.tar.gz", hash = "sha256:b84f4f414dda8ac7f75075c1fa0b905ac0ff25361f42e6d5da681a465e0f78e5", size = 3349020 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/91/29/366be70216dba1731a00a41f2f030822b0c96c7c4f3b2c0cdce15cbace74/ruff-0.8.2-py3-none-linux_armv6l.whl", hash = "sha256:c49ab4da37e7c457105aadfd2725e24305ff9bc908487a9bf8d548c6dad8bb3d", size = 10530649 }, - { url = "https://files.pythonhosted.org/packages/63/82/a733956540bb388f00df5a3e6a02467b16c0e529132625fe44ce4c5fb9c7/ruff-0.8.2-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:ec016beb69ac16be416c435828be702ee694c0d722505f9c1f35e1b9c0cc1bf5", size = 10274069 }, - { url = "https://files.pythonhosted.org/packages/3d/12/0b3aa14d1d71546c988a28e1b412981c1b80c8a1072e977a2f30c595cc4a/ruff-0.8.2-py3-none-macosx_11_0_arm64.whl", hash = "sha256:f05cdf8d050b30e2ba55c9b09330b51f9f97d36d4673213679b965d25a785f3c", size = 9909400 }, - { url = "https://files.pythonhosted.org/packages/23/08/f9f08cefb7921784c891c4151cce6ed357ff49e84b84978440cffbc87408/ruff-0.8.2-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:60f578c11feb1d3d257b2fb043ddb47501ab4816e7e221fbb0077f0d5d4e7b6f", size = 10766782 }, - { url = "https://files.pythonhosted.org/packages/e4/71/bf50c321ec179aa420c8ec40adac5ae9cc408d4d37283a485b19a2331ceb/ruff-0.8.2-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:cbd5cf9b0ae8f30eebc7b360171bd50f59ab29d39f06a670b3e4501a36ba5897", size = 10286316 }, - { url = "https://files.pythonhosted.org/packages/f2/83/c82688a2a6117539aea0ce63fdf6c08e60fe0202779361223bcd7f40bd74/ruff-0.8.2-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b402ddee3d777683de60ff76da801fa7e5e8a71038f57ee53e903afbcefdaa58", size = 11338270 }, - { url = "https://files.pythonhosted.org/packages/7f/d7/bc6a45e5a22e627640388e703160afb1d77c572b1d0fda8b4349f334fc66/ruff-0.8.2-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:705832cd7d85605cb7858d8a13d75993c8f3ef1397b0831289109e953d833d29", size = 12058579 }, - { url = "https://files.pythonhosted.org/packages/da/3b/64150c93946ec851e6f1707ff586bb460ca671581380c919698d6a9267dc/ruff-0.8.2-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:32096b41aaf7a5cc095fa45b4167b890e4c8d3fd217603f3634c92a541de7248", size = 11615172 }, - { url = "https://files.pythonhosted.org/packages/e4/9e/cf12b697ea83cfe92ec4509ae414dc4c9b38179cc681a497031f0d0d9a8e/ruff-0.8.2-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e769083da9439508833cfc7c23e351e1809e67f47c50248250ce1ac52c21fb93", size = 12882398 }, - { url = "https://files.pythonhosted.org/packages/a9/27/96d10863accf76a9c97baceac30b0a52d917eb985a8ac058bd4636aeede0/ruff-0.8.2-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5fe716592ae8a376c2673fdfc1f5c0c193a6d0411f90a496863c99cd9e2ae25d", size = 11176094 }, - { url = "https://files.pythonhosted.org/packages/eb/10/cd2fd77d4a4e7f03c29351be0f53278a393186b540b99df68beb5304fddd/ruff-0.8.2-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:81c148825277e737493242b44c5388a300584d73d5774defa9245aaef55448b0", size = 10771884 }, - { url = "https://files.pythonhosted.org/packages/71/5d/beabb2ff18870fc4add05fa3a69a4cb1b1d2d6f83f3cf3ae5ab0d52f455d/ruff-0.8.2-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:d261d7850c8367704874847d95febc698a950bf061c9475d4a8b7689adc4f7fa", size = 10382535 }, - { url = "https://files.pythonhosted.org/packages/ae/29/6b3fdf3ad3e35b28d87c25a9ff4c8222ad72485ab783936b2b267250d7a7/ruff-0.8.2-py3-none-musllinux_1_2_i686.whl", hash = "sha256:1ca4e3a87496dc07d2427b7dd7ffa88a1e597c28dad65ae6433ecb9f2e4f022f", size = 10886995 }, - { url = "https://files.pythonhosted.org/packages/e9/dc/859d889b4d9356a1a2cdbc1e4a0dda94052bc5b5300098647e51a58c430b/ruff-0.8.2-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:729850feed82ef2440aa27946ab39c18cb4a8889c1128a6d589ffa028ddcfc22", size = 11220750 }, - { url = "https://files.pythonhosted.org/packages/0b/08/e8f519f61f1d624264bfd6b8829e4c5f31c3c61193bc3cff1f19dbe7626a/ruff-0.8.2-py3-none-win32.whl", hash = "sha256:ac42caaa0411d6a7d9594363294416e0e48fc1279e1b0e948391695db2b3d5b1", size = 8729396 }, - { url = "https://files.pythonhosted.org/packages/f8/d4/ba1c7ab72aba37a2b71fe48ab95b80546dbad7a7f35ea28cf66fc5cea5f6/ruff-0.8.2-py3-none-win_amd64.whl", hash = "sha256:2aae99ec70abf43372612a838d97bfe77d45146254568d94926e8ed5bbb409ea", size = 9594729 }, - { url = "https://files.pythonhosted.org/packages/23/34/db20e12d3db11b8a2a8874258f0f6d96a9a4d631659d54575840557164c8/ruff-0.8.2-py3-none-win_arm64.whl", hash = "sha256:fb88e2a506b70cfbc2de6fae6681c4f944f7dd5f2fe87233a7233d888bad73e8", size = 9035131 }, +version = "0.8.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/bf/5e/683c7ef7a696923223e7d95ca06755d6e2acbc5fd8382b2912a28008137c/ruff-0.8.3.tar.gz", hash = "sha256:5e7558304353b84279042fc584a4f4cb8a07ae79b2bf3da1a7551d960b5626d3", size = 3378522 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f8/c4/bfdbb8b9c419ff3b52479af8581026eeaac3764946fdb463dec043441b7d/ruff-0.8.3-py3-none-linux_armv6l.whl", hash = "sha256:8d5d273ffffff0acd3db5bf626d4b131aa5a5ada1276126231c4174543ce20d6", size = 10535860 }, + { url = "https://files.pythonhosted.org/packages/ef/c5/0aabdc9314b4b6f051168ac45227e2aa8e1c6d82718a547455e40c9c9faa/ruff-0.8.3-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:e4d66a21de39f15c9757d00c50c8cdd20ac84f55684ca56def7891a025d7e939", size = 10346327 }, + { url = "https://files.pythonhosted.org/packages/1a/78/4843a59e7e7b398d6019cf91ab06502fd95397b99b2b858798fbab9151f5/ruff-0.8.3-py3-none-macosx_11_0_arm64.whl", hash = "sha256:c356e770811858bd20832af696ff6c7e884701115094f427b64b25093d6d932d", size = 9942585 }, + { url = "https://files.pythonhosted.org/packages/91/5a/642ed8f1ba23ffc2dd347697e01eef3c42fad6ac76603be4a8c3a9d6311e/ruff-0.8.3-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9c0a60a825e3e177116c84009d5ebaa90cf40dfab56e1358d1df4e29a9a14b13", size = 10797597 }, + { url = "https://files.pythonhosted.org/packages/30/25/2e654bc7226da09a49730a1a2ea6e89f843b362db80b4b2a7a4f948ac986/ruff-0.8.3-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:75fb782f4db39501210ac093c79c3de581d306624575eddd7e4e13747e61ba18", size = 10307244 }, + { url = "https://files.pythonhosted.org/packages/c0/2d/a224d56bcd4383583db53c2b8f410ebf1200866984aa6eb9b5a70f04e71f/ruff-0.8.3-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7f26bc76a133ecb09a38b7868737eded6941b70a6d34ef53a4027e83913b6502", size = 11362439 }, + { url = "https://files.pythonhosted.org/packages/82/01/03e2857f9c371b8767d3e909f06a33bbdac880df17f17f93d6f6951c3381/ruff-0.8.3-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:01b14b2f72a37390c1b13477c1c02d53184f728be2f3ffc3ace5b44e9e87b90d", size = 12078538 }, + { url = "https://files.pythonhosted.org/packages/af/ae/ff7f97b355da16d748ceec50e1604a8215d3659b36b38025a922e0612e9b/ruff-0.8.3-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:53babd6e63e31f4e96ec95ea0d962298f9f0d9cc5990a1bbb023a6baf2503a82", size = 11616172 }, + { url = "https://files.pythonhosted.org/packages/6a/d0/6156d4d1e53ebd17747049afe801c5d7e3014d9b2f398b9236fe36ba4320/ruff-0.8.3-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1ae441ce4cf925b7f363d33cd6570c51435972d697e3e58928973994e56e1452", size = 12919886 }, + { url = "https://files.pythonhosted.org/packages/4e/84/affcb30bacb94f6036a128ad5de0e29f543d3f67ee42b490b17d68e44b8a/ruff-0.8.3-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d7c65bc0cadce32255e93c57d57ecc2cca23149edd52714c0c5d6fa11ec328cd", size = 11212599 }, + { url = "https://files.pythonhosted.org/packages/60/b9/5694716bdefd8f73df7c0104334156c38fb0f77673d2966a5a1345bab94d/ruff-0.8.3-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:5be450bb18f23f0edc5a4e5585c17a56ba88920d598f04a06bd9fd76d324cb20", size = 10784637 }, + { url = "https://files.pythonhosted.org/packages/24/7e/0e8f835103ac7da81c3663eedf79dec8359e9ae9a3b0d704bae50be59176/ruff-0.8.3-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:8faeae3827eaa77f5721f09b9472a18c749139c891dbc17f45e72d8f2ca1f8fc", size = 10390591 }, + { url = "https://files.pythonhosted.org/packages/27/da/180ec771fc01c004045962ce017ca419a0281f4bfaf867ed0020f555b56e/ruff-0.8.3-py3-none-musllinux_1_2_i686.whl", hash = "sha256:db503486e1cf074b9808403991663e4277f5c664d3fe237ee0d994d1305bb060", size = 10894298 }, + { url = "https://files.pythonhosted.org/packages/6d/f8/29f241742ed3954eb2222314b02db29f531a15cab3238d1295e8657c5f18/ruff-0.8.3-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:6567be9fb62fbd7a099209257fef4ad2c3153b60579818b31a23c886ed4147ea", size = 11275965 }, + { url = "https://files.pythonhosted.org/packages/79/e9/5b81dc9afc8a80884405b230b9429efeef76d04caead904bd213f453b973/ruff-0.8.3-py3-none-win32.whl", hash = "sha256:19048f2f878f3ee4583fc6cb23fb636e48c2635e30fb2022b3a1cd293402f964", size = 8807651 }, + { url = "https://files.pythonhosted.org/packages/ea/67/7291461066007617b59a707887b90e319b6a043c79b4d19979f86b7a20e7/ruff-0.8.3-py3-none-win_amd64.whl", hash = "sha256:f7df94f57d7418fa7c3ffb650757e0c2b96cf2501a0b192c18e4fb5571dfada9", size = 9625289 }, + { url = "https://files.pythonhosted.org/packages/03/8f/e4fa95288b81233356d9a9dcaed057e5b0adc6399aa8fd0f6d784041c9c3/ruff-0.8.3-py3-none-win_arm64.whl", hash = "sha256:fe2756edf68ea79707c8d68b78ca9a58ed9af22e430430491ee03e718b5e4936", size = 9078754 }, ] [[package]] @@ -2179,7 +2179,7 @@ name = "sqlalchemy" version = "2.0.36" source = { registry = "https://pypi.org/simple" } dependencies = [ - { name = "greenlet", marker = "(python_full_version < '3.13' and platform_machine == 'AMD64' and python_full_version >= '3.12') or (python_full_version < '3.13' and platform_machine == 'WIN32' and python_full_version >= '3.12') or (python_full_version < '3.13' and platform_machine == 'aarch64' and python_full_version >= '3.12') or (python_full_version < '3.13' and platform_machine == 'amd64' and python_full_version >= '3.12') or (python_full_version < '3.13' and platform_machine == 'ppc64le' and python_full_version >= '3.12') or (python_full_version < '3.13' and platform_machine == 'win32' and python_full_version >= '3.12') or (python_full_version < '3.13' and platform_machine == 'x86_64' and python_full_version >= '3.12')" }, + { name = "greenlet", marker = "(python_full_version < '3.13' and platform_machine == 'AMD64') or (python_full_version < '3.13' and platform_machine == 'WIN32') or (python_full_version < '3.13' and platform_machine == 'aarch64') or (python_full_version < '3.13' and platform_machine == 'amd64') or (python_full_version < '3.13' and platform_machine == 'ppc64le') or (python_full_version < '3.13' and platform_machine == 'win32') or (python_full_version < '3.13' and platform_machine == 'x86_64')" }, { name = "typing-extensions" }, ] sdist = { url = "https://files.pythonhosted.org/packages/50/65/9cbc9c4c3287bed2499e05033e207473504dc4df999ce49385fb1f8b058a/sqlalchemy-2.0.36.tar.gz", hash = "sha256:7f2767680b6d2398aea7082e45a774b2b0767b5c8d8ffb9c8b683088ea9b29c5", size = 9574485 } @@ -2205,11 +2205,11 @@ wheels = [ [[package]] name = "sqlparse" -version = "0.5.2" +version = "0.5.3" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/57/61/5bc3aff85dc5bf98291b37cf469dab74b3d0aef2dd88eade9070a200af05/sqlparse-0.5.2.tar.gz", hash = "sha256:9e37b35e16d1cc652a2545f0997c1deb23ea28fa1f3eefe609eee3063c3b105f", size = 84951 } +sdist = { url = "https://files.pythonhosted.org/packages/e5/40/edede8dd6977b0d3da179a342c198ed100dd2aba4be081861ee5911e4da4/sqlparse-0.5.3.tar.gz", hash = "sha256:09f67787f56a0b16ecdbde1bfc7f5d9c3371ca683cfeaa8e6ff60b4807ec9272", size = 84999 } wheels = [ - { url = "https://files.pythonhosted.org/packages/7a/13/5f6654c9d915077fae255686ca6fa42095b62b7337e3e1aa9e82caa6f43a/sqlparse-0.5.2-py3-none-any.whl", hash = "sha256:e99bc85c78160918c3e1d9230834ab8d80fc06c59d03f8db2618f65f65dda55e", size = 44407 }, + { url = "https://files.pythonhosted.org/packages/a9/5c/bfd6bd0bf979426d405cc6e71eceb8701b148b16c21d2dc3c261efc61c7b/sqlparse-0.5.3-py3-none-any.whl", hash = "sha256:cf2196ed3418f3ba5de6af7e82c694a9fbdbfecccdfc72e281548517081f16ca", size = 44415 }, ] [[package]] From 2689eed1a1ca9ed7752496c5b3cb17ed59b0c9ce Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?M=C3=A9d=C3=A9ric=20Hurier=20=28Fmind=29?= Date: Sat, 14 Dec 2024 10:10:22 +0100 Subject: [PATCH 06/10] refactor(code): improve abstractions (#28) --- src/bikes/io/__init__.py | 2 +- src/bikes/io/datasets.py | 3 ++- src/bikes/io/services.py | 2 +- src/bikes/utils/signers.py | 2 +- src/bikes/utils/splitters.py | 4 +++- 5 files changed, 8 insertions(+), 5 deletions(-) diff --git a/src/bikes/io/__init__.py b/src/bikes/io/__init__.py index 2a8a67d..044aa70 100644 --- a/src/bikes/io/__init__.py +++ b/src/bikes/io/__init__.py @@ -1 +1 @@ -"""Components related to external operations.""" +"""Components related to external operations (inputs and outputs).""" diff --git a/src/bikes/io/datasets.py b/src/bikes/io/datasets.py index 7cf2933..677c654 100644 --- a/src/bikes/io/datasets.py +++ b/src/bikes/io/datasets.py @@ -69,11 +69,12 @@ class ParquetReader(Reader): KIND: T.Literal["ParquetReader"] = "ParquetReader" path: str + backend: T.Literal["pyarrow", "numpy_nullable"] = "pyarrow" @T.override def read(self) -> pd.DataFrame: # can't limit rows at read time - data = pd.read_parquet(self.path) + data = pd.read_parquet(self.path, dtype_backend="pyarrow") if self.limit is not None: data = data.head(self.limit) return data diff --git a/src/bikes/io/services.py b/src/bikes/io/services.py index 8a2c572..5743bef 100644 --- a/src/bikes/io/services.py +++ b/src/bikes/io/services.py @@ -199,7 +199,7 @@ def run_context(self, run_config: RunConfig) -> T.Generator[mlflow.ActiveRun, No run (str): run parameters. Yields: - T.Generator[mlflow.ActiveRun, None, None]: active run context. Will be closed as the end of context. + T.Generator[mlflow.ActiveRun, None, None]: active run context. Will be closed at the end of context. """ with mlflow.start_run( run_name=run_config.name, diff --git a/src/bikes/utils/signers.py b/src/bikes/utils/signers.py index b976bb5..4a0a5ce 100644 --- a/src/bikes/utils/signers.py +++ b/src/bikes/utils/signers.py @@ -21,7 +21,7 @@ class Signer(abc.ABC, pdt.BaseModel, strict=True, frozen=True, extra="forbid"): """Base class for generating model signatures. - Allow to switch between model signing strategies. + Allow switching between model signing strategies. e.g., automatic inference, manual model signature, ... https://mlflow.org/docs/latest/models.html#model-signature-and-input-example diff --git a/src/bikes/utils/splitters.py b/src/bikes/utils/splitters.py index bee5952..0740bc0 100644 --- a/src/bikes/utils/splitters.py +++ b/src/bikes/utils/splitters.py @@ -132,7 +132,9 @@ def split( targets: schemas.Targets, groups: Index | None = None, ) -> TrainTestSplits: - splitter = model_selection.TimeSeriesSplit(n_splits=self.n_splits, test_size=self.test_size) + splitter = model_selection.TimeSeriesSplit( + n_splits=self.n_splits, test_size=self.test_size, gap=self.gap + ) yield from splitter.split(inputs) @T.override From bdd338a6bae777be1c1e266da479e3fbb03a6893 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?M=C3=A9d=C3=A9ric=20Hurier=20=28Fmind=29?= Date: Sat, 14 Dec 2024 10:13:27 +0100 Subject: [PATCH 07/10] refactor(actions): split check tasks into subtask for easier debugging (#29) --- .github/workflows/check.yml | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) diff --git a/.github/workflows/check.yml b/.github/workflows/check.yml index f46ad5b..5fdce59 100644 --- a/.github/workflows/check.yml +++ b/.github/workflows/check.yml @@ -13,4 +13,8 @@ jobs: - uses: actions/checkout@v4 - uses: ./.github/actions/setup - run: uv sync --group=checks - - run: uv run invoke checks + - run: uv run invoke checks.format + - run: uv run invoke checks.type + - run: uv run invoke checks.code + - run: uv run invoke checks.security + - run: uv run invoke checks.coverage From 0e1c07bb5d7696c095a6b90f8e6c588affe28662 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?M=C3=A9d=C3=A9ric=20Hurier=20=28Fmind=29?= Date: Sat, 14 Dec 2024 10:35:19 +0100 Subject: [PATCH 08/10] fix(git): rebase commit --- src/bikes/io/services.py | 28 +++++++++++++++++++++------- 1 file changed, 21 insertions(+), 7 deletions(-) diff --git a/src/bikes/io/services.py b/src/bikes/io/services.py index 5743bef..fe75b72 100644 --- a/src/bikes/io/services.py +++ b/src/bikes/io/services.py @@ -8,6 +8,7 @@ import contextlib as ctx import sys import typing as T +import warnings import loguru import mlflow @@ -113,14 +114,27 @@ def notify(self, title: str, message: str) -> None: message (str): message of the notification. """ if self.enable: - notification.notify( - title=title, - message=message, - app_name=self.app_name, - timeout=self.timeout, - ) + try: + notification.notify( + title=title, + message=message, + app_name=self.app_name, + timeout=self.timeout, + ) + except NotImplementedError: + warnings.warn("Notifications are not supported on this system.", RuntimeWarning) + self._print(title=title, message=message) else: - print(f"[{self.app_name}] {title}: {message}") + self._print(title=title, message=message) + + def _print(self, title: str, message: str) -> None: + """Print a notification to the system. + + Args: + title (str): title of the notification. + message (str): message of the notification. + """ + print(f"[{self.app_name}] {title}: {message}") class MlflowService(Service): From 8f926d13414d7519e76e9cfb2aaf0977911a1f38 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?M=C3=A9d=C3=A9ric=20Hurier=20=28Fmind=29?= Date: Sat, 14 Dec 2024 15:51:25 +0100 Subject: [PATCH 09/10] refactor(release): prepare before release BREAKING CHANGE: --- notebooks/explain.ipynb | 4443 +++++++++++++++++++----------------- notebooks/indicators.ipynb | 3002 ++++++++++++++++-------- notebooks/prototype.ipynb | 462 ++-- python_env.yaml | 8 +- requirements.txt | 8 +- src/bikes/core/models.py | 12 +- uv.lock | 76 +- 7 files changed, 4611 insertions(+), 3400 deletions(-) diff --git a/notebooks/explain.ipynb b/notebooks/explain.ipynb index 05ea87c..2bdb13d 100644 --- a/notebooks/explain.ipynb +++ b/notebooks/explain.ipynb @@ -68,7 +68,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "(19, 2)\n" + "(20, 2)\n" ] }, { @@ -98,29 +98,29 @@ " \n", " \n", " \n", - " 18\n", - " numericals__casual\n", - " 0.579146\n", + " 19\n", + " numericals__registered\n", + " 0.939335\n", " \n", " \n", - " 10\n", - " numericals__hr\n", - " 0.250726\n", - " \n", - " \n", - " 13\n", - " numericals__workingday\n", - " 0.078542\n", + " 18\n", + " numericals__casual\n", + " 0.060139\n", " \n", " \n", " 8\n", " numericals__yr\n", - " 0.038600\n", + " 0.000161\n", + " \n", + " \n", + " 16\n", + " numericals__hum\n", + " 0.000064\n", " \n", " \n", - " 9\n", - " numericals__mnth\n", - " 0.012079\n", + " 10\n", + " numericals__hr\n", + " 0.000059\n", " \n", " \n", "\n", @@ -128,11 +128,11 @@ ], "text/plain": [ " feature importance\n", - "18 numericals__casual 0.579146\n", - "10 numericals__hr 0.250726\n", - "13 numericals__workingday 0.078542\n", - "8 numericals__yr 0.038600\n", - "9 numericals__mnth 0.012079" + "19 numericals__registered 0.939335\n", + "18 numericals__casual 0.060139\n", + "8 numericals__yr 0.000161\n", + "16 numericals__hum 0.000064\n", + "10 numericals__hr 0.000059" ] }, "execution_count": 3, @@ -157,7 +157,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "(100, 19)\n" + "(100, 20)\n" ] }, { @@ -200,118 +200,124 @@ " numericals__hum\n", " numericals__windspeed\n", " numericals__casual\n", + " numericals__registered\n", " \n", " \n", " \n", " \n", " 0\n", - " 0.169155\n", - " -0.124650\n", - " -0.203503\n", - " -0.758982\n", - " -1.474484\n", - " -1.076349\n", - " 0.801956\n", - " 0.000513\n", - " 31.495134\n", - " 2.905728\n", - " -74.036369\n", - " -0.019947\n", - " -7.118968\n", - " 18.640795\n", - " 2.613896\n", - " 1.898717\n", - " -1.322058\n", - " -0.210363\n", - " 147.338089\n", + " 0.006652\n", + " 0.027727\n", + " 0.006341\n", + " -0.004617\n", + " 0.007796\n", + " -0.002922\n", + " 0.001006\n", + " -5.551742e-07\n", + " 0.079501\n", + " -0.032553\n", + " 0.019730\n", + " -0.005449\n", + " -0.091014\n", + " -0.040552\n", + " 0.024861\n", + " 0.003903\n", + " -0.012946\n", + " 0.083744\n", + " 25.231182\n", + " 93.615906\n", " \n", " \n", " 1\n", - " 0.142295\n", - " -0.242301\n", - " -0.061819\n", - " -0.650959\n", - " -1.001739\n", - " -0.523719\n", - " 0.824141\n", - " 0.000501\n", - " 32.251492\n", - " 2.752874\n", - " -68.468292\n", - " -0.037579\n", - " -4.272335\n", - " 19.723166\n", - " 1.812452\n", - " 1.462143\n", - " 0.369532\n", - " 0.374412\n", - " 117.786423\n", + " -0.000006\n", + " 0.015149\n", + " 0.013882\n", + " -0.003549\n", + " 0.009620\n", + " 0.034864\n", + " 0.004730\n", + " -5.551742e-07\n", + " 0.080114\n", + " -0.001672\n", + " 0.052958\n", + " -0.005971\n", + " 0.013171\n", + " -0.020272\n", + " 0.069661\n", + " 0.010426\n", + " 0.060713\n", + " -0.055690\n", + " 11.599885\n", + " 79.890282\n", " \n", " \n", " 2\n", - " 0.168699\n", - " -0.173419\n", - " -0.054359\n", - " -0.723623\n", - " -1.554552\n", - " -1.033979\n", - " 0.762942\n", - " 0.000534\n", - " 32.245430\n", - " 3.195950\n", - " -82.515167\n", - " 0.009938\n", - " -2.856529\n", - " 19.824303\n", - " 1.498975\n", - " 2.046780\n", - " 1.559438\n", - " 2.603706\n", - " 127.694664\n", + " 0.001510\n", + " 0.008787\n", + " -0.031662\n", + " -0.005680\n", + " 0.003407\n", + " 0.007366\n", + " 0.002644\n", + " -5.384581e-07\n", + " 0.075888\n", + " -0.039858\n", + " 0.066534\n", + " -0.008654\n", + " -0.043778\n", + " -0.015179\n", + " 0.120411\n", + " 0.004957\n", + " 0.042915\n", + " -0.029475\n", + " 17.027773\n", + " 80.330391\n", " \n", " \n", " 3\n", - " 0.253636\n", - " -0.791483\n", - " -0.218226\n", - " -0.612611\n", - " 0.499581\n", - " 0.039798\n", - " 0.778988\n", - " 0.000518\n", - " 30.905354\n", - " 2.808645\n", - " -70.180222\n", - " 0.097680\n", - " -6.699857\n", - " 19.206472\n", - " 4.468694\n", - " 7.614378\n", - " -0.776883\n", - " 1.582501\n", - " 180.403839\n", + " 0.002116\n", + " 0.000101\n", + " -0.030228\n", + " -0.008386\n", + " -0.001240\n", + " -0.001726\n", + " 0.001956\n", + " -5.384581e-07\n", + " 0.089552\n", + " -0.000123\n", + " 0.059446\n", + " -0.009938\n", + " 0.050032\n", + " -0.025889\n", + " -0.006929\n", + " -0.059649\n", + " -0.040841\n", + " 0.017910\n", + " 36.772224\n", + " 106.574913\n", " \n", " \n", " 4\n", - " 0.130902\n", - " -0.788029\n", - " -0.395371\n", - " -0.614574\n", - " -1.558409\n", - " 0.111731\n", - " -3.927900\n", - " 0.000904\n", - " 47.191067\n", - " 6.631704\n", - " -4.315243\n", - " 0.029141\n", - " -0.157620\n", - " 29.401426\n", - " 4.704289\n", - " 4.135256\n", - " -3.774523\n", - " 0.583940\n", - " 202.349609\n", + " 0.012335\n", + " 0.003437\n", + " 0.013386\n", + " -0.027833\n", + " 0.021164\n", + " -0.005834\n", + " -0.004372\n", + " -6.086659e-07\n", + " 0.018141\n", + " 0.174302\n", + " 0.120672\n", + " -0.003116\n", + " 0.040308\n", + " -0.074956\n", + " 0.069545\n", + " 0.015809\n", + " 0.074836\n", + " -0.040882\n", + " 38.722881\n", + " 246.853470\n", " \n", " \n", "\n", @@ -319,53 +325,60 @@ ], "text/plain": [ " categoricals__season_1 categoricals__season_2 categoricals__season_3 \\\n", - "0 0.169155 -0.124650 -0.203503 \n", - "1 0.142295 -0.242301 -0.061819 \n", - "2 0.168699 -0.173419 -0.054359 \n", - "3 0.253636 -0.791483 -0.218226 \n", - "4 0.130902 -0.788029 -0.395371 \n", + "0 0.006652 0.027727 0.006341 \n", + "1 -0.000006 0.015149 0.013882 \n", + "2 0.001510 0.008787 -0.031662 \n", + "3 0.002116 0.000101 -0.030228 \n", + "4 0.012335 0.003437 0.013386 \n", "\n", " categoricals__season_4 categoricals__weathersit_1 \\\n", - "0 -0.758982 -1.474484 \n", - "1 -0.650959 -1.001739 \n", - "2 -0.723623 -1.554552 \n", - "3 -0.612611 0.499581 \n", - "4 -0.614574 -1.558409 \n", + "0 -0.004617 0.007796 \n", + "1 -0.003549 0.009620 \n", + "2 -0.005680 0.003407 \n", + "3 -0.008386 -0.001240 \n", + "4 -0.027833 0.021164 \n", "\n", " categoricals__weathersit_2 categoricals__weathersit_3 \\\n", - "0 -1.076349 0.801956 \n", - "1 -0.523719 0.824141 \n", - "2 -1.033979 0.762942 \n", - "3 0.039798 0.778988 \n", - "4 0.111731 -3.927900 \n", + "0 -0.002922 0.001006 \n", + "1 0.034864 0.004730 \n", + "2 0.007366 0.002644 \n", + "3 -0.001726 0.001956 \n", + "4 -0.005834 -0.004372 \n", "\n", " categoricals__weathersit_4 numericals__yr numericals__mnth \\\n", - "0 0.000513 31.495134 2.905728 \n", - "1 0.000501 32.251492 2.752874 \n", - "2 0.000534 32.245430 3.195950 \n", - "3 0.000518 30.905354 2.808645 \n", - "4 0.000904 47.191067 6.631704 \n", + "0 -5.551742e-07 0.079501 -0.032553 \n", + "1 -5.551742e-07 0.080114 -0.001672 \n", + "2 -5.384581e-07 0.075888 -0.039858 \n", + "3 -5.384581e-07 0.089552 -0.000123 \n", + "4 -6.086659e-07 0.018141 0.174302 \n", "\n", " numericals__hr numericals__holiday numericals__weekday \\\n", - "0 -74.036369 -0.019947 -7.118968 \n", - "1 -68.468292 -0.037579 -4.272335 \n", - "2 -82.515167 0.009938 -2.856529 \n", - "3 -70.180222 0.097680 -6.699857 \n", - "4 -4.315243 0.029141 -0.157620 \n", + "0 0.019730 -0.005449 -0.091014 \n", + "1 0.052958 -0.005971 0.013171 \n", + "2 0.066534 -0.008654 -0.043778 \n", + "3 0.059446 -0.009938 0.050032 \n", + "4 0.120672 -0.003116 0.040308 \n", "\n", " numericals__workingday numericals__temp numericals__atemp \\\n", - "0 18.640795 2.613896 1.898717 \n", - "1 19.723166 1.812452 1.462143 \n", - "2 19.824303 1.498975 2.046780 \n", - "3 19.206472 4.468694 7.614378 \n", - "4 29.401426 4.704289 4.135256 \n", + "0 -0.040552 0.024861 0.003903 \n", + "1 -0.020272 0.069661 0.010426 \n", + "2 -0.015179 0.120411 0.004957 \n", + "3 -0.025889 -0.006929 -0.059649 \n", + "4 -0.074956 0.069545 0.015809 \n", "\n", - " numericals__hum numericals__windspeed numericals__casual \n", - "0 -1.322058 -0.210363 147.338089 \n", - "1 0.369532 0.374412 117.786423 \n", - "2 1.559438 2.603706 127.694664 \n", - "3 -0.776883 1.582501 180.403839 \n", - "4 -3.774523 0.583940 202.349609 " + " numericals__hum numericals__windspeed numericals__casual \\\n", + "0 -0.012946 0.083744 25.231182 \n", + "1 0.060713 -0.055690 11.599885 \n", + "2 0.042915 -0.029475 17.027773 \n", + "3 -0.040841 0.017910 36.772224 \n", + "4 0.074836 -0.040882 38.722881 \n", + "\n", + " numericals__registered \n", + "0 93.615906 \n", + "1 79.890282 \n", + "2 80.330391 \n", + "3 106.574913 \n", + "4 246.853470 " ] }, "execution_count": 4, @@ -388,7 +401,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Features: ['categoricals__season_1', 'categoricals__season_2', 'categoricals__season_3', 'categoricals__season_4', 'categoricals__weathersit_1', 'categoricals__weathersit_2', 'categoricals__weathersit_3', 'categoricals__weathersit_4', 'numericals__yr', 'numericals__mnth', 'numericals__hr', 'numericals__holiday', 'numericals__weekday', 'numericals__workingday', 'numericals__temp', 'numericals__atemp', 'numericals__hum', 'numericals__windspeed', 'numericals__casual']\n" + "Features: ['categoricals__season_1', 'categoricals__season_2', 'categoricals__season_3', 'categoricals__season_4', 'categoricals__weathersit_1', 'categoricals__weathersit_2', 'categoricals__weathersit_3', 'categoricals__weathersit_4', 'numericals__yr', 'numericals__mnth', 'numericals__hr', 'numericals__holiday', 'numericals__weekday', 'numericals__workingday', 'numericals__temp', 'numericals__atemp', 'numericals__hum', 'numericals__windspeed', 'numericals__casual', 'numericals__registered']\n" ] }, { @@ -396,97 +409,110 @@ "text/plain": [ ".values =\n", " categoricals__season_1 categoricals__season_2 categoricals__season_3 \\\n", - "0 0.169155 -0.124650 -0.203503 \n", - "1 0.142295 -0.242301 -0.061819 \n", - "2 0.168699 -0.173419 -0.054359 \n", - "3 0.253636 -0.791483 -0.218226 \n", - "4 0.130902 -0.788029 -0.395371 \n", + "0 0.006652 0.027727 0.006341 \n", + "1 -0.000006 0.015149 0.013882 \n", + "2 0.001510 0.008787 -0.031662 \n", + "3 0.002116 0.000101 -0.030228 \n", + "4 0.012335 0.003437 0.013386 \n", ".. ... ... ... \n", - "95 0.032898 0.004389 -0.022684 \n", - "96 -0.039833 -0.035329 -0.022280 \n", - "97 -0.029910 -0.054200 -0.015400 \n", - "98 0.002795 -0.055408 -0.033671 \n", - "99 0.001024 -0.061020 -0.034896 \n", + "95 0.023137 0.013332 -0.107473 \n", + "96 0.004738 -0.013562 -0.005693 \n", + "97 -0.019759 0.010218 -0.009712 \n", + "98 0.003229 -0.000393 -0.161296 \n", + "99 -0.002694 -0.024382 -0.013047 \n", "\n", " categoricals__season_4 categoricals__weathersit_1 \\\n", - "0 -0.758982 -1.474484 \n", - "1 -0.650959 -1.001739 \n", - "2 -0.723623 -1.554552 \n", - "3 -0.612611 0.499581 \n", - "4 -0.614574 -1.558409 \n", + "0 -0.004617 0.007796 \n", + "1 -0.003549 0.009620 \n", + "2 -0.005680 0.003407 \n", + "3 -0.008386 -0.001240 \n", + "4 -0.027833 0.021164 \n", ".. ... ... \n", - "95 -0.615178 0.264237 \n", - "96 -0.627357 0.463110 \n", - "97 -0.607787 0.455338 \n", - "98 -0.623416 0.560994 \n", - "99 -0.625861 0.542756 \n", + "95 -0.000028 0.015664 \n", + "96 0.006259 0.040204 \n", + "97 -0.002168 0.050850 \n", + "98 0.001767 0.032412 \n", + "99 -0.000830 0.073416 \n", "\n", " categoricals__weathersit_2 categoricals__weathersit_3 \\\n", - "0 -1.076349 0.801956 \n", - "1 -0.523719 0.824141 \n", - "2 -1.033979 0.762942 \n", - "3 0.039798 0.778988 \n", - "4 0.111731 -3.927900 \n", + "0 -0.002922 0.001006 \n", + "1 0.034864 0.004730 \n", + "2 0.007366 0.002644 \n", + "3 -0.001726 0.001956 \n", + "4 -0.005834 -0.004372 \n", ".. ... ... \n", - "95 -0.054727 0.568837 \n", - "96 -0.015223 0.565861 \n", - "97 0.003094 0.551169 \n", - "98 0.020387 0.537736 \n", - "99 0.013132 0.532625 \n", + "95 0.042348 0.001443 \n", + "96 0.015874 0.000851 \n", + "97 0.016159 0.000913 \n", + "98 0.004988 0.001736 \n", + "99 0.008803 0.005390 \n", "\n", " categoricals__weathersit_4 numericals__yr numericals__mnth \\\n", - "0 0.000513 31.495134 2.905728 \n", - "1 0.000501 32.251492 2.752874 \n", - "2 0.000534 32.245430 3.195950 \n", - "3 0.000518 30.905354 2.808645 \n", - "4 0.000904 47.191067 6.631704 \n", + "0 -5.551742e-07 0.079501 -0.032553 \n", + "1 -5.551742e-07 0.080114 -0.001672 \n", + "2 -5.384581e-07 0.075888 -0.039858 \n", + "3 -5.384581e-07 0.089552 -0.000123 \n", + "4 -6.086659e-07 0.018141 0.174302 \n", ".. ... ... ... \n", - "95 0.000399 40.124039 6.724072 \n", - "96 0.000403 35.804981 20.436369 \n", - "97 0.000411 32.999043 26.067795 \n", - "98 0.000392 32.314198 23.293106 \n", - "99 0.000388 32.588284 24.576950 \n", + "95 -5.602442e-07 1.145752 0.013935 \n", + "96 -5.903332e-07 0.702181 -0.239828 \n", + "97 -5.234687e-07 0.233502 0.053566 \n", + "98 -5.234687e-07 1.738129 -0.242034 \n", + "99 -5.903332e-07 2.091767 -0.134973 \n", "\n", " numericals__hr numericals__holiday numericals__weekday \\\n", - "0 -74.036369 -0.019947 -7.118968 \n", - "1 -68.468292 -0.037579 -4.272335 \n", - "2 -82.515167 0.009938 -2.856529 \n", - "3 -70.180222 0.097680 -6.699857 \n", - "4 -4.315243 0.029141 -0.157620 \n", + "0 0.019730 -0.005449 -0.091014 \n", + "1 0.052958 -0.005971 0.013171 \n", + "2 0.066534 -0.008654 -0.043778 \n", + "3 0.059446 -0.009938 0.050032 \n", + "4 0.120672 -0.003116 0.040308 \n", ".. ... ... ... \n", - "95 -3.901324 0.138933 0.979801 \n", - "96 4.877304 -0.027108 2.595324 \n", - "97 5.580533 -0.012089 2.779204 \n", - "98 1.114409 0.254242 2.357220 \n", - "99 1.200160 0.254306 2.411582 \n", + "95 0.233593 -0.001234 0.026021 \n", + "96 -0.003729 -0.001246 0.083014 \n", + "97 0.239605 -0.001948 0.132541 \n", + "98 0.097312 0.015623 0.146109 \n", + "99 0.258849 -0.001218 0.013697 \n", "\n", " numericals__workingday numericals__temp numericals__atemp \\\n", - "0 18.640795 2.613896 1.898717 \n", - "1 19.723166 1.812452 1.462143 \n", - "2 19.824303 1.498975 2.046780 \n", - "3 19.206472 4.468694 7.614378 \n", - "4 29.401426 4.704289 4.135256 \n", + "0 -0.040552 0.024861 0.003903 \n", + "1 -0.020272 0.069661 0.010426 \n", + "2 -0.015179 0.120411 0.004957 \n", + "3 -0.025889 -0.006929 -0.059649 \n", + "4 -0.074956 0.069545 0.015809 \n", ".. ... ... ... \n", - "95 -21.420794 -1.613000 -4.774735 \n", - "96 -20.015820 -0.422287 -6.170654 \n", - "97 -19.195932 -3.357377 -8.327322 \n", - "98 -18.854221 -0.914422 -15.955507 \n", - "99 -19.075937 -1.693157 -12.839770 \n", + "95 0.033179 0.099047 0.023928 \n", + "96 0.006335 -0.164110 -0.198730 \n", + "97 0.047977 -0.179421 -0.228707 \n", + "98 0.029174 0.148351 0.050507 \n", + "99 0.039286 0.102756 0.067073 \n", + "\n", + " numericals__hum numericals__windspeed numericals__casual \\\n", + "0 -0.012946 0.083744 25.231182 \n", + "1 0.060713 -0.055690 11.599885 \n", + "2 0.042915 -0.029475 17.027773 \n", + "3 -0.040841 0.017910 36.772224 \n", + "4 0.074836 -0.040882 38.722881 \n", + ".. ... ... ... \n", + "95 0.094390 0.061557 118.444702 \n", + "96 -0.431589 0.055392 125.518913 \n", + "97 -0.302664 -0.151566 136.479645 \n", + "98 -0.501217 0.015435 146.480164 \n", + "99 -0.028538 0.062194 143.070084 \n", "\n", - " numericals__hum numericals__windspeed numericals__casual \n", - "0 -1.322058 -0.210363 147.338089 \n", - "1 0.369532 0.374412 117.786423 \n", - "2 1.559438 2.603706 127.694664 \n", - "3 -0.776883 1.582501 180.403839 \n", - "4 -3.774523 0.583940 202.349609 \n", - ".. ... ... ... \n", - "95 -2.793116 1.410505 319.295746 \n", - "96 -1.366720 -0.086119 363.113678 \n", - "97 1.297852 0.499207 374.674683 \n", - "98 1.504436 -0.023106 381.828125 \n", - "99 3.381457 -0.181553 378.957825 \n", + " numericals__registered \n", + "0 93.615906 \n", + "1 79.890282 \n", + "2 80.330391 \n", + "3 106.574913 \n", + "4 246.853470 \n", + ".. ... \n", + "95 216.020004 \n", + "96 256.033020 \n", + "97 273.089264 \n", + "98 224.673309 \n", + "99 245.905670 \n", "\n", - "[100 rows x 19 columns]" + "[100 rows x 20 columns]" ] }, "execution_count": 5, @@ -545,47 +571,49 @@ "textposition": "auto", "type": "bar", "x": [ + "numericals__registered", "numericals__casual", - "numericals__hr", - "numericals__workingday", "numericals__yr", - "numericals__mnth", "numericals__hum", - "numericals__atemp", + "numericals__hr", + "numericals__windspeed", "numericals__temp", + "numericals__atemp", + "numericals__mnth", "numericals__weekday", - "numericals__windspeed", - "categoricals__weathersit_3", - "categoricals__season_4", - "categoricals__season_1", - "numericals__holiday", - "categoricals__weathersit_1", "categoricals__weathersit_2", + "categoricals__weathersit_1", "categoricals__season_2", "categoricals__season_3", + "numericals__workingday", + "categoricals__season_1", + "categoricals__season_4", + "numericals__holiday", + "categoricals__weathersit_3", "categoricals__weathersit_4" ], "xaxis": "x", "y": [ - 0.5791462063789368, - 0.2507259249687195, - 0.0785420835018158, - 0.03859980404376984, - 0.0120792705565691, - 0.008070561103522778, - 0.006674219388514757, - 0.006322493776679039, - 0.00494948448613286, - 0.004703037440776825, - 0.0028446626383811235, - 0.002690249355509877, - 0.0013275929959490895, - 0.0011345595121383667, - 0.000910249538719654, - 0.0005809680442325771, - 0.0005128193879500031, - 0.00018277487833984196, - 3.0518597213813337e-6 + 0.939335286617279, + 0.06013893708586693, + 0.00016115649486891925, + 0.00006372830830514431, + 0.000059160523960599676, + 0.000047698642447358, + 0.00004084747706656344, + 0.00003856617695419118, + 0.000034207892895210534, + 0.000027639429390546866, + 0.000021623562133754604, + 0.000008339592568518128, + 0.0000059107342167408206, + 0.000005159051852388075, + 0.000004351996267359937, + 0.000003020162239408819, + 0.0000021705050130549353, + 0.000001173117652797373, + 0.0000010395727940704091, + 1.8287782399539765e-10 ], "yaxis": "y" } @@ -1488,7 +1516,8 @@ "numericals__atemp", "numericals__hum", "numericals__windspeed", - "numericals__casual" + "numericals__casual", + "numericals__registered" ], "xaxis": "x", "y": [ @@ -1596,2104 +1625,2204 @@ "yaxis": "y", "z": [ [ - 0.169154554605484, - -0.12465005367994308, - -0.20350304245948792, - -0.7589821815490723, - -1.474484086036682, - -1.0763494968414309, - 0.8019556403160095, - 0.0005125635070726275, - 31.495134353637695, - 2.905728340148926, - -74.03636932373047, - -0.01994742453098297, - -7.118968486785889, - 18.64079475402832, - 2.613896131515503, - 1.898716688156128, - -1.322058081626892, - -0.21036271750926971, - 147.3380889892578 + 0.006651927717030048, + 0.027727307751774788, + 0.006340912077575922, + -0.004616885911673307, + 0.007796195801347494, + -0.0029222434386610985, + 0.0010060640051960945, + -5.551742106035817e-7, + 0.07950128614902496, + -0.03255324438214302, + 0.019729897379875183, + -0.005449031479656696, + -0.09101399779319763, + -0.04055198282003403, + 0.024861138314008713, + 0.003903420874848962, + -0.01294585969299078, + 0.08374375104904175, + 25.231182098388672, + 93.61590576171875 ], [ - 0.14229492843151093, - -0.2423005253076553, - -0.06181931495666504, - -0.6509594321250916, - -1.0017391443252563, - -0.523719310760498, - 0.8241411447525024, - 0.0005005813436582685, - 32.25149154663086, - 2.7528738975524902, - -68.46829223632812, - -0.037578750401735306, - -4.272334575653076, - 19.72316551208496, - 1.8124518394470217, - 1.4621434211730957, - 0.3695316016674042, - 0.37441232800483704, - 117.7864227294922 + -0.000005508778485818766, + 0.015149489045143127, + 0.013882013969123363, + -0.0035485560074448586, + 0.009620439261198044, + 0.03486402705311775, + 0.00472987350076437, + -5.551742106035817e-7, + 0.08011361956596375, + -0.0016723755979910493, + 0.05295836552977562, + -0.00597083056345582, + 0.013171305879950523, + -0.020272132009267807, + 0.06966143101453781, + 0.010425924323499203, + 0.06071314588189125, + -0.055689744651317596, + 11.599884986877441, + 79.8902816772461 ], [ - 0.16869859397411346, - -0.17341940104961395, - -0.054359059780836105, - -0.7236232757568359, - -1.5545519590377808, - -1.0339789390563965, - 0.762941837310791, - 0.0005341940559446812, - 32.24542999267578, - 3.1959495544433594, - -82.51516723632812, - 0.009938172064721584, - -2.8565289974212646, - 19.824302673339844, - 1.4989748001098633, - 2.0467801094055176, - 1.55943763256073, - 2.603705883026123, - 127.69466400146484 + 0.0015104314079508185, + 0.008786758407950401, + -0.03166200965642929, + -0.00567967165261507, + 0.003407492069527507, + 0.007365649100393057, + 0.002644443651661277, + -5.384580958889273e-7, + 0.07588770985603333, + -0.03985791280865669, + 0.06653440743684769, + -0.008654243312776089, + -0.04377765581011772, + -0.015179304406046867, + 0.12041128426790237, + 0.0049573155120015144, + 0.042915187776088715, + -0.029475096613168716, + 17.027772903442383, + 80.33039093017578 ], [ - 0.25363633036613464, - -0.7914834022521973, - -0.2182263433933258, - -0.6126111149787903, - 0.4995812475681305, - 0.03979773819446564, - 0.7789877653121948, - 0.0005178267601877451, - 30.905353546142575, - 2.808645009994507, - -70.18022155761719, - 0.09768002480268478, - -6.699856758117676, - 19.206472396850582, - 4.46869421005249, - 7.614377975463867, - -0.7768831253051758, - 1.5825011730194092, - 180.40383911132812 + 0.0021160715259611607, + 0.00010051442950498313, + -0.03022756800055504, + -0.008386158384382725, + -0.0012403222499415278, + -0.001726397080346942, + 0.001956117106601596, + -5.384580958889273e-7, + 0.08955230563879013, + -0.00012346371659077704, + 0.05944574624300003, + -0.00993797555565834, + 0.05003214627504349, + -0.025889070704579353, + -0.00692921644076705, + -0.059649284929037094, + -0.04084114730358124, + 0.01790992170572281, + 36.77222442626953, + 106.57491302490234 ], [ - 0.13090188801288605, - -0.7880292534828186, - -0.3953709006309509, - -0.6145736575126648, - -1.5584088563919067, - 0.11173088103532793, - -3.9278995990753174, - 0.0009037204436026514, - 47.19106674194336, - 6.631704330444336, - -4.315243244171143, - 0.029140517115592957, - -0.1576196849346161, - 29.401426315307617, - 4.704289436340332, - 4.135255813598633, - -3.7745230197906494, - 0.583940327167511, - 202.349609375 + 0.012334555387496948, + 0.0034372410736978054, + 0.013385637663304806, + -0.027833398431539536, + 0.021164117380976677, + -0.005833676550537348, + -0.004372060764580965, + -6.086659141146811e-7, + 0.018141459673643112, + 0.17430205643177032, + 0.12067165970802307, + -0.0031163603998720646, + 0.040307920426130295, + -0.07495581358671188, + 0.0695449560880661, + 0.0158088356256485, + 0.07483598589897156, + -0.040882423520088196, + 38.72288131713867, + 246.8534698486328 ], [ - 0.09980977326631546, - -0.1289137452840805, - 0.04262050241231918, - -1.0114322900772097, - -1.5444451570510864, - -0.3063795566558838, - 1.2926396131515503, - 0.007032076362520456, - 77.94355010986328, - 5.943662643432617, - 176.00094604492188, - 0.0029676654376089573, - 4.077856063842773, - 77.48359680175781, - 2.176015138626098, - -4.81910514831543, - -3.676065444946289, - 0.42632120847702026, - 252.67762756347656 + 0.001423245994374156, + -0.023805150762200356, + -0.0017604439053684473, + -0.0032613121438771486, + 2.322108030319214, + 9.371479988098145, + 0.002707292325794697, + -5.551742106035817e-7, + 0.030152510851621628, + -0.22498054802417755, + 1.348039984703064, + -0.0029431453440338373, + -0.20665644109249115, + -0.009681344032287598, + -0.2660611867904663, + 0.05648881942033768, + -2.369138717651367, + 0.2110820710659027, + 40.40130615234375, + 653.5117797851562 ], [ - 0.17066802084445953, - -0.2959515154361725, - -0.11001028120517732, - -1.0064359903335571, - -1.6547470092773438, - -0.7146743535995483, - 1.3593095541000366, - 0.006959938909858465, - 67.61687469482422, - 7.270330429077148, - 177.5045623779297, - -0.15282031893730164, - 6.387446403503418, - 96.7355728149414, - 2.823650360107422, - -3.538238763809204, - -3.534722089767456, - 1.1455564498901367, - 236.20997619628903 + 0.0010418965248391032, + -0.012846914120018482, + 0.00026803204673342407, + -0.003396972781047225, + 2.951350450515747, + 11.435035705566406, + 0.014215871691703796, + -5.551742106035817e-7, + 0.027390284463763237, + -0.3635384142398834, + 0.7165672183036804, + -0.0036144033074378967, + -0.20825642347335815, + -0.014535687863826752, + 0.4040703773498535, + 0.15121860802173615, + -2.0535378456115723, + 0.40650585293769836, + 27.834957122802734, + 634.140380859375 ], [ - 0.21100318431854248, - -0.5323825478553772, - -0.11136386543512344, - -0.7844051122665405, - -3.295231342315674, - -4.226391315460205, - 1.0265041589736938, - 0.006217549089342356, - 52.71641540527344, - 5.100271701812744, - 64.47308349609375, - -0.13248220086097717, - 6.663832187652588, - 58.35783386230469, - 3.418996572494507, - 2.1445350646972656, - -2.514310836791992, - 1.3115136623382568, - 195.78465270996097 + 0.011715793050825596, + 0.003498691599816084, + 0.01716129295527935, + 0.004922044463455677, + -0.11751722544431686, + -0.007312047760933638, + 0.004228171892464161, + -5.384580958889273e-7, + -0.014053408987820148, + -0.009733003564178944, + -0.3451545536518097, + -0.003562246449291706, + 0.00381058850325644, + -0.0142894946038723, + 0.14947956800460815, + -0.007123587653040886, + -0.06559731066226959, + 0.08480101823806763, + 38.38937759399414, + 393.67364501953125 ], [ - 0.15828295052051544, - -0.10273899137973784, - -0.23303288221359253, - -0.7537844181060791, - -1.0537359714508057, - -0.3776755928993225, - 0.923829197883606, - 0.0001359017041977495, - 39.29851913452149, - 1.023025631904602, - -0.3841829001903534, - -0.09258145093917848, - 3.8694167137146, - 46.602294921875, - 3.19360613822937, - 3.103475332260132, - -3.797464370727539, - -1.9199837446212769, - 138.60589599609375 + 0.007220177445560694, + 0.0215398408472538, + 0.0016394491540268064, + 0.0030258353799581528, + 0.06396777927875519, + 0.029478909447789192, + -0.011835450306534767, + -5.551742106035817e-7, + -0.052763741463422775, + 0.10569187998771667, + -0.11298134922981262, + -0.0036906185559928417, + -0.12399685382843018, + -0.04884563386440277, + 0.12146088480949402, + 0.10700148344039917, + -0.08078912645578384, + 0.029259132221341133, + 17.277523040771484, + 268.6304016113281 ], [ - 0.15737031400203705, - 0.0520184300839901, - -0.4065300226211548, - -0.6695138812065125, - -0.9999762773513794, - -0.3622300326824188, - 0.7322946190834045, - 0.0005345836980268359, - 41.25462341308594, - 0.020151332020759583, - -39.13706970214844, - -0.08169162273406982, - 4.318027496337891, - 40.69746780395508, - 2.796685695648194, - 2.3097407817840576, - -4.547541618347168, - -1.7421387434005735, - 140.1410675048828 + -0.001569658750668168, + 0.0036461090203374624, + -0.01135318260639906, + -0.000772456347476691, + -0.004854164086282253, + 0.018403340131044388, + -0.0022952479775995016, + -5.232615762906789e-7, + 0.05307045578956604, + -0.003736469428986311, + -0.025117889046669006, + 0.005081627052277327, + -0.035275302827358246, + -0.015301229432225227, + 0.03121856227517128, + 0.0745277926325798, + -0.056133806705474854, + -0.042364202439785004, + 12.01944637298584, + 140.9316864013672 ], [ - 0.2103569209575653, - -0.6580501794815063, - -0.018581287935376167, - -0.5772673487663269, - 0.5382667779922485, - 0.07692182064056396, - 0.7319211959838867, - 0.0004881093336734921, - 36.82917022705078, - 2.3916404247283936, - -56.327823638916016, - -0.10369519889354706, - -3.70370888710022, - 17.519577026367188, - 3.3487110137939453, - 4.850150108337402, - -1.7671900987625122, - 0.2815130054950714, - 62.255897521972656 + 0.0001924146490637213, + 0.04092865809798241, + -0.0015011084033176303, + -0.0033650179393589497, + -0.0006705141859129071, + 0.006108311004936695, + 0.00045175253762863576, + -5.232615762906789e-7, + 0.08092037588357925, + 0.007637431379407644, + -0.05110520124435425, + -0.0013185016578063369, + -0.020542727783322334, + 0.0018261007498949766, + 0.035800348967313766, + -0.015426475554704666, + -0.022554943338036537, + 0.03824063017964363, + -10.589357376098633, + 71.0620346069336 ], [ - 0.23457731306552887, - -0.3182263970375061, - -0.03401074558496475, - -0.5962135195732117, - 0.6905218958854675, - 0.0343155562877655, - 0.6870012283325195, - 0.0006443400052376091, - 21.72657585144043, - 2.088026762008667, - -64.06810760498047, - -0.028121035546064377, - -2.425230026245117, - 10.60973072052002, - 1.6931196451187134, - 1.4571316242218018, - -2.226402521133423, - 0.7569981217384338, - -37.61403274536133 + 0.003995981998741627, + 0.0006536968285217881, + 0.005731872282922268, + -0.0013177760411053896, + 0.0039686947129666805, + 0.000600155268330127, + 0.0003653279854916036, + -5.232615762906789e-7, + 0.028297729790210724, + 0.010578276589512825, + 0.04005580022931099, + -0.0003057414141949266, + -0.037189945578575134, + -0.0021838219836354256, + 0.019763674587011337, + 0.03748919442296028, + 0.024632716551423073, + 0.05713146924972534, + -12.713790893554688, + -11.780177116394043 ], [ - 0.1959066241979599, - -0.1870603114366531, - -0.02977874130010605, - -0.5241200923919678, - 0.7009141445159912, - 0.07782352715730667, - 0.6562888622283936, - 0.0007873308495618403, - 18.619783401489254, - 1.6802222728729248, - -87.85552978515625, - 0.008099825121462345, - -2.58468246459961, - 2.4992663860321045, - 1.3333842754364014, - 1.8203318119049072, - -3.4116618633270264, - 0.13050484657287598, - -54.8721809387207 + 0.0007210383773781359, + 0.0036300288047641516, + 0.0031402234453707933, + -0.006010253448039293, + -0.0015569813549518585, + -0.005153910256922245, + -0.0003303317353129387, + -6.387549547071103e-7, + 0.0020087563898414373, + 0.04483729600906372, + 0.0020666068885475397, + -0.0010454640723764896, + -0.009915451519191265, + 0.0017118079122155905, + 0.03720792382955551, + 0.02716696262359619, + -0.023839706555008888, + -0.007197789382189512, + -8.53911304473877, + -96.36003112792969 ], [ - 0.2201275080442429, - -0.1243598610162735, - 0.04713971167802811, - -0.4951706528663635, - 0.5279565453529358, - 0.006826077122241259, - 1.2234665155410769, - 0.0020947991870343685, - 16.840295791625977, - 1.5345487594604492, - -78.14442443847656, - 0.06610047072172165, - -0.4036931991577149, - 6.414614200592041, - 1.874184489250183, - 1.5743393898010254, - -1.5664819478988647, - 0.8207980394363403, - -93.91680145263672 + 0.0019598952494561672, + -0.00007570861635031179, + -0.00884841289371252, + -0.00023431282897945493, + 0.00014444779662881047, + -0.0015234807506203651, + 0.00046563331852667034, + -0.00000278572633760632, + 0.027526993304491043, + 0.007481624837964773, + -0.006813213229179382, + 0.0014300434850156307, + -0.02230777032673359, + 0.0006117512239143252, + 0.025103237479925156, + 0.01750626228749752, + -0.016068970784544945, + 0.002960961777716875, + -14.311731338500977, + -125.42428588867188 ], [ - 0.23642316460609436, - -0.07295327633619308, - 0.02021026983857155, - -0.4677434861660004, - 0.5260272026062012, - -0.0433531254529953, - 1.3350751399993896, - 0.0008117177058011293, - 16.031938552856445, - 1.671962857246399, - -78.07720947265625, - 0.022589685395359993, - -0.31112754344940186, - 7.640243053436279, - 1.160016655921936, - 1.7891626358032229, - -2.236783981323242, - 0.4572813212871551, - -104.49085235595705 + 0.0017088694730773568, + 0.00015139536117203534, + 0.0020067566074430943, + 0.00004777113281306811, + -0.00038464966928586364, + -0.0017217871500179172, + 0.000292366516077891, + -0.0000018034877484751632, + 0.027422193437814713, + 0.007868070155382156, + -0.007023367565125227, + -0.00004148716834606603, + -0.005028950981795788, + -0.0002758684568107128, + 0.029125582426786423, + 0.030005553737282753, + -0.0170501247048378, + -0.0033129926305264235, + -14.520783424377441, + -142.10971069335938 ], [ - 0.24079622328281405, - -0.04550537094473839, - 0.10600541532039642, - -0.4731599688529968, - 0.5193852782249451, - -0.02344142273068428, - 1.3347171545028689, - 0.000648858433123678, - 15.789037704467772, - 1.5652916431427002, - -80.2547836303711, - -0.0102729182690382, - -0.08482003957033157, - 8.450746536254883, - 1.0162487030029297, - 1.6323434114456177, - -2.069530487060547, - 0.407787561416626, - -104.59845733642578 + 0.0017002519452944398, + 0.000153756482177414, + 0.0019306479953229427, + 0.000020420211512828246, + -0.000408702006097883, + -0.0017167264595627785, + 0.00031555621535517275, + -0.0000018034877484751632, + 0.027525680139660835, + 0.007822387851774693, + -0.006818796042352915, + -0.00004227953832014464, + -0.005034175235778093, + -0.00025318050757050514, + 0.02901722490787506, + 0.029881330206990242, + -0.016946304589509964, + -0.002256162464618683, + -14.518677711486816, + -141.1129150390625 ], [ - 0.2427425980567932, - -0.0384024940431118, - 0.10925472527742386, - -0.4685764014720917, - 0.6121373176574707, - -0.010323641821742058, - 1.344220519065857, - 0.000648858433123678, - 17.439502716064453, - 1.6917942762374878, - -73.54963684082031, - -0.021768908947706223, - -0.015513437800109386, - 10.325225830078123, - 0.9995515942573548, - 1.6338378190994265, - -1.988153100013733, - 0.34100043773651123, - -114.72674560546876 + 0.0017017937498167157, + 0.0001543604739708826, + 0.0019258393440395594, + 0.000020506889995886013, + -0.0004134212795179337, + -0.0017175067914649844, + 0.0003159851476084441, + -0.0000018034877484751632, + 0.027518579736351967, + 0.007817110046744347, + -0.006939616519957781, + -0.0000423185047111474, + -0.0050295256078243256, + -0.00025328496121801436, + 0.028996039181947708, + 0.029887082055211067, + -0.016934210434556007, + -0.0022415604908019304, + -14.518477439880371, + -141.1129913330078 ], [ - 0.19245152175426483, - -0.08253858983516693, - -0.0036932018119841814, - -0.47749078273773193, - -0.778639554977417, - -0.12267234921455385, - 1.274175047874451, - 0.0017355340532958508, - 19.329111099243164, - 1.9788233041763303, - -49.32539367675781, - -0.014683695510029793, - 0.3591795265674591, - 14.508062362670898, - 1.2764817476272583, - 1.9689347743988037, - -3.1787121295928955, - -0.0871240571141243, - -117.06720733642578 + 0.0069075231440365314, + -0.0023793235886842012, + 0.002408546395599842, + -0.0002046683948719874, + 0.0034174283500760794, + 0.017605656757950783, + -0.0013891690177842975, + -0.0000028024423954775557, + 0.013808869756758213, + 0.007753540761768818, + -0.058710016310214996, + -0.0004907532129436731, + 0.0027976674027740955, + 0.002934164833277464, + 0.03329596668481827, + 0.02990683913230896, + -0.004108473192900419, + 0.009282576851546764, + -16.78298568725586, + -103.1865463256836 ], [ - 0.26470598578453064, - -0.20068220794200897, - 0.04700566455721855, - -0.5295122861862183, - -2.3159399032592773, - -0.5527059435844421, - 1.442754149436951, - 0.002121501136571169, - 23.01054573059082, - 4.577113151550293, - 4.840754985809326, - -0.04685033857822418, - 1.0733647346496582, - 24.8539981842041, - 2.3293471336364746, - 2.876255512237549, - -2.0436370372772217, - 0.4947572350502014, - -95.24009704589844 + 0.01696089841425419, + -0.0008815972250886261, + 0.0016786563210189342, + -0.01154683344066143, + -0.010079937055706978, + -0.030534395948052406, + -0.00013122665404807776, + -0.0000028024423954775557, + 0.09249408543109894, + 0.0228847898542881, + -0.015595098957419395, + 0.0001536715280963108, + -0.011061187833547592, + -0.01067361794412136, + 0.010136430151760578, + -0.0036386067513376474, + -0.03060462884604931, + 0.046657461673021317, + -36.773563385009766, + 48.45564651489258 ], [ - 0.6009383797645569, - -0.53944331407547, - 0.07307998836040497, - -0.5650307536125183, - -1.6178886890411377, - -1.9659442901611328, - 1.523211121559143, - 0.0005157730774953961, - 55.051509857177734, - 11.02030086517334, - 134.98486328125, - -0.21013426780700684, - 1.3449642658233645, - 48.54542541503906, - 4.885603427886963, - 7.470324516296387, - -3.780826568603515, - -0.40304115414619446, - 21.054868698120117 + -0.006166016682982445, + -0.011735131032764912, + 0.06870537251234055, + 0.011978757567703724, + 0.008082941174507141, + -0.0017754751024767756, + 0.0006361235864460468, + -6.554711262651836e-7, + -0.004149665590375662, + 0.039941489696502686, + 0.1018957570195198, + -0.0005749366246163845, + 0.02964543178677559, + 0.0020867306739091873, + 0.33774110674858093, + 0.16967691481113434, + -0.19295023381710052, + 0.08954022079706192, + -23.142898559570312, + 340.13360595703125 ], [ - 1.0368555784225464, - -4.67413330078125, - -0.0035402767825871706, - -0.6122829914093018, - -1.3186876773834229, - -0.3487352132797241, - 2.466224431991577, - 0.0005312719731591642, - 84.37887573242188, - 6.363649368286133, - 223.41319274902344, - -0.32166752219200134, - 1.1088142395019531, - 57.85630798339844, - -3.1717469692230225, - 0.9009676575660706, - 1.3160041570663452, - 1.3381297588348389, - 127.35955047607422 + 0.00004884159716311842, + 0.030575351789593697, + 0.0035347396042197943, + 0.0003978738677687943, + 1.5647059679031372, + 7.639703750610352, + 0.010119368322193623, + -6.387549547071103e-7, + 0.026196055114269257, + -0.19718025624752045, + -5.4047746658325195, + -0.0004433723515830934, + -0.10173637419939041, + -0.0020036129280924797, + 0.6015021800994873, + 0.8079819083213806, + -3.4430339336395264, + -0.1915404051542282, + -7.461704730987549, + 610.700927734375 ], [ - 0.12387402355670928, - 0.07819881290197372, - -0.009967210702598097, - -0.7128632664680481, - -0.6675121784210205, - 0.03523243963718414, - 1.462039589881897, - 0.0005336896283552051, - 54.25616836547851, - 2.884908437728882, - 24.965435028076172, - -0.05086776614189148, - 1.2107491493225098, - 28.869901657104492, - -0.03788652643561363, - 0.46800532937049866, - 0.19632861018180847, - 1.7283220291137695, - 36.397701263427734 + 0.01107970904558897, + 0.019075576215982437, + 0.0007419644971378148, + -0.004295518156141043, + -0.007189751137048006, + 0.01976017840206623, + 0.004607226699590683, + -6.387549547071103e-7, + 0.07562561333179474, + 0.0512821190059185, + -0.04846164584159851, + -0.0002875449717976153, + 0.0070600989274680614, + -0.006363027263432741, + 0.15419448912143707, + 0.12018619477748871, + -0.02885739505290985, + -0.13140086829662323, + -16.955368041992188, + 195.36190795898438 ], [ - 0.15390318632125854, - -0.24831996858119965, - -0.005272223148494959, - -0.5715996026992798, - -0.8208709955215454, - -0.1594245284795761, - 0.7970048189163208, - 0.0005079301190562546, - 31.991912841796875, - 2.542576551437378, - -94.4873275756836, - -0.094138465821743, - -1.5950297117233276, - 12.353922843933104, - 3.599046468734741, - 2.71368408203125, - 1.3042409420013428, - 0.17937436699867249, - 94.56910705566406 + 0.007070349995046854, + -0.000687244173604995, + 0.002845907583832741, + -0.0002750162675511092, + 0.0028887975495308638, + 0.010263207368552685, + 0.0008025174611248076, + -6.554711262651836e-7, + 0.01467940304428339, + 0.03249873220920563, + 0.062460750341415405, + -0.0018362159607931972, + -0.04076463729143143, + -0.023052731528878212, + 0.01790039800107479, + 0.05104433745145798, + -0.0140243424102664, + -0.013928093016147614, + 20.689077377319336, + 30.211336135864258 ], [ - 0.12881344556808472, - -0.23975999653339383, - -0.11960572004318236, - -0.7206676602363586, - -1.1241790056228638, - -0.6253287196159363, - 0.7455617189407349, - 0.0005503954016603529, - 27.759973526000977, - 2.76396107673645, - -93.7419662475586, - 0.02968677505850792, - -0.7746119499206543, - 19.71836853027344, - 2.5528836250305176, - 1.075609564781189, - 0.22086085379123688, - 2.4454987049102783, - 129.79888916015625 + -0.0013728635385632515, + 0.003555235220119357, + 0.012853462249040604, + -0.0044914111495018005, + 0.010545231401920319, + 0.04375496879220009, + 0.0016766720218583941, + -0.000019832026737276465, + -0.06388916820287704, + 0.03887112811207771, + 0.05932518467307091, + -0.0039627430960536, + -0.04522162303328514, + -0.007923176512122154, + 0.06569643318653107, + 0.03602413088083267, + 0.07286236435174942, + 0.024239348247647285, + 35.06470489501953, + 41.411067962646484 ], [ - 0.12905992567539215, - -0.2558153569698334, - -0.021835684776306152, - -0.5680426955223083, - -1.203219294548035, - -0.269516259431839, - 0.8631099462509155, - 0.0005503954016603529, - 41.81741714477539, - 3.803291320800781, - -56.884029388427734, - -0.1119290143251419, - 0.18008644878864288, - 14.842578887939451, - 3.691838026046753, - 2.833195447921753, - 0.746959924697876, - 2.0351486206054688, - 112.8614273071289 + -0.005357834044843912, + -0.0024086281191557646, + -0.011844372376799583, + -0.006876323372125626, + -0.021737243980169296, + -0.02633604034781456, + -0.0050690569914877415, + -6.387549547071103e-7, + 0.0784100890159607, + 0.022716082632541656, + -0.011831552721560001, + -0.008972804993391037, + -0.07032527029514313, + -0.024393701925873756, + 0.023493792861700058, + 0.022155527025461197, + -0.02042342908680439, + -0.11591413617134094, + 6.390263557434082, + 109.77275085449219 ], [ - 0.25078874826431274, - -0.7432373762130737, - 0.15399301052093506, - -0.5888906717300415, - -0.9327319860458374, - -0.34541767835617065, - 0.8261586427688599, - 0.0005503954016603529, - 31.77030563354492, - 2.852895021438598, - -65.05724334716797, - 0.101149819791317, - -4.877957344055176, - 19.00931167602539, - 4.283749580383301, - 7.261184215545654, - -0.10680069774389268, - 1.2539360523223877, - 181.6190490722656 + 0.0015200352063402534, + -0.020375456660985947, + -0.04013394936919212, + -0.003758674720302224, + 0.009769490920007229, + 0.021521659567952156, + 0.001385631039738655, + -6.387549547071103e-7, + 0.07661083340644836, + 0.010276454500854015, + 0.04247245937585831, + 0.00020689915982075036, + 0.0011735770385712385, + -0.026015259325504303, + -0.027183126658201218, + -0.06629268079996109, + -0.023692011833190918, + 0.01652384363114834, + 36.633907318115234, + 111.5453872680664 ], [ - 0.16916249692440033, - -0.3376086950302124, - -0.017634164541959763, - -0.5719799995422363, - -0.8471976518630981, - -0.2293485701084137, - 0.8150206208229065, - 0.00047357301809825, - 37.48652648925781, - 3.877255439758301, - -68.99298858642578, - -0.11778315156698228, - -0.25162991881370544, - 13.409579277038574, - 3.3177073001861572, - 2.5264971256256104, - 0.631689190864563, - -0.2489928901195526, - 105.84652709960938 + -0.0036602288018912077, + 0.009597549214959145, + 0.006920626387000084, + 0.0017092397902160883, + -0.15817248821258545, + 0.02177630364894867, + 0.006648613605648279, + -6.855601668576128e-7, + 0.06737770140171051, + -0.06644362956285477, + 0.06349306553602219, + -0.006875206716358662, + 0.0113212950527668, + -0.014268136583268642, + 0.04104361683130264, + 0.042025383561849594, + -0.013791737146675587, + -0.014658568426966667, + 6.079195976257324, + 67.1900634765625 ], [ - 0.2764410376548767, - -0.5664715766906738, - -0.22968539595603943, - -0.572463870048523, - -0.6430850028991699, - 0.0533578097820282, - 0.785500168800354, - 0.00045881280675530434, - 33.81791687011719, - 2.6530468463897705, - -68.8091812133789, - 0.40473902225494385, - -5.343265533447266, - 16.448652267456055, - 5.755948543548584, - 8.034867286682129, - 1.9738346338272097, - 0.8543528914451599, - 193.16583251953125 + 0.0051155900582671165, + 0.013708611018955708, + 0.0586785227060318, + -0.00521049415692687, + -0.006021605804562569, + 0.0021888241171836853, + 0.0016582651296630502, + -6.60333967061888e-7, + 0.01028458122164011, + 0.004753753077238798, + -0.04624764621257782, + 0.0144317876547575, + -0.0520596019923687, + -0.02623317949473858, + 0.1910277158021927, + 0.13933075964450836, + 0.024587323889136314, + 0.039449431002140045, + 54.07745361328125, + 59.98140335083008 ], [ - 0.19928956031799316, - -0.7926640510559082, - -0.33886241912841797, - -0.6365681886672974, - -1.6411441564559937, - -0.41482436656951904, - 0.953245222568512, - 0.001876085647381842, - 48.95395278930664, - 6.103858470916748, - -5.4297051429748535, - 0.1609586477279663, - 0.6505838632583618, - 23.07547950744629, - 5.43159818649292, - 4.431673526763916, - 0.35956060886383057, - 0.3377896845340729, - 203.73019409179688 + 0.006552720908075571, + 0.021093690767884254, + -0.004166960250586271, + -0.004569957032799721, + 0.1000647097826004, + 0.02844686061143875, + 0.001574114547111094, + -6.855601668576128e-7, + 0.06880180537700653, + 0.24191595613956451, + 0.016743412241339684, + -0.0017078702803701162, + -0.16520315408706665, + -0.04825649783015251, + 0.16505631804466248, + 0.008172517642378807, + -0.22833600640296936, + 0.012792401015758514, + 46.16494369506836, + 229.34437561035156 ], [ - 0.12561261653900146, - -0.31200775504112244, - -0.12821342051029205, - -0.9878201484680176, - -1.5346041917800903, - -0.7124462723731995, - 1.3390915393829346, - 0.0067122639156877995, - 68.63040924072266, - 8.366534233093262, - 181.4793243408203, - -0.048752136528491974, - 5.048268795013428, - 87.0127944946289, - 3.649786949157715, - -1.8663026094436648, - -1.0483384132385254, - 0.7698644399642944, - 246.24838256835935 + 0.0027308680582791567, + 0.0021503602620214224, + -0.0008001903188414872, + -0.003485697554424405, + 2.2844645977020264, + 8.986417770385742, + 0.0015294291079044342, + -6.855601668576128e-7, + 0.026866432279348373, + -0.2701061964035034, + 1.371681809425354, + -0.0037539168260991573, + -0.12190468609333038, + -0.01394245121628046, + -0.3494392931461334, + 0.09893947094678879, + -2.0895285606384277, + -0.1872989535331726, + 33.96226119995117, + 659.6015014648438 ], [ - 0.14318406581878662, - -0.16817134618759155, - 0.044656164944171906, - -1.000720500946045, - -1.4363611936569214, - -0.39889147877693176, - 1.3321622610092163, - 0.006973070092499256, - 69.49068450927734, - 6.908123016357422, - 178.58457946777344, - 0.028811536729335785, - 6.33791971206665, - 78.09114837646484, - 2.4604194164276123, - -5.162672996520996, - -1.9589805603027344, - 1.2794933319091797, - 250.8259429931641 + 0.0024374150671064854, + -0.020248033106327057, + 0.00034445818164385855, + -0.003253122791647911, + 2.324909210205078, + 9.341946601867676, + 0.002594148041680455, + -6.554711262651836e-7, + 0.02889416366815567, + -0.2641706168651581, + 0.3747313618659973, + -0.003101702779531479, + -0.10966076701879501, + -0.009845799766480923, + -0.18709450960159302, + 0.04467674717307091, + -2.2230875492095947, + 0.6362816691398621, + 37.760650634765625, + 654.1412963867188 ], [ - 0.25990957021713257, - -0.4505943655967712, - 0.06157448887825012, - -0.7794139385223389, - 0.6918620467185974, - 0.44951292872428894, - 1.0499746799468994, - 0.005841830279678106, - 56.292964935302734, - 5.9671502113342285, - 66.78968811035156, - 0.03751257807016373, - 8.603753089904785, - 47.94328689575195, - 3.6040074825286865, - 1.6773055791854858, - -2.9190239906311035, - -1.7982277870178225, - 209.1162109375 + 0.034104444086551666, + -0.23246055841445923, + -0.13084915280342102, + 0.036282431334257126, + 0.004120054189115763, + 0.006236033979803324, + 0.0056472113355994225, + -6.855601668576128e-7, + 0.2013559192419052, + -0.4898975193500519, + 0.6545728445053101, + 0.01100543886423111, + -0.1647973209619522, + 0.15560060739517212, + 0.5139564871788025, + 0.12526537477970123, + 0.005154544487595558, + 0.6279791593551636, + 52.74618148803711, + 458.1688537597656 ], [ - 0.15738365054130554, - -0.1990543156862259, - -0.21096879243850708, - -0.7437237501144409, - 0.5962345600128174, - 0.12838692963123322, - 0.932585835456848, - 0.00018758232181426135, - 41.38226318359375, - 1.345165729522705, - -2.0313286781311035, - -0.07635390013456345, - 5.108170986175537, - 47.13261795043945, - 3.0720739364624023, - 3.1783692836761475, - -3.6837525367736816, - 0.8788055777549744, - 142.00624084472656 + 0.01109375525265932, + 0.013730977661907673, + 0.03841618075966835, + -0.001548058702610433, + -0.02407185547053814, + 0.001612392719835043, + -0.007716449908912182, + -6.554711262651836e-7, + -0.023874696344137192, + 0.49692827463150024, + -0.10035189986228943, + -0.003512770403176546, + -0.012134197168052197, + -0.006361364386975765, + 0.054602764546871185, + 0.0893259271979332, + -0.15294845402240753, + 0.06783509254455566, + 20.251659393310547, + 318.2106018066406 ], [ - 0.17235073447227478, - 0.01019226387143135, - -0.35296082496643066, - -0.6621893048286438, - 0.5560445189476013, - 0.11236726492643356, - 0.7399334907531738, - 0.0004884038353338838, - 41.968544006347656, - 0.2141100913286209, - -38.599220275878906, - -0.06284061074256897, - 5.414779186248779, - 39.87111282348633, - 3.059467315673828, - 2.390272378921509, - -3.2591283321380615, - -3.486874580383301, - 138.43185424804688 + -0.0028282429557293653, + -0.0014945812290534377, + 0.046444203704595566, + -0.003155444748699665, + 0.004562507849186659, + -0.005724669434130192, + 0.0009992136619985104, + -6.235584919522807e-7, + 0.10754438489675522, + 0.045591022819280624, + -0.27491089701652527, + -0.0031523474026471376, + 0.027146119624376297, + -0.01713075302541256, + 0.041630007326602936, + 0.1728299856185913, + -0.08897142112255096, + -0.09937268495559692, + 14.589468002319336, + 204.3438262939453 ], [ - 0.23794770240783691, - -0.4900645613670349, - -0.011707608588039877, - -0.6704952716827393, - 0.5372632741928101, - 0.051002152264118195, - 0.7467884421348572, - 0.0004856945888604969, - 40.592533111572266, - 2.753553867340088, - -42.57415390014648, - -0.07540760189294815, - 3.079872131347656, - 20.16742897033691, - 3.7870593070983887, - 4.918464660644531, - -0.7026727199554443, - 1.1029096841812134, - 51.432491302490234 + -0.0014534194488078356, + -0.0009526879875920713, + -0.004172423854470253, + 0.0006921079475432634, + -0.0021921396255493164, + -0.004376234021037817, + -0.011242687702178955, + -6.235584919522807e-7, + 0.07362504303455353, + -0.013226994313299656, + -0.007348771672695875, + -0.0006700772792100906, + -0.011323693208396435, + -0.006611754186451435, + 0.0238584503531456, + 0.010366292670369148, + 0.13107959926128387, + -0.00043945739162154496, + -16.430917739868164, + 87.13360595703125 ], [ - 0.2759004533290863, - -0.5924070477485657, - 0.020931249484419823, - -0.5460458993911743, - 0.6820108890533447, - 0.098861962556839, - 0.7167019248008728, - 0.0005002596299163997, - 21.094329833984375, - 2.4871826171875, - -60.72250747680664, - -0.03376798704266548, - 1.383594632148743, - 10.921226501464844, - 1.651340365409851, - 1.753352403640747, - -1.068836688995361, - 0.4954444169998169, - -39.085052490234375 + 0.006273296661674976, + 0.0011205810587853193, + 0.007991373538970947, + 0.001794453477486968, + 0.006793729029595852, + -0.0004884173977188766, + 0.0004177966620773077, + -6.402746066669351e-7, + 0.02280062809586525, + 0.003200351260602474, + 0.027727358043193817, + -0.0004356981662567705, + 0.022232266142964363, + -0.0014346633106470108, + 0.020758768543601036, + 0.03470739349722862, + 0.015497592277824879, + 0.022245561704039574, + -14.392223358154297, + -11.860679626464844 ], [ - 0.2188735157251358, - -0.3142482340335846, - -0.014533264562487602, - -0.5839090347290039, - 0.518755316734314, - 5.135694664204493e-6, - 0.6131640672683716, - 0.0006211507134139538, - 20.23552703857422, - 2.1691536903381348, - -94.65522003173828, - 0.03900580108165741, - 3.6193885803222656, - 2.670538902282715, - 1.6299409866333008, - 1.5473499298095703, - -0.8562081456184387, - 0.4622454047203064, - -39.50715255737305 + 0.0006121488404460251, + 0.0009147220989689231, + 0.0064460719004273415, + -0.0014003872638568282, + 0.010643861256539822, + -0.0014645555056631565, + 0.0024916932452470064, + -6.296804713201709e-7, + 0.017859121784567833, + 0.0019433759152889252, + -0.031107306480407715, + 0.0020908708684146404, + -0.006044676527380943, + 0.0004562509711831808, + 0.03634059801697731, + 0.022720249369740486, + -0.022457778453826904, + 0.008153820410370827, + -4.730391502380371, + -91.0995101928711 ], [ - 0.198481485247612, - -0.07439839094877243, - 0.06274367868900299, - -0.5037127137184143, - 0.5450150966644287, - 0.04884336516261101, - 1.023443341255188, - 0.0030024913139641285, - 16.98451042175293, - 1.5871094465255735, - -81.69155883789062, - 0.050032585859298706, - 2.0760021209716797, - 5.364504337310791, - 1.3132153749465942, - 1.83801007270813, - -1.8052141666412351, - 0.11141256988048552, - -87.30631256103516 + 0.0018851486966013908, + 0.0054558501578867435, + -0.0007014277507551014, + -0.00039270296110771596, + -0.0003778787504415959, + -0.0013664799043908715, + -0.0002624162589199841, + -0.000002671184802238713, + 0.019027940928936005, + 0.00520913302898407, + 0.023297913372516632, + -0.00020716941799037158, + 0.001424801885150373, + -0.0018882871372625232, + 0.031407516449689865, + 0.030792301520705223, + -0.012409285642206669, + -0.0012749603483825922, + -12.370261192321777, + -121.95105743408203 ], [ - 0.2194717824459076, - -0.11921803653240204, - 0.019222011789679527, - -0.4715625643730163, - 0.5185927748680115, - 0.005403690971434116, - 1.1428186893463137, - 0.0012586560333147645, - 16.242998123168945, - 1.5087487697601318, - -79.564453125, - 0.027658730745315552, - 0.8004121780395508, - 7.296459674835205, - 1.0413297414779663, - 1.63692045211792, - -2.1477887630462646, - 0.16242094337940216, - -102.68614196777344 + 0.0018644777592271566, + 0.0017501466209068894, + 0.0034476486034691334, + -0.00004615205034497194, + 0.0001728174975141883, + -0.0016761317383497953, + 0.0005739852203987539, + -0.0000017286308775510406, + 0.026555201038718224, + 0.009488275274634361, + -0.00799616239964962, + -0.00029638581327162683, + 0.0008565817843191326, + -0.0007673294749110937, + 0.028684915974736214, + 0.0361049585044384, + -0.017951123416423798, + 0.0011661732569336891, + -14.519098281860352, + -134.12452697753906 ], [ - 0.24611498415470123, - -0.05045967549085617, - 0.09174752235412598, - -0.46277180314064026, - 0.5304945111274719, - -0.012623950839042664, - 1.2979978322982788, - 0.000569057185202837, - 15.881168365478516, - 1.5359578132629397, - -79.95002746582031, - -0.00878177210688591, - 0.9832655191421508, - 8.446954727172852, - 0.997465968132019, - 1.639317512512207, - -1.9241515398025513, - 0.2967201769351959, - -105.7148666381836 + 0.0017109895125031471, + 0.00012154371506767347, + 0.0018292537424713373, + 0.00003634540917119011, + -0.0003699215012602508, + -0.0017253721598535776, + 0.00027517296257428825, + -0.0000017776970935301506, + 0.027265286073088646, + 0.007882017642259598, + -0.007030893117189407, + -0.00004591633114614524, + 0.0005454054335132241, + -0.0003182536456733942, + 0.02650558389723301, + 0.02703513577580452, + -0.016857491806149483, + 0.0005129948258399963, + -14.51955509185791, + -142.11451721191406 ], [ - 0.23592261970043185, - -0.056163568049669266, - 0.04964485019445419, - -0.4659730792045593, - -0.7095680236816406, - 0.04865101724863053, - 1.2980189323425293, - 0.0007347611244767904, - 16.73440933227539, - 1.762690544128418, - -70.92251586914062, - -0.032373104244470596, - 1.05104398727417, - 10.196749687194824, - 1.0973315238952637, - 1.7885221242904663, - -2.9193472862243652, - 0.2187758833169937, - -115.69583129882812 + 0.001764987246133387, + 0.00040870634256862104, + 0.0026142201386392117, + 0.00010971222218358889, + 0.003135998034849763, + 0.018326980993151665, + 0.00003488236325210892, + -0.0000018250796074426034, + 0.02729359269142151, + 0.0074472576379776, + -0.008192232809960842, + -0.0003391087520867586, + 0.00003360493064974435, + -0.0019099856726825237, + 0.026653960347175598, + 0.026819605380296707, + -0.018351014703512192, + 0.00594355771318078, + -15.885224342346191, + -136.7732696533203 ], [ - 0.15151800215244293, - -0.09102077037096024, - 0.014796901494264604, - -0.4803575873374939, - -0.7396679520606995, - -0.0007302318117581308, - 1.1593388319015503, - 0.0025926027446985245, - 20.630054473876953, - 1.8797599077224731, - -52.01689910888672, - -0.03619256988167763, - 1.1444971561431885, - 15.103338241577148, - 1.2100002765655518, - 1.3989856243133545, - -3.14176082611084, - 0.16095776855945587, - -110.93091583251952 + 0.000326479144860059, + -0.00044680634164251387, + 0.0017102574929594994, + -0.0006227491539902985, + 0.003544948995113373, + 0.012842614203691483, + 0.00040936892037279904, + -0.000002505772727090516, + 0.018943898379802704, + 0.015294032171368599, + -0.015672592446208, + 0.0010230701882392168, + 0.007264846470206976, + -0.0006108736852183938, + 0.016240650787949562, + 0.015199842862784863, + -0.022456450387835503, + 0.0007514688186347485, + -15.68520450592041, + -105.30023956298828 ], [ - 0.3331563174724579, - -0.5375060439109802, - 0.07809200137853622, - -0.5034290552139282, - 1.7812379598617554, - 0.2593395709991455, - 1.1528451442718506, - 0.0026077369693666697, - 27.796009063720703, - 6.520780563354492, - 10.290216445922852, - -0.047430116683244705, - 1.8525245189666748, - 26.498050689697266, - 2.599048137664795, - 2.684617519378662, - -1.538456916809082, - 0.2234235405921936, - -85.03682708740234 + 0.020400794222950935, + -0.00768673000857234, + 0.004406789317727089, + -0.0033031501807272434, + 0.011665650643408298, + -0.010954625904560089, + 0.002179280389100313, + -0.000035670920624397695, + 0.025301825255155563, + 0.05416324362158775, + 0.15290139615535736, + -0.0024674225132912397, + 0.025210324674844742, + -0.002035625744611025, + 0.05389327183365822, + 0.04954264312982559, + 0.01483103260397911, + 0.011409739032387733, + -30.215980529785156, + 35.14985656738281 ], [ - 0.6148445010185242, - -0.5458109974861145, - 0.07436816394329071, - -0.5558772683143616, - -1.602208971977234, - -1.8660619258880615, - 1.4260317087173462, - 0.0005109156481921673, - 55.66039276123047, - 10.748068809509276, - 133.65122985839844, - -0.2003977447748184, - 2.7093417644500732, - 47.71160507202149, - 4.897413730621338, - 7.3790411949157715, - -3.70729398727417, - -0.4770473539829254, - 20.235145568847656 + 0.012882553972303867, + 0.0020992765203118324, + 0.015202692709863186, + -0.012168941088020802, + 0.01564415544271469, + -0.04519487917423248, + 0.001339140348136425, + -6.296804713201709e-7, + 0.07985254377126694, + -0.007246454246342182, + 0.16258569061756134, + -0.000311128213070333, + 0.06551415473222733, + 0.00241997092962265, + 0.15746580064296722, + 0.11649887263774872, + -0.06699211150407791, + 0.031001735478639603, + -24.172758102416992, + 332.6954650878906 ], [ - 1.219691514968872, - -3.930114984512329, - -0.05820227786898613, - -0.7105394601821899, - 1.135673761367798, - 0.3353612422943115, - 2.251840114593506, - 0.00047251631622202694, - 85.90479278564453, - 6.80287504196167, - 229.8194274902344, - -0.07705919444561005, - 2.6597917079925537, - 64.78392791748047, - -2.5225374698638916, - 1.384330987930298, - 1.190601825714111, - -0.05136825144290924, - 86.52433013916016 + 0.0011922651901841164, + 0.005094096530228853, + 0.0011413958854973316, + -0.00010120282968273386, + 0.05222266912460327, + 0.0006828928599134088, + 0.0006594562437385321, + -6.129643566055165e-7, + 0.025119218975305557, + 0.0019202145049348474, + -1.602044939994812, + -0.0006180015043355525, + -0.29915931820869446, + -0.0013092391891404986, + 0.504203200340271, + 0.388370543718338, + -0.2482994943857193, + -0.1138865202665329, + -26.923301696777344, + 561.306396484375 ], [ - 0.2047555446624756, - -0.213655948638916, - -0.00399854127317667, - -0.5768263339996338, - 0.4638493061065674, - -0.025749268010258675, - 1.2562960386276243, - 0.00046094285789877176, - 65.2007827758789, - 3.486802816390991, - 11.989641189575195, - -0.14037208259105682, - 1.885317325592041, - 18.04607582092285, - 2.025474548339844, - 2.0944604873657227, - -0.4878037273883819, - 0.42370009422302246, - 81.5890884399414 + 0.0009351265616714954, + 0.007318131625652313, + 0.04327269643545151, + -0.0027673649601638317, + -0.0015376709634438157, + 0.003044597338885069, + -0.00017425682744942605, + -6.296804713201709e-7, + 0.0480995737016201, + 0.03952695056796074, + 0.0067872400395572186, + -0.0007200067047961056, + 0.04268776252865791, + -0.010047940537333488, + 0.1016235202550888, + 0.09350592643022537, + -0.00942146684974432, + -0.041886553168296814, + 1.6088515520095825, + 190.7541961669922 ], [ - 0.10137239098548888, - -0.37388700246810913, - -0.020501015707850456, - -0.6074191927909851, - 0.4287753403186798, - 0.115017831325531, - 0.7555304169654846, - 0.00048564354074187577, - 29.506513595581055, - 2.9056577682495117, - -94.57997131347656, - 0.03204174339771271, - 3.900069952011109, - 19.290468215942383, - 1.85477352142334, - 1.6670939922332764, - 0.32219696044921875, - -0.3370084762573242, - 123.68209075927734 + 0.009475890547037125, + -0.012754441238939762, + 0.014517473988234997, + 0.0007223412394523621, + 0.011792725883424282, + 0.0030101898591965437, + 0.0049566421657800674, + -6.59769568756019e-7, + 0.01913546212017536, + 0.04366765916347504, + 0.0042127324268221855, + -0.0028712258208543062, + -0.025256698951125145, + -0.0007370527018792927, + 0.06467468291521072, + 0.09340886771678925, + 0.007270434405654669, + -0.019520539790391922, + 26.672191619873047, + 12.285402297973633 ], [ - 0.18710395693778992, - -0.19680142402648929, - -0.32244470715522766, - -0.5688077807426453, - 0.4720882475376129, - 0.0397401861846447, - 0.7683758735656738, - 0.0005462547997012734, - 31.28867530822754, - 3.731929063796997, - -90.71562957763672, - -0.03494120389223099, - 0.08460897952318192, - 17.6873836517334, - 3.125368118286133, - 3.46936559677124, - 2.5074703693389893, - 2.282147169113159, - 160.0921173095703 + -0.003595867194235325, + 0.02590436488389969, + 0.02023005299270153, + -0.003800253849476576, + 0.008041446097195148, + 0.00385810574516654, + -0.003484839340671897, + -6.245136887628178e-7, + 0.06476068496704102, + 0.002525066491216421, + -0.029194869101047516, + -0.00638494873419404, + 0.016409598290920258, + 0.012734143063426018, + -0.08917476236820221, + -0.09934348613023758, + -0.040918078273534775, + -0.040972184389829636, + 44.671382904052734, + 48.46432113647461 ], [ - 0.1529584527015686, - -0.003039726056158542, - -0.1533682495355606, - -0.709664523601532, - 0.893938422203064, - 0.5760723352432251, - 0.8047239184379578, - 0.0004966786364093423, - 36.98611068725586, - 3.146008014678955, - -71.38362121582031, - 0.018817907199263573, - 3.2452728748321533, - 19.201480865478516, - 2.6668121814727783, - 1.8272329568862915, - 3.000004291534424, - 0.04630224406719208, - 150.34600830078125 + -0.0027415738441050053, + 0.012843387201428413, + 0.012368951924145222, + -0.007282966282218695, + -0.0036422843113541603, + 0.002714993664994836, + 0.0008106424356810749, + -6.245136887628178e-7, + 0.0859946459531784, + -0.024970823898911476, + 0.03838440030813217, + -0.003770943032577634, + -0.004189699422568083, + -0.042557600885629654, + 0.048626914620399475, + -0.04452104866504669, + -0.03643934056162834, + 0.1041995957493782, + 23.8453311920166, + 88.74214172363281 ], [ - 0.12564659118652344, - -0.10856067389249802, - -0.13760994374752045, - -0.6819873452186584, - 0.985526442527771, - 0.5328243970870972, - 0.8184333443641663, - 0.0004991660825908184, - 36.06460952758789, - 2.3818607330322266, - -67.15582275390625, - 0.06724181771278381, - 4.003010272979736, - 20.30370330810547, - 1.7372372150421145, - 0.7887271046638489, - 3.711036205291748, - -0.16165831685066223, - 140.82354736328125 + 0.003854126902297139, + 0.001576035632751882, + 0.008885622955858707, + -0.005271625705063343, + -0.0023203503806144, + -0.005372942890971899, + 0.003013846930116415, + -6.245136887628178e-7, + 0.08896153420209885, + -0.03911498188972473, + 0.12514419853687286, + -0.0035561970435082912, + 0.02814716473221779, + -0.033137667924165726, + 0.03835460543632507, + -0.03409173712134361, + 0.04170946776866913, + 0.045622568577528, + 20.829662322998047, + 96.88123321533203 ], [ - 0.2156868875026703, - -0.21970093250274655, - -0.17157238721847534, - -0.582151472568512, - 0.7571473121643066, - 0.34388917684555054, - 0.8021156191825867, - 0.0004671056231018156, - 35.37557601928711, - 3.965250015258789, - -80.08492279052734, - -0.020001837983727455, - -0.5407283902168274, - 18.760866165161133, - 2.503405809402466, - 1.832324504852295, - 2.6140968799591064, - -0.19020792841911316, - 150.99533081054688 + -0.0012652892619371414, + 0.032153572887182236, + 0.002453049411997199, + -0.0032540622632950544, + 0.013310075737535954, + 0.0272426325827837, + -0.001575018628500402, + -0.000013358599062485155, + -0.0164583008736372, + -0.007747939322143793, + 0.04255817458033562, + -0.004524235147982836, + 0.011644282378256321, + -0.0521705225110054, + -0.013563261367380619, + 0.02266467735171318, + 0.03389376029372215, + 0.04875112324953079, + 39.69292068481445, + 43.906280517578125 ], [ - 0.1412637084722519, - -0.30071574449539185, - -0.02250619046390057, - -0.5232022404670715, - 0.5742732882499695, - 0.07827191799879074, - 0.8163344860076904, - 0.0004601764085236937, - 40.39252471923828, - 3.792838335037231, - -66.60188293457031, - -0.05314407870173454, - 1.8710877895355225, - 12.72307300567627, - 2.8527181148529053, - 2.524333953857422, - 2.7482614517211914, - 0.30411258339881897, - 106.4751968383789 + -0.01138776820152998, + -0.019260939210653305, + 0.01770198903977871, + -0.0008159659337252378, + -0.0118977976962924, + -0.003278925083577633, + 0.002105925465002656, + -6.713189009133202e-7, + 0.07362348586320877, + 0.02034197747707367, + 0.07931266725063324, + -0.010636311955749989, + 0.050536494702100754, + -0.015463519841432571, + -0.009573938325047493, + -0.00405559316277504, + -0.004031286109238863, + -0.03622780740261078, + 7.665294170379639, + 98.60101318359375 ], [ - 0.21904438734054563, - -0.9796338081359864, - -0.20808185636997223, - -0.6725241541862488, - 0.76905757188797, - 0.1507904976606369, - 0.9582247138023376, - 0.0018147160299122336, - 51.486236572265625, - 8.145078659057617, - 2.00826358795166, - -0.02299480140209198, - 1.78370201587677, - 28.655366897583008, - 3.6398465633392334, - 3.2651970386505127, - 3.6815109252929688, - 0.6304918527603149, - 186.10191345214844 + -0.0025428812950849533, + 0.024447908625006676, + 0.016216157004237175, + -0.00737366545945406, + 0.017084097489714622, + 0.02352946251630783, + 0.00334238656796515, + -6.713189009133202e-7, + 0.14979508519172668, + 0.14088411629199982, + 0.12428082525730133, + -0.00471983989700675, + 0.01947079412639141, + -0.053790025413036346, + -0.010958381928503513, + -0.024521172046661377, + -0.259072870016098, + 0.07200291752815247, + 32.92738342285156, + 214.14283752441406 ], [ - 0.14291352033615112, - -0.4092702567577362, - -0.016462016850709915, - -1.0074352025985718, - 0.7507007122039795, - 0.0233329888433218, - 1.2622381448745728, - 0.00662043783813715, - 76.708984375, - 9.956892013549805, - 188.7099609375, - -0.10155251622200012, - 3.933154344558716, - 78.10543823242188, - 4.067844390869141, - -2.402595281600952, - 6.157655715942383, - 0.5734622478485107, - 253.45640563964844 + 0.013717562891542912, + -0.024167805910110474, + -0.002355935052037239, + -0.0032061149831861258, + -0.36795344948768616, + -0.9022139310836792, + 0.01909729652106762, + -6.713189009133202e-7, + 0.028088895604014397, + -0.3541243374347687, + 0.9499292373657227, + -0.002360778860747814, + -0.03607526794075966, + -0.012956582941114902, + 0.12242666631937027, + -0.13002637028694153, + 1.0533497333526611, + 0.7263461351394653, + 31.455093383789062, + 618.6956787109375 ], [ - 0.02030829526484013, - -0.12989488244056702, - 0.012950842268764973, - -1.0508146286010742, - -1.8382384777069092, - -0.18744176626205444, - 1.3021883964538574, - 0.007097089663147926, - 64.22801971435547, - 5.043331623077393, - 185.12010192871097, - -0.11849214881658554, - 5.452884197235107, - 99.28350067138672, - 6.566226959228516, - 2.2203423976898193, - 3.2472586631774902, - -0.5647582411766052, - 199.72872924804688 + 0.0025698402896523476, + 0.0009632104774937034, + 0.0006638492341153324, + -0.0029753427952528, + 2.0014991760253906, + 8.14316463470459, + 0.0006877673440612853, + -6.59769568756019e-7, + 0.02777082286775112, + -0.1344112604856491, + 0.4689863324165344, + -0.003940984606742859, + 0.39745262265205383, + -0.014108015224337578, + 0.06260238587856293, + 0.40793123841285706, + 0.5186389684677124, + 0.4311058521270752, + 8.814284324645996, + 650.5953979492188 ], [ - 0.3228916525840759, - -0.3939247727394104, - -0.07691303640604019, - -0.835760772228241, - 0.7163823246955872, - 0.5999462008476257, - 1.0237541198730469, - 0.005271204747259617, - 60.66386795043945, - 6.487387657165527, - 80.66358947753906, - -0.2364978194236755, - 6.688722610473633, - 65.82988739013672, - 4.051763534545898, - 1.3767602443695068, - 1.2283387184143066, - -1.5445997714996338, - 189.17742919921875 + -0.0006769955507479608, + -0.033583804965019226, + -0.10036676377058029, + 0.04574335739016533, + 0.013621430844068527, + 0.02133261412382126, + -0.004449136555194855, + -6.296804713201709e-7, + 0.21215377748012543, + -0.0750940814614296, + 0.1647428721189499, + -0.005425931885838509, + -0.1541910171508789, + -0.017091935500502586, + 0.2820179760456085, + 0.7086883187294006, + -0.14498333632946014, + 0.24409180879592896, + 34.18855285644531, + 426.7582092285156 ], [ - 0.22933758795261383, - -0.5853457450866699, - -0.40808942914009094, - -0.7420495748519897, - 0.5262842774391174, - 0.12272506207227708, - 0.8630633354187012, - 0.0002305197558598593, - 45.97563552856445, - 1.6473886966705322, - 0.2738247513771057, - -0.25354090332984924, - 5.018074989318848, - 49.321250915527344, - 4.49329948425293, - 3.769881010055542, - 0.5061792135238647, - 2.4303884506225586, - 171.16476440429688 + 0.002609187038615346, + 0.1641944944858551, + 0.0361909493803978, + -0.001093503786250949, + 0.0005517358658835292, + 0.017809666693210602, + 0.014160111546516418, + -6.59769568756019e-7, + 0.062133464962244034, + -0.013912361115217209, + -0.13000942766666412, + -0.0074212695471942425, + -0.07604885846376419, + -0.03963059186935425, + 0.23234203457832336, + 0.11440657079219818, + -0.09428989887237549, + 0.020115243270993233, + 29.244321823120117, + 281.5018615722656 ], [ - 0.10595784336328506, - -0.3034239709377289, - 0.004209194332361221, - -0.5913828015327454, - -0.6290345191955566, - -0.1300378441810608, - 0.795529842376709, - 0.0004703139129560441, - 38.556922912597656, - 2.611149787902832, - -29.96570205688477, - -0.2867933511734009, - 3.7744107246398926, - 19.35792350769043, - 4.308314323425293, - 5.401734352111816, - -1.5967721939086914, - 1.1559562683105469, - 80.67886352539062 + 0.0069834040477871895, + 0.041601769626140594, + 0.0057310424745082855, + -0.00531318923458457, + 0.02157048135995865, + 0.01661366969347, + 0.015246346592903137, + -6.211704430825193e-7, + 0.06806056946516037, + 0.05313645675778389, + -0.00100362254306674, + -0.0005730095435865223, + 0.13145634531974792, + -0.0034821562003344297, + 0.1268721967935562, + 0.019754214212298393, + 0.050151947885751724, + -0.08839767426252365, + -2.570124626159668, + 177.4750213623047 ], [ - 0.1842264384031296, - -0.61520916223526, - 0.00014860428927931937, - -0.5726089477539062, - -0.8390034437179565, - -0.28560081124305725, - 0.7249773144721985, - 0.00046326289884746075, - 36.372188568115234, - 2.6457676887512207, - -49.63511276245117, - -0.1284542679786682, - 2.8439812660217285, - 17.921478271484375, - 4.430426597595215, - 5.805295467376709, - -0.828450620174408, - -0.8559787273406982, - 57.3697624206543 + 0.0025039881002157927, + 0.007702127564698458, + -0.00045940163545310497, + -0.004002944100648165, + 0.0037886283826082945, + 0.0017252910183742642, + 0.00038392742862924933, + -6.512594836749486e-7, + 0.09889813512563705, + 0.04272354394197464, + -0.010497978888452053, + -0.0003051680396310985, + 0.00895459670573473, + 0.017775943502783775, + 0.012162710539996624, + 0.035248011350631714, + -0.04287286102771759, + 0.06903758645057678, + -10.82508659362793, + 107.75061798095703 ], [ - 0.3403075337409973, - -0.4921663105487823, - 0.03154202178120613, - -0.5617940425872803, - 0.6211637854576111, - 0.0806439071893692, - 0.7029438614845276, - 0.0005348918493837118, - 21.42361831665039, - 2.2635087966918945, - -63.300052642822266, - -0.04405362904071808, - 5.08213472366333, - 11.197439193725586, - 1.985844969749451, - 2.1883108615875244, - -1.1526974439620972, - 1.0649752616882324, - -30.624439239501953 + 0.011076230555772781, + 0.0014311260310932994, + -0.004055170342326164, + -0.004592095036059618, + -0.0031197774223983288, + -0.004475312773138285, + 0.0040420591831207275, + -6.044542715244461e-7, + 0.013708456419408321, + 0.02070705033838749, + -0.0036784380208700895, + 0.002353113144636154, + -0.007001507095992565, + -0.0014610891230404377, + 0.10256830602884293, + 0.10486700385808945, + 0.024727050215005875, + 0.01584123820066452, + -17.319719314575195, + 11.110079765319824 ], [ - 0.25372663140296936, - -0.320645272731781, - -0.07507364451885223, - -0.5897619724273682, - 0.5589356422424316, - 0.04340376704931259, - 0.5946183800697327, - 0.0006588282412849367, - 20.094369888305664, - 1.88590145111084, - -93.14723205566406, - 0.04088236391544342, - 4.745431900024414, - 3.4518299102783203, - 2.009272336959839, - 2.3444361686706543, - 0.32627999782562256, - -0.770842432975769, - -38.7278938293457 + 0.0016084255184978247, + -0.000058056619309354573, + 0.0035995407961308956, + -0.0002546110190451145, + 0.0032382626086473465, + 0.0009177429601550102, + 0.0005268087261356413, + -5.435280172605417e-7, + 0.022768178954720497, + -0.005499211139976978, + -0.010610557161271572, + 0.00007200468826340511, + 0.028107669204473495, + 0.0039767916314303875, + 0.017439140006899834, + 0.04443226754665375, + -0.02291657216846943, + -0.000984368845820427, + -6.033478736877441, + -72.48958587646484 ], [ - 0.21943247318267825, - -0.12726733088493347, - 0.037228118628263474, - -0.534363865852356, - 0.5164883732795715, - 0.03384561836719513, - 0.8946473002433777, - 0.002717023016884923, - 17.320478439331055, - 1.5989444255828855, - -83.35277557373047, - 0.04878876730799675, - 2.4009861946105957, - 5.762009620666504, - 1.32908034324646, - 1.8349647521972656, - -0.21863609552383423, - -0.023395920172333717, - -84.03746795654297 + 0.005728207994252443, + 0.007338241674005985, + -0.0013876617886126041, + -0.00005841227903147228, + 0.0013115369947627187, + -0.0034035714343190193, + 0.0010424795327708125, + -0.0000039857986848801374, + 0.007220836356282234, + -0.0009676579502411187, + 0.002990919165313244, + 0.00002437340845062863, + 0.015586882829666138, + -0.004794564098119736, + 0.021078355610370636, + 0.010257022455334663, + -0.007763806264847517, + -0.001913520391099155, + -12.853437423706055, + -109.05554962158203 ], [ - 0.20040203630924225, - -0.11559498310089111, - 0.06417270004749298, - -0.5235376954078674, - 0.4606982469558716, - -0.03526902571320534, - 0.9255168437957764, - 0.0023979234974831343, - 16.93575096130371, - 1.902251362800598, - -88.30435943603516, - 0.0501277782022953, - 0.938117742538452, - 5.077188014984131, - 1.1604444980621338, - 1.5118155479431152, - -1.317555546760559, - 0.08588874340057373, - -85.24915313720703 + 0.0019176827045157552, + -0.0012269424041733146, + -0.004493480548262596, + -0.0009640853968448937, + -0.0024018618278205395, + -0.0006162429344840348, + 0.0007012590649537742, + -0.0000021855248633073643, + 0.03149329870939255, + 0.00817134790122509, + -0.013098659925162792, + -0.0008149266359396279, + -0.005814816802740097, + -0.0018502436578273773, + 0.004352622199803591, + -0.024434806779026985, + -0.007340642623603344, + 0.004219281952828169, + -10.980875968933105, + -131.90362548828125 ], [ - 0.18269747495651245, - -0.07605229318141937, - 0.07173091173171997, - -0.4844357669353485, - -0.5732073783874512, - 0.007844681851565838, - 1.12010657787323, - 0.0014891471946612, - 16.58222198486328, - 1.64606511592865, - -83.35057067871094, - -0.01078686024993658, - 0.7091659903526306, - 8.082894325256348, - 1.1329712867736816, - 1.1000499725341797, - -1.615869641304016, - -0.04177570715546608, - -96.3712387084961 + 0.0019435613648965955, + 0.00003689707591547631, + 0.0017084202263504267, + -0.0002471527550369501, + 0.0029769781976938248, + 0.018473217263817787, + 0.00022028482635505497, + -0.0000024530525024601957, + 0.02743135206401348, + 0.007595893461257219, + -0.00796431303024292, + -0.000054649990488542244, + 0.014777128584682941, + -0.0003132588171865791, + 0.033614858984947205, + 0.028629209846258163, + -0.013384222984313965, + 0.002354757394641638, + -12.905701637268066, + -140.77879333496094 ], [ - 0.1609257012605667, - -0.05698171257972717, - 0.04584861919283867, - -0.43657249212265015, - -0.9378309845924376, - -0.03391912952065468, - -4.230218887329102, - 0.0004189460596535355, - 16.555925369262695, - 1.4549293518066406, - -62.00870895385742, - -0.03154341131448746, - 0.8709114193916321, - 9.55553913116455, - 0.931132197380066, - 1.621904730796814, - -2.1065187454223633, - -0.09628447890281676, - -117.97828674316406 + 0.0016929584089666605, + 0.00031156433396972716, + 0.002085567219182849, + -0.0001084033865481615, + 0.0029236648697406054, + -0.0015846418682485819, + -0.0027090918738394976, + -0.0000020209704416629393, + 0.027477720752358437, + 0.007388049270957708, + -0.006592149846255779, + -0.0001898197369882837, + 0.013151525519788265, + -0.0005260236794129014, + 0.027983564883470535, + 0.02940315008163452, + -0.016687549650669098, + 0.001318069058470428, + -15.724103927612305, + -139.9279327392578 ], [ - 0.08872067928314209, - -0.08316853642463684, - 0.0016095149330794811, - -0.45677241683006287, - -0.7193160057067871, - -0.004891686141490936, - -4.217394828796387, - 0.0008948497707024217, - 19.923673629760746, - 1.6255260705947876, - -43.96807098388672, - -0.023817621171474457, - 0.6935403347015381, - 14.397486686706545, - 1.1161388158798218, - 1.7200865745544434, - -2.053905487060547, - -0.18823200464248657, - -113.9238052368164 + 0.0016968236304819584, + 0.00046028036740608513, + 0.002799232956022024, + -0.00018599066243041307, + 0.0006236761691980064, + -0.002048034919425845, + -0.0023637674748897552, + -0.0000027183796191820875, + 0.030608220025897026, + 0.008410527370870113, + -0.010060888715088367, + -0.000538619002327323, + 0.025311332195997238, + 0.00013549694267567247, + 0.03711697831749916, + 0.03740866854786873, + -0.01991852931678295, + -0.0007309842039830983, + -13.930608749389648, + -115.61981201171875 ], [ - 0.0777093768119812, - 0.013259045779705048, - 0.03686278313398361, - -0.5079013109207153, - -2.0132761001586914, - 0.001025462639518082, - -6.094466209411621, - 0.000774412474129349, - 20.7618408203125, - 3.0023746490478516, - 0.21572139859199524, - -0.04260637238621712, - -0.36693641543388367, - 19.99711799621582, - 1.3040275573730469, - 1.5885565280914309, - -3.245990514755249, - -1.6222633123397827, - -111.28253173828124 + 0.005469616036862135, + -0.0009162102942354977, + 0.0019053783034905791, + -0.0007327375351451337, + 0.004812548402696848, + -0.0004097820492461324, + -0.0005595733528025448, + -0.0000019636120214272523, + 0.018957683816552162, + 0.01140508335083723, + -0.04296485334634781, + -0.001897835754789412, + 0.01194736547768116, + 0.00017597072292119265, + 0.03229542076587677, + 0.027351053431630135, + -0.00648263655602932, + -0.004493009764701128, + -16.884206771850586, + -102.13335418701172 ], [ - 1.3190847635269165, - -0.5746856927871704, - 0.17855508625507355, - -0.4402800500392914, - -0.9835253357887268, - -0.10344929993152618, - -23.086894989013672, - 0.001089944737032056, - 33.84690856933594, - 6.115768909454346, - 89.60429382324219, - -0.07197070121765137, - 7.1410698890686035, - 31.115278244018555, - -0.05915360897779465, - 0.12214836478233336, - -7.519678592681885, - 0.6514346599578857, - -114.10769653320312 + 0.0011101252166554332, + 0.009871318936347961, + 0.004710619803518057, + 0.00038246429176069796, + 0.011278638616204262, + -0.0013867070665583014, + -0.006719605997204781, + -0.000002404046654191916, + 0.022509479895234108, + 0.04487566649913788, + -0.02667502872645855, + 0.0001557477517053485, + 0.039571698755025864, + -0.0008765723323449492, + 0.029532067477703094, + 0.03739596903324127, + -0.02450568601489067, + 0.0043879104778170586, + -30.45172691345215, + 1.7444103956222534 ], [ - 1.2231159210205078, - -0.9607287645339966, - 0.11360731720924376, - -0.8973789811134338, - -3.622178554534912, - -0.04175031557679176, - -31.327651977539062, - 0.00081804976798594, - 55.58741760253906, - 7.034365653991699, - 180.90435791015625, - -0.1258937418460846, - 5.686140060424805, - 43.01454544067383, - -2.399845838546753, - -6.53320837020874, - -8.385109901428223, - -0.6005556583404541, - -81.34176635742188 + -0.012205596081912518, + 0.0015175752341747284, + -0.008626663126051426, + -0.0012961893808096647, + -0.0022021764889359474, + 0.0011928001185879111, + -0.010106973350048065, + -0.0000016436210898973513, + 0.02495524100959301, + -0.01598449982702732, + -0.01273770909756422, + 0.0000033652813726803288, + 0.024278419092297554, + -0.005338772665709257, + -0.01608208194375038, + 0.0007213237113319337, + -0.05310326814651489, + 0.008837436325848103, + -21.1495361328125, + -22.980985641479492 ], [ - 0.1511291116476059, - -0.14357897639274597, - -0.040454570204019547, - -0.6771087646484375, - -0.9349943995475768, - -0.1884424984455109, - 1.869761109352112, - 0.0005906057194806635, - 48.79141616821289, - 3.4771835803985596, - 64.20134735107422, - -0.07858435064554214, - 1.188006043434143, - 29.33063316345215, - 2.216262102127075, - 2.483311891555786, - -2.1261587142944336, - 1.5241737365722656, - -3.6361958980560303 + -0.0024537891149520874, + -0.018920551985502243, + -0.0028547083493322134, + 0.009560754522681236, + 0.008460825309157372, + 0.03177504241466522, + 0.0004432738642208278, + -5.435280172605417e-7, + 0.06357890367507935, + -0.0159006230533123, + -0.01408358383923769, + -0.00013421075709629804, + 0.05839915946125984, + -0.0030350429005920887, + 0.04186831787228584, + 0.05348591133952141, + -0.07922319322824478, + -0.016010867431759834, + -29.424467086791992, + 86.34281158447266 ], [ - 0.08736417442560196, - -0.08311426639556885, - -0.01806890033185482, - -0.624649703502655, - 0.6050037741661072, - -0.02681633271276951, - 1.0923813581466677, - 0.0006138867465779185, - 32.609310150146484, - 1.8777395486831665, - -67.16415405273438, - -0.06076953560113907, - 1.5194796323776243, - 12.951915740966797, - 3.7513234615325928, - 1.5240014791488647, - -8.173264503479004, - 0.4563948214054108, - 18.55360984802246 + 0.00821803230792284, + -0.0036728119011968374, + 0.009658719412982464, + -0.0037206667475402355, + -0.0028535432647913694, + 0.0010842755436897278, + 0.0011418440844863653, + -5.435280172605417e-7, + -0.005440083798021078, + 0.03370354324579239, + 0.013569224625825882, + -0.0003185592941008508, + -0.002975594252347946, + 0.001179794897325337, + 0.016818633303046227, + 0.01726139709353447, + -0.008923901244997978, + 0.004194809589534998, + -9.714076042175293, + 39.888450622558594 ], [ - 0.04419853538274765, - -0.4252106249332428, - -0.06638911366462708, - -0.5873331427574158, - -0.6901756525039673, - 0.05158567801117897, - -3.1602203845977783, - 0.00033470726339146495, - 27.93245506286621, - 2.6492807865142822, - -81.19194030761719, - 0.005892109125852585, - 2.6808066368103027, - 19.46100425720215, - 1.354649305343628, - 2.2994210720062256, - -3.287984609603882, - -0.13685253262519836, - 129.00477600097656 + -0.0011057185474783182, + -0.016233308240771294, + 0.0075501915998756886, + -0.0035093214828521013, + -0.017202753573656082, + -0.0008982795989140868, + -0.04288431257009506, + -5.836467948938662e-7, + 0.09137625247240067, + 0.013150972314178944, + 0.16757790744304657, + -0.005765180569142103, + 0.04132239520549774, + 0.10927649587392807, + 0.07402195036411285, + 0.015537441708147526, + -0.020421525463461876, + 0.02361263893544674, + 15.355531692504883, + 74.1473617553711 ], [ - 0.11973437666893004, - -0.10793077945709229, - -0.10786595940589903, - -0.6045520305633545, - -1.2147974967956543, - -0.9284350872039796, - 0.7844049334526062, - 0.00048030438483692706, - 32.625423431396484, - 2.515143632888794, - -56.58749771118164, - 0.0021387909073382616, - 4.255259990692139, - 19.609878540039062, - 2.299473524093628, - 2.23740553855896, - -1.2034484148025513, - 0.1916126310825348, - 136.5943603515625 + 0.0004184774006716907, + 0.00017482656403444707, + -0.012260599061846733, + 0.016875242814421654, + -0.009085153229534626, + -0.00348266726359725, + 0.0010970159200951457, + -5.234686568655889e-7, + 0.04750418663024902, + 0.0015898060519248247, + 0.07386710494756699, + -0.003485350403934717, + 0.06950930505990982, + -0.006707921624183655, + 0.05835278332233429, + 0.05805078148841858, + 0.04707755893468857, + -0.029627811163663864, + 15.726099014282227, + 134.1823272705078 ], [ - 0.1082364097237587, - -0.21223677694797516, - -0.05490153655409813, - -0.545283854007721, - -1.429426908493042, - -0.3627423346042633, - 0.8043985962867737, - 0.0004843123606406152, - 34.36043167114258, - 2.985450983047486, - -57.13039016723633, - -0.08268441259860992, - 3.9013848304748535, - 18.15716552734375, - 3.1370790004730225, - 2.550403594970703, - -0.14497748017311096, - 0.07626056671142578, - 119.68839263916016 + 0.001450967974960804, + 0.008663523942232132, + -0.08330849558115005, + -0.001517414697445929, + -0.004734954796731472, + 0.0226710457354784, + 0.0012432464864104986, + -5.234686568655889e-7, + 0.07729528844356537, + -0.013958658091723919, + 0.13128314912319183, + 0.0057492125779390335, + 0.012975051067769527, + -0.021029822528362274, + -0.10661817342042923, + -0.03641486167907715, + -0.05615438148379326, + 0.07721966505050659, + 10.229193687438965, + 117.00929260253906 ], [ - 0.12623703479766846, - -0.099814735352993, - -0.022092686966061592, - -0.6123619675636292, - 0.6960574984550476, - 0.17629790306091309, - 0.7644410729408264, - 0.0004500673967413604, - 31.243064880371097, - 2.7847800254821777, - -71.42472076416016, - 0.029871594160795212, - 1.6017038822174072, - 18.788877487182617, - 1.5603853464126587, - 2.075836181640625, - -0.5787506103515625, - -0.8384397029876709, - 123.85447692871094 + 0.01717088557779789, + -0.011571023613214493, + -0.06975243985652924, + -0.006548789795488119, + -0.006513265427201986, + -0.0033634547144174576, + 0.001120731350965798, + -5.234686568655889e-7, + 0.03558531403541565, + 0.021320698782801628, + 0.1137283593416214, + -0.0044189924374222755, + 0.15400280058383942, + 0.0007578463992103934, + -0.01506777387112379, + 0.0024891418870538473, + -0.006772348657250404, + 0.02102750353515148, + 12.581000328063965, + 129.55410766601562 ], [ - 0.30559927225112915, - -0.6843422055244446, - -0.5509061217308044, - -0.5843949317932129, - 0.49212977290153503, - 0.05200646445155144, - 0.7462283372879028, - 0.0004433387366589159, - 36.03656768798828, - 1.8012105226516724, - -52.44881057739258, - 0.08841561526060104, - 4.25314474105835, - 18.274324417114254, - 6.6279802322387695, - 9.095296859741213, - 1.1217288970947266, - -1.7296305894851685, - 186.48130798339844 + -0.001816046074964106, + -0.012102648615837097, + 0.01982852630317211, + 0.0004926009569317102, + 0.007860597223043442, + -0.0018960374873131514, + 0.0008538152324035764, + -5.234686568655889e-7, + 0.06222555786371231, + -0.021105941385030746, + 0.06905367970466614, + -0.0040780240669846535, + 0.031888414174318314, + -0.03257666528224945, + 0.025799615308642387, + -0.02419019676744938, + 0.04766393452882767, + 0.0015151231782510877, + 36.550254821777344, + 123.88862609863281 ], [ - 0.19026543200016025, - -0.9811125993728638, - -0.24197007715702057, - -0.6790480017662048, - 0.826160728931427, - 0.1361076533794403, - 0.9567856788635254, - 0.001744757289998233, - 44.38533020019531, - 6.729168891906738, - 8.35029125213623, - -0.008922005072236061, - -0.3479408025741577, - 27.414697647094727, - 4.110133647918701, - 3.7592267990112305, - -2.021366596221924, - -0.2974810302257538, - 183.8362274169922 + 0.001257514231838286, + -0.015130575746297836, + -0.004414551891386509, + 0.008090966381132603, + 0.004658644087612629, + -0.015146417543292046, + 0.00020971645426470786, + -5.234686568655889e-7, + 0.011706914752721786, + 0.20146164298057556, + 0.19861085712909698, + -0.00803178921341896, + 0.12098423391580582, + -0.06273028999567032, + 0.10733574628829956, + 0.044928617775440216, + 0.17564228177070618, + -0.03375009447336197, + 32.01504898071289, + 267.82757568359375 ], [ - 0.11138199269771576, - -0.21216361224651337, - -0.07062851637601852, - -1.0341061353683472, - 0.7042338252067566, - -0.03752940893173218, - 1.26123046875, - 0.006767518352717161, - 65.3997802734375, - 5.077115058898926, - 168.5412139892578, - -0.07065502554178238, - -21.741933822631836, - 66.58692932128906, - 3.9180402755737305, - -2.6938364505767822, - -0.8006421327590942, - 0.15820886194705963, - 232.139892578125 + 0.024126891046762466, + -0.06981115788221359, + -0.002126110251992941, + -0.0030447172466665506, + 0.01010955311357975, + -0.016713373363018036, + 0.0011414185864850879, + -5.903332294110442e-7, + 0.02796195261180401, + 0.10212533921003342, + 0.21606597304344177, + 0.028450297191739082, + 0.3123534023761749, + 0.03849228844046593, + 0.19616052508354187, + 0.06000271439552307, + -0.15320873260498047, + 0.07142939418554306, + 38.81772994995117, + 528.9920654296875 ], [ - 0.11156803369522096, - -0.14972706139087677, - -0.03701518103480339, - -1.0750479698181152, - 0.7851226925849915, - 0.05880920961499214, - 1.2723593711853027, - 0.006968651432543993, - 71.91404724121094, - 5.302643775939941, - 160.10682678222656, - -0.32071197032928467, - -27.322114944458008, - 81.18883514404297, - 3.3621318340301514, - -2.1586947441101074, - -3.7938132286071777, - -0.14915278553962708, - 197.42027282714844 + 0.0007653198554180562, + -0.03893428295850754, + -0.11176957935094833, + 0.04548726975917816, + 0.013672908768057823, + 0.025302406400442123, + 0.0037610491272062063, + -5.234686568655889e-7, + 0.15557515621185303, + -0.1976618766784668, + 0.15321378409862518, + -0.0045678457245230675, + 0.9221652150154114, + -0.016127025708556175, + 0.3365885019302368, + 0.441148966550827, + -0.19978415966033936, + 0.14800995588302612, + 29.793498992919922, + 436.032958984375 ], [ - 0.204599067568779, - -0.2461235225200653, - -0.21333153545856476, - -0.7938452959060669, - 0.4815913140773773, - 0.1256493330001831, - 1.0464138984680176, - 0.00518224760890007, - 49.97133255004883, - 4.894437789916992, - 53.68952941894531, - -0.19911928474903107, - -23.529586791992188, - 55.32871627807617, - 3.3635354042053223, - 1.538684368133545, - -2.1115994453430176, - -0.26926857233047485, - 174.94149780273438 + 0.0014974954538047314, + 0.1354808211326599, + 0.14720602333545685, + 0.00072560302214697, + 0.008653385564684868, + 0.002555368933826685, + 0.017076756805181503, + -5.903332294110442e-7, + 0.024949247017502785, + 0.18119129538536072, + -0.10510391741991043, + -0.004335414152592421, + 0.26319852471351624, + -0.035990964621305466, + 0.4638155400753021, + 0.37781164050102234, + 0.023205336183309555, + 0.1530095487833023, + 36.669219970703125, + 291.54913330078125 ], [ - 0.284850537776947, - -0.7224855422973633, - -0.10599470883607864, - -0.7012123465538025, - 0.6031214594841003, - 0.1194339394569397, - 1.062707781791687, - 0.0002201393072027713, - 47.41392517089844, - 3.0333330631256104, - 15.15195083618164, - -0.16700708866119385, - -11.840907096862791, - 22.97865104675293, - 4.272884368896484, - 3.205537796020508, - 1.213819980621338, - 0.2447082996368408, - 102.32076263427734 + 0.0005830085137858987, + -0.0147970886901021, + -0.0005603164900094271, + -0.0021417096722871065, + 0.009206392802298069, + 0.0026123817078769207, + 0.004351895302534103, + -5.234686568655889e-7, + 0.08664233982563019, + 0.03897193819284439, + 0.1724054217338562, + -0.0003045381745323539, + -0.017801929265260696, + -0.016221223399043083, + 0.09720641374588013, + 0.11877352744340897, + 0.012688951566815376, + 0.0767255648970604, + 1.4028081893920898, + 205.1221466064453 ], [ - 0.08558260649442673, - -0.26781657338142395, - -0.03651169314980507, - -0.6109598875045776, - 0.4114564061164856, - 0.024791114032268524, - 0.7712389230728149, - 0.00045804245746694505, - 41.70587539672851, - 2.4311540126800537, - -35.981204986572266, - -0.1846799403429031, - -3.1382734775543213, - 16.870887756347656, - 4.5229268074035645, - 4.405489921569824, - -2.3479084968566895, - 0.03791113942861557, - 82.2328872680664 + 0.0000801934365881607, + -0.004456205293536186, + -0.006387252826243639, + 0.0043287803418934345, + 0.011961555108428001, + 0.004476806148886681, + -0.00011448755685705692, + -5.818232011733926e-7, + 0.06868594884872437, + -0.039755579084157944, + -0.00942378118634224, + -0.0001892316504381597, + 0.05081229656934738, + -0.002565302886068821, + 0.09789375215768814, + 0.05228988081216812, + 0.002476600231602788, + -0.011131628416478634, + -3.6125998497009277, + 127.83191680908203 ], [ - 0.18889480829238892, - -0.7775468826293945, - -0.034241363406181335, - -0.4900377690792084, - 0.4668247401714325, - 0.03599352017045021, - 0.6572790741920471, - 0.0004563787078950554, - 38.646183013916016, - 2.2688169479370117, - -59.59256362915039, - -0.18536728620529175, - 0.9315031170845032, - 13.838233947753906, - 4.0595269203186035, - 5.059770107269287, - -1.8184020519256592, - 0.10285140573978424, - 80.02012634277344 + -0.0021726444829255342, + 0.002795000094920397, + -0.005302713718265295, + -0.0017264267662540078, + -0.017086002975702286, + -0.022952895611524582, + -0.0018570241518318653, + -5.818232011733926e-7, + 0.04155479371547699, + -0.0010825778590515256, + 0.0496688187122345, + -0.00024980775197036564, + -0.006641995161771774, + -0.003954743500798941, + 0.05811557173728943, + 0.01580921560525894, + 0.0028322285506874323, + -0.004397578537464142, + 6.032445907592773, + 49.352500915527344 ], [ - 0.11466164141893388, - -0.16193976998329165, - -0.050843071192502975, - -0.5839547514915466, - 0.4238177239894867, - 0.0644395723938942, - 0.6787403225898743, - 0.0004557965148705989, - 29.917152404785156, - 1.2996795177459717, - -81.47754669189453, - -0.07345428317785263, - 2.0325613021850586, - 13.935806274414062, - 0.7567772269248962, - 1.9554189443588257, - -1.8155736923217771, - -0.9485164284706116, - 40.475616455078125 + 0.00346371834166348, + -0.007487223017960787, + -0.010854658670723438, + 0.007249853573739529, + 0.009227815084159374, + 0.007073963526636362, + 0.0002005675487453118, + -0.000016336676708306186, + 0.027244770899415016, + 0.014673888683319092, + 0.02144038863480091, + -0.0003468676586635411, + -0.019865011796355247, + -0.0020196696277707815, + 0.024652913212776184, + 0.01293950341641903, + -0.02054225280880928, + 0.002757658250629902, + -4.6295037269592285, + 33.4580078125 ], [ - -0.3174290060997009, - 0.3310340642929077, - -0.12958554923534393, - -1.3448700904846191, - 0.5881621837615967, - -0.004714091308414936, - 0.5277523994445801, - 0.001710362615995109, - 25.41599464416504, - 1.3539729118347168, - -50.08005142211914, - -0.3727305829524994, - 3.743600845336914, - -26.54120445251465, - -1.3080363273620603, - 1.7957813739776611, - -2.2712464332580566, - 0.7923770546913147, - 41.63277816772461 + 0.004500665236264467, + 0.004311287775635719, + -0.0015911366790533066, + -0.00004341434396337718, + -0.0036416773218661547, + -0.008009851910173893, + 0.0007097645429894328, + -5.903332294110442e-7, + 0.025420092046260834, + 0.024150747805833817, + -0.030794087797403336, + 0.00014085270231589675, + 0.010085618123412132, + -0.005375177599489689, + 0.04862995073199272, + 0.018579328432679176, + 0.013278493657708168, + 0.008740434423089027, + -0.2043718844652176, + 17.173580169677734 ], [ - -0.1923838257789612, - 0.16576017439365387, - -0.06331092119216919, - -0.877108633518219, - 0.5804239511489868, - 0.02127970941364765, - 0.5031863451004028, - 0.002146092476323247, - 22.907079696655273, - 2.157161235809326, - -53.333221435546875, - -0.15660357475280762, - 4.341437339782715, - -30.90949821472168, - -1.8963706493377688, - 0.18700070679187775, - -1.8457233905792236, - 0.1540101170539856, - 31.64303398132324 + 0.0003680420632008463, + -0.0021799395326524973, + -0.0031030476093292236, + 0.000007032229859760264, + 0.002278556814417243, + -0.0001272457739105448, + 0.0002727881073951721, + -5.903332294110442e-7, + 0.049778763204813004, + 0.00500711053609848, + -0.06298993527889252, + -0.0000027592561764322454, + 0.01155101228505373, + 0.005016802344471216, + 0.022589804604649544, + 0.0030735796317458153, + 0.00017903615662362427, + 0.020538311451673508, + 2.777050256729126, + -49.536006927490234 ], [ - 0.04668380692601204, - 0.046534158289432526, - 0.20892439782619476, - -0.6090874671936035, - -0.5739677548408508, - 0.020424511283636093, - -2.284179449081421, - 0.0005521719576790929, - 15.208908081054688, - 0.8874129056930542, - -55.6029167175293, - 0.15441690385341644, - 1.6044375896453855, - -19.737382888793945, - 0.187905877828598, - 0.5347346067428589, - -1.110144853591919, - -0.07951051741838455, - -30.715444564819336 + 0.0019602749962359667, + -0.0002076018718071282, + 0.000924740161281079, + -0.004042718093842268, + 0.0015761936083436012, + -0.003634627675637603, + -0.002123443875461817, + -5.836467948938662e-7, + 0.012589669786393642, + 0.008601898327469826, + -0.002863467438146472, + -0.00037004690966568887, + 0.0030082284938544035, + -0.00837839674204588, + 0.03412327915430069, + 0.03683372959494591, + 0.011561469174921513, + -0.007075319532305002, + -3.8904707431793213, + -73.40371704101562 ], [ - 0.0704040378332138, - 0.00306660495698452, - 0.005788542330265045, - -0.5281633138656616, - -0.3896014392375946, - -0.05141069740056992, - -2.4512624740600586, - 0.0005640322342514992, - 14.02071762084961, - 0.91118586063385, - -42.93519592285156, - 0.022168485447764397, - 1.2551944255828855, - -14.146629333496094, - 0.7183982133865356, - 1.0827301740646362, - -1.948799967765808, - 0.03619908541440964, - -95.28205108642578 + 0.0021590138785541058, + -0.0012494655093178153, + 0.00531137827783823, + -0.0006216082256287336, + 0.0023445889819413424, + -0.0018516307463869452, + -0.002895719138905406, + -0.0000019111487290501827, + 0.026525065302848816, + 0.008116654120385647, + -0.009352079592645168, + -0.000039801943785278127, + 0.0064659519121050835, + 0.0032814410515129566, + 0.023766664788126945, + 0.022764375433325768, + -0.014719526283442974, + 0.003942584618926048, + -15.14365291595459, + -126.5219955444336 ], [ - 0.07861907035112381, - -0.041344404220581055, - -0.00439880695194006, - -0.5452210307121277, - 0.32789313793182373, - -0.01280132308602333, - 0.6400336027145386, - 0.0008225631900131702, - 14.96310329437256, - 1.159946084022522, - -51.35942840576172, - -0.10364393144845964, - 1.2107940912246704, - -22.75741958618164, - 0.4763311743736267, - 0.853819727897644, - -1.950206995010376, - 0.16697914898395538, - -95.26329803466795 + 0.001963126240298152, + 0.0004278573323972523, + 0.0017210913356393576, + -0.0004960409132763743, + -0.0002697939344216138, + -0.0012964805355295539, + 0.0002213371335528791, + -0.0000024363362172152847, + 0.027362344786524773, + 0.007259185891598463, + -0.0072751338593661785, + -0.0002024852583417669, + 0.01341261062771082, + 0.0028589600697159767, + 0.022945748642086983, + 0.021707018837332726, + -0.01633487455546856, + 0.0010154079645872116, + -13.435151100158691, + -139.20156860351562 ], [ - 0.1327097713947296, - -0.01503751054406166, - 0.03497190773487091, - -0.5262167453765869, - 0.37883010506629944, - 0.0026681271847337484, - 0.6798986196517944, - 0.0008393845055252314, - 14.390527725219728, - 1.1559127569198608, - -34.342041015625, - -0.2232520431280136, - 0.9509322047233582, - -32.627685546875, - 0.7535831928253174, - 1.1008868217468262, - -2.6093475818634033, - 0.02177518419921398, - -103.45665740966795 + 0.0017983439611271024, + -0.00022226972214411944, + 0.0023725302889943123, + 0.000009755483915796503, + -0.0004627624002750963, + -0.0018390193581581116, + 0.0001538219948997721, + -0.0000016591945950494846, + 0.0263361856341362, + 0.007185096386820078, + -0.00688078161329031, + -0.00026726291980594397, + 0.012591404840350151, + 0.004633589182049036, + 0.02266033925116062, + 0.018868226557970047, + -0.019568270072340965, + 0.0014882589457556605, + -14.473722457885742, + -137.16183471679688 ], [ - 0.1565175503492355, - -0.15258224308490753, - 0.03707513585686684, - -0.5549656748771667, - -0.8716737031936646, - -0.1787609905004501, - 0.5893511772155762, - 0.0012780610704794526, - 16.52436065673828, - 1.6463030576705933, - -15.422141075134276, - -0.3689005374908447, - 1.9884896278381348, - -55.493408203125, - 0.8239267468452454, - 0.7360613942146301, - -2.750591278076172, - -0.06881178915500641, - -82.84323120117188 + 0.0027924291789531708, + 0.0006672564777545631, + 0.019606126472353935, + 0.0042277052998542786, + 0.0055525414645671844, + 0.016647664830088615, + -0.0005231742397882044, + -0.0000021688085780624533, + 0.02380349487066269, + 0.008502909913659096, + -0.008627854287624359, + -0.0001291552180191502, + 0.015335661359131336, + 0.008100496605038643, + 0.02183554135262966, + 0.02545825205743313, + -0.007043658755719662, + 0.021084072068333626, + -12.392168998718262, + -127.07182312011719 ], [ - 0.4447348117828369, - -0.4231981933116913, - -0.02228293940424919, - -0.7803685665130615, - 0.7693158984184265, - 0.3406188488006592, - 1.031157374382019, - 0.0005409898003563285, - 26.59900665283203, - 4.324277877807617, - 44.66126251220703, - -0.6762575507164001, - 4.063052177429199, - -120.9408721923828, - 2.1688156127929688, - 2.7925262451171875, - -2.3223366737365723, - 0.47057315707206726, - -57.06726837158203 + 0.0008910028263926506, + -0.0023655213881284, + -0.00016925547970458865, + 0.0007772634271532297, + -0.00028832152020186186, + -0.0015376099618151784, + 0.00120789825450629, + -2.7600034968600085e-7, + 0.025869540870189667, + 0.010142544284462929, + 0.01182663906365633, + -0.0011886279098689556, + -0.002079905942082405, + 0.020062390714883804, + 0.022434281185269356, + 0.028602467849850655, + -0.0005579907447099686, + 0.0041159093379974365, + -13.156085968017578, + -87.2933578491211 ], [ - 0.3455011546611786, - -0.34853312373161316, - -0.07679200172424316, - -0.7773706316947937, - 0.8298165798187256, - 0.1192348450422287, - 1.2219772338867188, - 0.0004078227502759546, - 40.30379486083984, - 3.6706557273864746, - 87.4390869140625, - -0.5022661089897156, - 5.4427337646484375, - -179.41114807128906, - -2.2335124015808105, - 0.38430309295654297, - -3.290996789932251, - 0.5145955681800842, - 37.80179977416992 + 0.002520846202969551, + -0.0016090237768366933, + -0.011034599505364895, + -0.0037454143166542053, + -0.006465476006269455, + 0.004928687121719122, + 0.00012173393770353869, + -5.435280172605417e-7, + 0.02550685405731201, + -0.00030980102019384503, + -0.0033666309900581837, + 0.00003521377220749855, + 0.015116547234356403, + 0.0031370152719318867, + 0.023118756711483, + 0.037078917026519775, + -0.03095299005508423, + -0.0003248572757001966, + -7.020362377166748, + 6.664906024932861 ], [ - -0.9017656445503236, - 0.4451572299003601, - 0.06388839334249496, - -0.7944748997688293, - 0.6035032272338867, - -0.0905015766620636, - 0.7729612588882446, - 0.00041011886787600815, - 37.274715423583984, - 1.159719467163086, - 14.937543869018556, - -2.050440788269043, - 3.1982452869415283, - -70.25680541992188, - -1.3633711338043213, - 0.7603104114532471, - -5.101544380187988, - -0.4204867780208587, - 83.18323516845703 + -0.0011328888358548284, + -0.0006776886293664575, + 0.0025607720017433167, + -0.0010662269778549671, + -0.004179570358246565, + 0.01139034517109394, + 0.00048582968884147704, + -5.602441888186149e-7, + 0.051470667123794556, + 0.0793420597910881, + -0.021775605157017708, + -0.00029938897932879627, + -0.042126886546611786, + 0.019091205671429634, + 0.05989614129066467, + 0.03380190581083298, + 0.01294303871691227, + -0.00526716373860836, + -0.6558831930160522, + 108.92472839355469 ], [ - 0.11393378674983978, - 0.11304812133312224, - -0.16461777687072754, - -0.7269461154937744, - 0.16770629584789276, - -0.1017497181892395, - 0.5087674260139465, - 0.0004202720010653138, - 27.24408531188965, - 1.5593397617340088, - -28.239973068237305, - 0.4899006187915802, - 1.0886896848678589, - -24.55528450012207, - 2.7483482360839844, - 2.03686785697937, - -0.42894095182418823, - 1.3455692529678345, - 204.861572265625 + 0.004372152499854565, + -0.08473900705575943, + -0.033088285475969315, + 0.011379732750356197, + -0.07079089432954788, + -0.05249302461743355, + 0.0011294371215626597, + -5.435280172605417e-7, + 0.07675136625766754, + -0.1803426742553711, + 0.04048972204327583, + -0.0025652775075286627, + 0.022899962961673737, + 0.02303881011903286, + -0.01693040505051613, + 0.05974923074245453, + -0.053477831184864044, + -0.13646526634693146, + 58.41898727416992, + 188.3303985595703 ], [ - 0.03289812058210373, - 0.00438904482871294, - -0.02268366888165474, - -0.6151777505874634, - 0.26423653960227966, - -0.05472677946090698, - 0.5688372254371643, - 0.0003986986703239382, - 40.12403869628906, - 6.724072456359863, - -3.9013240337371826, - 0.13893280923366547, - 0.9798011779785156, - -21.420793533325195, - -1.6129995584487915, - -4.774735450744629, - -2.7931156158447266, - 1.4105048179626465, - 319.2957458496094 + 0.023136653006076813, + 0.013332482427358627, + -0.10747312754392624, + -0.000027626136215985753, + 0.01566438376903534, + 0.04234756901860237, + 0.0014431572053581476, + -5.602441888186149e-7, + 1.1457523107528687, + 0.013935286551713943, + 0.23359306156635284, + -0.0012342684203758836, + 0.026020588353276253, + 0.03317909687757492, + 0.09904667735099792, + 0.02392827905714512, + 0.09438963979482651, + 0.06155690178275108, + 118.4447021484375, + 216.02000427246094 ], [ - -0.03983254358172417, - -0.03532906994223595, - -0.022279951721429825, - -0.627357006072998, - 0.4631103277206421, - -0.015223309397697449, - 0.5658614635467529, - 0.00040272370097227395, - 35.80498123168945, - 20.436368942260746, - 4.8773040771484375, - -0.02710779756307602, - 2.5953235626220703, - -20.015819549560547, - -0.4222872853279114, - -6.170653820037842, - -1.3667196035385132, - -0.08611901849508286, - 363.1136779785156 + 0.00473807705566287, + -0.013561918400228024, + -0.00569318188354373, + 0.006259304471313953, + 0.04020430147647858, + 0.015873584896326065, + 0.0008505901205353439, + -5.903332294110442e-7, + 0.7021811008453369, + -0.2398284673690796, + -0.003728893818333745, + -0.001245810417458415, + 0.08301378786563873, + 0.006334937177598476, + -0.1641101986169815, + -0.19872988760471344, + -0.43158915638923645, + 0.0553923100233078, + 125.51891326904297, + 256.03302001953125 ], [ - -0.029909580945968628, - -0.054200202226638794, - -0.015400067903101444, - -0.6077865958213806, - 0.4553376436233521, - 0.003094450104981661, - 0.5511691570281982, - 0.00041140950634144247, - 32.99904251098633, - 26.067794799804688, - 5.580532550811768, - -0.01208861917257309, - 2.7792036533355713, - -19.195932388305664, - -3.357377052307129, - -8.327322006225586, - 1.2978521585464478, - 0.4992067217826843, - 374.6746826171875 + -0.019758548587560654, + 0.010217578150331974, + -0.00971164833754301, + -0.002168492414057255, + 0.050850387662649155, + 0.01615949533879757, + 0.000913315627258271, + -5.234686568655889e-7, + 0.23350246250629425, + 0.05356588959693909, + 0.2396046668291092, + -0.0019483801443129778, + 0.1325407475233078, + 0.047976866364479065, + -0.17942087352275848, + -0.22870692610740662, + -0.30266401171684265, + -0.15156613290309906, + 136.47964477539062, + 273.0892639160156 ], [ - 0.002795484848320484, - -0.0554082915186882, - -0.033671021461486816, - -0.6234163641929626, - 0.560994029045105, - 0.020386941730976105, - 0.5377357006072998, - 0.00039178752922452986, - 32.3141975402832, - 23.29310607910156, - 1.1144087314605713, - 0.2542417645454407, - 2.357220411300659, - -18.85422134399414, - -0.9144224524497986, - -15.955507278442385, - 1.5044362545013428, - -0.023106178268790245, - 381.828125 + 0.003229377791285515, + -0.0003926470235455781, + -0.16129636764526367, + 0.0017673897091299295, + 0.032411836087703705, + 0.004987923428416252, + 0.0017363234655931592, + -5.234686568655889e-7, + 1.7381287813186646, + -0.24203439056873322, + 0.09731228649616241, + 0.015623160637915134, + 0.1461087167263031, + 0.029173608869314194, + 0.1483512818813324, + 0.050507497042417526, + -0.5012174844741821, + 0.01543451752513647, + 146.48016357421875, + 224.67330932617188 ], [ - 0.0010237160604447126, - -0.06102044880390167, - -0.034895896911621094, - -0.625860869884491, - 0.5427557229995728, - 0.013131984509527683, - 0.5326250195503235, - 0.0003884797915816307, - 32.58828353881836, - 24.576950073242188, - 1.2001595497131348, - 0.25430577993392944, - 2.411581516265869, - -19.075937271118164, - -1.6931570768356323, - -12.839770317077637, - 3.3814566135406494, - -0.1815534234046936, - 378.9578247070313 + -0.0026937625370919704, + -0.024381984025239944, + -0.013046693056821823, + -0.0008301987545564771, + 0.07341579347848892, + 0.008803494274616241, + 0.005390099715441465, + -5.903332294110442e-7, + 2.091766834259033, + -0.13497331738471985, + 0.25884851813316345, + -0.0012181127676740289, + 0.013696557842195034, + 0.03928625211119652, + 0.10275577008724213, + 0.0670732632279396, + -0.028537996113300323, + 0.06219366192817688, + 143.07008361816406, + 245.90567016601562 ] ] } diff --git a/notebooks/indicators.ipynb b/notebooks/indicators.ipynb index 10e0a67..b76c8fb 100644 --- a/notebooks/indicators.ipynb +++ b/notebooks/indicators.ipynb @@ -128,9 +128,9 @@ " \n", " 0\n", " file:///home/fmind/mlops-python-package/mlruns...\n", - " 2024-12-12 21:12:58.800\n", - " 451770521480793486\n", - " 2024-12-12 21:12:58.800\n", + " 2024-12-14 14:35:02.439\n", + " 300971336194126583\n", + " 2024-12-14 14:35:02.439\n", " active\n", " bikes\n", " {}\n", @@ -141,10 +141,10 @@ ], "text/plain": [ " artifact_location creation_time \\\n", - "0 file:///home/fmind/mlops-python-package/mlruns... 2024-12-12 21:12:58.800 \n", + "0 file:///home/fmind/mlops-python-package/mlruns... 2024-12-14 14:35:02.439 \n", "\n", " experiment_id last_update_time lifecycle_stage name tags \n", - "0 451770521480793486 2024-12-12 21:12:58.800 active bikes {} " + "0 300971336194126583 2024-12-14 14:35:02.439 active bikes {} " ] }, "execution_count": 5, @@ -174,7 +174,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "(19, 29)\n" + "(27, 29)\n" ] }, { @@ -233,24 +233,24 @@ " \n", " 0\n", " file:///home/fmind/mlops-python-package/mlruns...\n", - " 2024-12-13 21:30:22.859\n", - " 451770521480793486\n", + " 2024-12-14 14:42:28.056\n", + " 300971336194126583\n", " active\n", - " 92d0973c64dc419cacb89efe2df006a8\n", + " 9923cb99c1824857b68c0bedb63f8446\n", " Explanations\n", - " 92d0973c64dc419cacb89efe2df006a8\n", - " 2024-12-13 21:29:52.698\n", + " 9923cb99c1824857b68c0bedb63f8446\n", + " 2024-12-14 14:42:16.077\n", " FINISHED\n", " fmind\n", " {}\n", " {'conf_file': 'confs/explanations.yaml'}\n", " {'mlflow.user': 'fmind', 'mlflow.source.name':...\n", - " 30.161\n", + " 11.979\n", " fmind\n", " file:///home/fmind/mlops-python-package\n", " PROJECT\n", " main\n", - " 5e7c0b8c7b49c29802893c9821ae8546e45952b0\n", + " 1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c\n", " git@github.com:fmind/mlops-python-package\n", " git@github.com:fmind/mlops-python-package\n", " Explanations\n", @@ -265,24 +265,24 @@ " \n", " 1\n", " file:///home/fmind/mlops-python-package/mlruns...\n", - " 2024-12-13 21:29:50.751\n", - " 451770521480793486\n", + " 2024-12-14 14:42:13.733\n", + " 300971336194126583\n", " active\n", - " 855a19513f6d4282a217ef920a0d69f5\n", + " bfce074e34834054b84e5794450a4fa2\n", " Evaluations\n", - " 855a19513f6d4282a217ef920a0d69f5\n", - " 2024-12-13 21:29:45.813\n", + " bfce074e34834054b84e5794450a4fa2\n", + " 2024-12-14 14:42:07.488\n", " FINISHED\n", " fmind\n", " {'example_count': 13903.0, 'mean_absolute_erro...\n", " {'conf_file': 'confs/evaluations.yaml'}\n", " {'mlflow.user': 'fmind', 'mlflow.source.name':...\n", - " 4.938\n", + " 6.245\n", " fmind\n", " file:///home/fmind/mlops-python-package\n", " PROJECT\n", " main\n", - " 5e7c0b8c7b49c29802893c9821ae8546e45952b0\n", + " 1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c\n", " git@github.com:fmind/mlops-python-package\n", " git@github.com:fmind/mlops-python-package\n", " Evaluations\n", @@ -297,24 +297,24 @@ " \n", " 2\n", " file:///home/fmind/mlops-python-package/mlruns...\n", - " 2024-12-13 21:29:43.951\n", - " 451770521480793486\n", + " 2024-12-14 14:42:05.031\n", + " 300971336194126583\n", " active\n", - " 48f318dd0eed4c05b4bd5823f7d352f6\n", + " 5ebe28d67ed54300a177eb61825a6688\n", " Inference\n", - " 48f318dd0eed4c05b4bd5823f7d352f6\n", - " 2024-12-13 21:29:39.639\n", + " 5ebe28d67ed54300a177eb61825a6688\n", + " 2024-12-14 14:41:59.607\n", " FINISHED\n", " fmind\n", " {}\n", " {'conf_file': 'confs/inference.yaml'}\n", " {'mlflow.user': 'fmind', 'mlflow.source.name':...\n", - " 4.312\n", + " 5.424\n", " fmind\n", " file:///home/fmind/mlops-python-package\n", " PROJECT\n", " main\n", - " 5e7c0b8c7b49c29802893c9821ae8546e45952b0\n", + " 1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c\n", " git@github.com:fmind/mlops-python-package\n", " git@github.com:fmind/mlops-python-package\n", " Inference\n", @@ -329,24 +329,24 @@ " \n", " 3\n", " file:///home/fmind/mlops-python-package/mlruns...\n", - " 2024-12-13 21:29:37.770\n", - " 451770521480793486\n", + " 2024-12-14 14:41:57.245\n", + " 300971336194126583\n", " active\n", - " 05a8c27ae65a40008ae4962ad13691cf\n", + " f29b930df5a54f1fa9ec5fe4b27df8b9\n", " Promotion\n", - " 05a8c27ae65a40008ae4962ad13691cf\n", - " 2024-12-13 21:29:34.124\n", + " f29b930df5a54f1fa9ec5fe4b27df8b9\n", + " 2024-12-14 14:41:52.639\n", " FINISHED\n", " fmind\n", " {}\n", " {'conf_file': 'confs/promotion.yaml'}\n", " {'mlflow.user': 'fmind', 'mlflow.source.name':...\n", - " 3.646\n", + " 4.606\n", " fmind\n", " file:///home/fmind/mlops-python-package\n", " PROJECT\n", " main\n", - " 5e7c0b8c7b49c29802893c9821ae8546e45952b0\n", + " 1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c\n", " git@github.com:fmind/mlops-python-package\n", " git@github.com:fmind/mlops-python-package\n", " Promotion\n", @@ -361,24 +361,24 @@ " \n", " 4\n", " file:///home/fmind/mlops-python-package/mlruns...\n", - " 2024-12-13 21:29:31.698\n", - " 451770521480793486\n", + " 2024-12-14 14:41:49.910\n", + " 300971336194126583\n", " active\n", - " ac1ad3a71ca1438f930cf61cdaf4dda2\n", + " 4753bf6b106845d19eca79b7cb329343\n", " Training\n", - " ac1ad3a71ca1438f930cf61cdaf4dda2\n", - " 2024-12-13 21:29:08.647\n", + " 4753bf6b106845d19eca79b7cb329343\n", + " 2024-12-14 14:41:23.914\n", " FINISHED\n", " fmind\n", - " {'training_mean_squared_error': 124.5105461557...\n", + " {'training_mean_squared_error': 1.280665585452...\n", " {'conf_file': 'confs/training.yaml', 'memory':...\n", " {'mlflow.user': 'fmind', 'mlflow.source.name':...\n", - " 23.051\n", + " 25.996\n", " fmind\n", " file:///home/fmind/mlops-python-package\n", " PROJECT\n", " main\n", - " 5e7c0b8c7b49c29802893c9821ae8546e45952b0\n", + " 1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c\n", " git@github.com:fmind/mlops-python-package\n", " git@github.com:fmind/mlops-python-package\n", " Training\n", @@ -386,7 +386,7 @@ " local\n", " Pipeline\n", " sklearn.pipeline.Pipeline\n", - " [{\"run_id\": \"ac1ad3a71ca1438f930cf61cdaf4dda2\"...\n", + " [{\"run_id\": \"4753bf6b106845d19eca79b7cb329343\"...\n", " NaN\n", " NaN\n", " \n", @@ -396,32 +396,32 @@ ], "text/plain": [ " artifact_uri end_time \\\n", - "0 file:///home/fmind/mlops-python-package/mlruns... 2024-12-13 21:30:22.859 \n", - "1 file:///home/fmind/mlops-python-package/mlruns... 2024-12-13 21:29:50.751 \n", - "2 file:///home/fmind/mlops-python-package/mlruns... 2024-12-13 21:29:43.951 \n", - "3 file:///home/fmind/mlops-python-package/mlruns... 2024-12-13 21:29:37.770 \n", - "4 file:///home/fmind/mlops-python-package/mlruns... 2024-12-13 21:29:31.698 \n", + "0 file:///home/fmind/mlops-python-package/mlruns... 2024-12-14 14:42:28.056 \n", + "1 file:///home/fmind/mlops-python-package/mlruns... 2024-12-14 14:42:13.733 \n", + "2 file:///home/fmind/mlops-python-package/mlruns... 2024-12-14 14:42:05.031 \n", + "3 file:///home/fmind/mlops-python-package/mlruns... 2024-12-14 14:41:57.245 \n", + "4 file:///home/fmind/mlops-python-package/mlruns... 2024-12-14 14:41:49.910 \n", "\n", " experiment_id lifecycle_stage run_id \\\n", - "0 451770521480793486 active 92d0973c64dc419cacb89efe2df006a8 \n", - "1 451770521480793486 active 855a19513f6d4282a217ef920a0d69f5 \n", - "2 451770521480793486 active 48f318dd0eed4c05b4bd5823f7d352f6 \n", - "3 451770521480793486 active 05a8c27ae65a40008ae4962ad13691cf \n", - "4 451770521480793486 active ac1ad3a71ca1438f930cf61cdaf4dda2 \n", + "0 300971336194126583 active 9923cb99c1824857b68c0bedb63f8446 \n", + "1 300971336194126583 active bfce074e34834054b84e5794450a4fa2 \n", + "2 300971336194126583 active 5ebe28d67ed54300a177eb61825a6688 \n", + "3 300971336194126583 active f29b930df5a54f1fa9ec5fe4b27df8b9 \n", + "4 300971336194126583 active 4753bf6b106845d19eca79b7cb329343 \n", "\n", " run_name run_uuid start_time \\\n", - "0 Explanations 92d0973c64dc419cacb89efe2df006a8 2024-12-13 21:29:52.698 \n", - "1 Evaluations 855a19513f6d4282a217ef920a0d69f5 2024-12-13 21:29:45.813 \n", - "2 Inference 48f318dd0eed4c05b4bd5823f7d352f6 2024-12-13 21:29:39.639 \n", - "3 Promotion 05a8c27ae65a40008ae4962ad13691cf 2024-12-13 21:29:34.124 \n", - "4 Training ac1ad3a71ca1438f930cf61cdaf4dda2 2024-12-13 21:29:08.647 \n", + "0 Explanations 9923cb99c1824857b68c0bedb63f8446 2024-12-14 14:42:16.077 \n", + "1 Evaluations bfce074e34834054b84e5794450a4fa2 2024-12-14 14:42:07.488 \n", + "2 Inference 5ebe28d67ed54300a177eb61825a6688 2024-12-14 14:41:59.607 \n", + "3 Promotion f29b930df5a54f1fa9ec5fe4b27df8b9 2024-12-14 14:41:52.639 \n", + "4 Training 4753bf6b106845d19eca79b7cb329343 2024-12-14 14:41:23.914 \n", "\n", " status user_id metrics \\\n", "0 FINISHED fmind {} \n", "1 FINISHED fmind {'example_count': 13903.0, 'mean_absolute_erro... \n", "2 FINISHED fmind {} \n", "3 FINISHED fmind {} \n", - "4 FINISHED fmind {'training_mean_squared_error': 124.5105461557... \n", + "4 FINISHED fmind {'training_mean_squared_error': 1.280665585452... \n", "\n", " params \\\n", "0 {'conf_file': 'confs/explanations.yaml'} \n", @@ -431,11 +431,11 @@ "4 {'conf_file': 'confs/training.yaml', 'memory':... \n", "\n", " tags run_time_secs \\\n", - "0 {'mlflow.user': 'fmind', 'mlflow.source.name':... 30.161 \n", - "1 {'mlflow.user': 'fmind', 'mlflow.source.name':... 4.938 \n", - "2 {'mlflow.user': 'fmind', 'mlflow.source.name':... 4.312 \n", - "3 {'mlflow.user': 'fmind', 'mlflow.source.name':... 3.646 \n", - "4 {'mlflow.user': 'fmind', 'mlflow.source.name':... 23.051 \n", + "0 {'mlflow.user': 'fmind', 'mlflow.source.name':... 11.979 \n", + "1 {'mlflow.user': 'fmind', 'mlflow.source.name':... 6.245 \n", + "2 {'mlflow.user': 'fmind', 'mlflow.source.name':... 5.424 \n", + "3 {'mlflow.user': 'fmind', 'mlflow.source.name':... 4.606 \n", + "4 {'mlflow.user': 'fmind', 'mlflow.source.name':... 25.996 \n", "\n", " mlflow.user mlflow.source.name mlflow.source.type \\\n", "0 fmind file:///home/fmind/mlops-python-package PROJECT \n", @@ -445,11 +445,11 @@ "4 fmind file:///home/fmind/mlops-python-package PROJECT \n", "\n", " mlflow.project.entryPoint mlflow.source.git.commit \\\n", - "0 main 5e7c0b8c7b49c29802893c9821ae8546e45952b0 \n", - "1 main 5e7c0b8c7b49c29802893c9821ae8546e45952b0 \n", - "2 main 5e7c0b8c7b49c29802893c9821ae8546e45952b0 \n", - "3 main 5e7c0b8c7b49c29802893c9821ae8546e45952b0 \n", - "4 main 5e7c0b8c7b49c29802893c9821ae8546e45952b0 \n", + "0 main 1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c \n", + "1 main 1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c \n", + "2 main 1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c \n", + "3 main 1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c \n", + "4 main 1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c \n", "\n", " mlflow.source.git.repoURL \\\n", "0 git@github.com:fmind/mlops-python-package \n", @@ -484,7 +484,7 @@ "1 NaN NaN \n", "2 NaN NaN \n", "3 NaN NaN \n", - "4 [{\"run_id\": \"ac1ad3a71ca1438f930cf61cdaf4dda2\"... NaN \n", + "4 [{\"run_id\": \"4753bf6b106845d19eca79b7cb329343\"... NaN \n", "\n", " mlflow.parentRunId \n", "0 NaN \n", @@ -563,10 +563,10 @@ " \n", " \n", " 0\n", - " {'Champion': '2'}\n", - " 2024-12-12 21:15:44.102\n", + " {'Champion': '3'}\n", + " 2024-12-14 14:37:45.482\n", " \n", - " 2024-12-13 21:29:37.314\n", + " 2024-12-14 14:41:56.590\n", " bikes\n", " {}\n", " \n", @@ -576,10 +576,10 @@ ], "text/plain": [ " aliases creation_timestamp description \\\n", - "0 {'Champion': '2'} 2024-12-12 21:15:44.102 \n", + "0 {'Champion': '3'} 2024-12-14 14:37:45.482 \n", "\n", " last_updated_timestamp name tags \n", - "0 2024-12-13 21:29:37.314 bikes {} " + "0 2024-12-14 14:41:56.590 bikes {} " ] }, "execution_count": 7, @@ -615,7 +615,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "(2, 14)\n" + "(3, 14)\n" ] }, { @@ -659,29 +659,46 @@ " \n", " 0\n", " Champion\n", - " 2024-12-13 21:29:30.793\n", + " 2024-12-14 14:41:48.936\n", " None\n", " \n", - " 2024-12-13 21:29:30.793\n", + " 2024-12-14 14:41:48.936\n", " bikes\n", - " ac1ad3a71ca1438f930cf61cdaf4dda2\n", + " 4753bf6b106845d19eca79b7cb329343\n", " \n", " file:///home/fmind/mlops-python-package/mlruns...\n", " READY\n", " \n", " {}\n", " \n", - " 2\n", + " 3\n", " \n", " \n", " 1\n", " None\n", - " 2024-12-12 21:15:44.106\n", + " 2024-12-14 14:39:49.417\n", + " None\n", + " \n", + " 2024-12-14 14:39:49.417\n", + " bikes\n", + " ae9f673f6b264240bb79ffd94ca49fe2\n", + " \n", + " file:///home/fmind/mlops-python-package/mlruns...\n", + " READY\n", + " \n", + " {}\n", + " \n", + " 2\n", + " \n", + " \n", + " 2\n", + " None\n", + " 2024-12-14 14:37:45.487\n", " None\n", " \n", - " 2024-12-12 21:15:44.106\n", + " 2024-12-14 14:37:45.487\n", " bikes\n", - " 797710899d04491e8b9e91394c59ccd9\n", + " d2aed973c12b475f849743599f7bc973\n", " \n", " file:///home/fmind/mlops-python-package/mlruns...\n", " READY\n", @@ -696,20 +713,24 @@ ], "text/plain": [ " aliases creation_timestamp current_stage description \\\n", - "0 Champion 2024-12-13 21:29:30.793 None \n", - "1 None 2024-12-12 21:15:44.106 None \n", + "0 Champion 2024-12-14 14:41:48.936 None \n", + "1 None 2024-12-14 14:39:49.417 None \n", + "2 None 2024-12-14 14:37:45.487 None \n", "\n", " last_updated_timestamp name run_id run_link \\\n", - "0 2024-12-13 21:29:30.793 bikes ac1ad3a71ca1438f930cf61cdaf4dda2 \n", - "1 2024-12-12 21:15:44.106 bikes 797710899d04491e8b9e91394c59ccd9 \n", + "0 2024-12-14 14:41:48.936 bikes 4753bf6b106845d19eca79b7cb329343 \n", + "1 2024-12-14 14:39:49.417 bikes ae9f673f6b264240bb79ffd94ca49fe2 \n", + "2 2024-12-14 14:37:45.487 bikes d2aed973c12b475f849743599f7bc973 \n", "\n", " source status status_message \\\n", "0 file:///home/fmind/mlops-python-package/mlruns... READY \n", "1 file:///home/fmind/mlops-python-package/mlruns... READY \n", + "2 file:///home/fmind/mlops-python-package/mlruns... READY \n", "\n", " tags user_id version \n", - "0 {} 2 \n", - "1 {} 1 " + "0 {} 3 \n", + "1 {} 2 \n", + "2 {} 1 " ] }, "execution_count": 8, @@ -755,9 +776,9 @@ "boxpoints": "all", "customdata": [ [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486", - "451770521480793486", - "2024-12-12T21:12:58.800000", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583", + "300971336194126583", + "2024-12-14T14:35:02.439000", "active", "bikes", {} @@ -783,7 +804,7 @@ "showlegend": true, "type": "box", "x": [ - "2024-12-12T21:12:58.800000" + "2024-12-14T14:35:02.439000" ], "x0": " ", "xaxis": "x", @@ -1671,10 +1692,10 @@ "customdata": [ [ { - "Champion": "2" + "Champion": "3" }, "", - "2024-12-13T21:29:37.314000", + "2024-12-14T14:41:56.590000", "bikes", {} ] @@ -1699,7 +1720,7 @@ "showlegend": false, "type": "box", "x": [ - "2024-12-12T21:15:44.102000" + "2024-12-14T14:37:45.482000" ], "x0": " ", "xaxis": "x", @@ -2583,10 +2604,10 @@ "customdata": [ [ { - "Champion": "2" + "Champion": "3" }, "", - "2024-12-13T21:29:37.314000", + "2024-12-14T14:41:56.590000", "bikes", {} ] @@ -2611,7 +2632,7 @@ "showlegend": false, "type": "box", "x": [ - "2024-12-12T21:15:44.102000" + "2024-12-14T14:37:45.482000" ], "x0": " ", "xaxis": "x", @@ -3497,11 +3518,26 @@ "Champion", "None", "", - "2024-12-13T21:29:30.793000", + "2024-12-14T14:41:48.936000", + "bikes", + "4753bf6b106845d19eca79b7cb329343", + "", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/4753bf6b106845d19eca79b7cb329343/artifacts/model", + "READY", + "", + {}, + "", + "3" + ], + [ + null, + "None", + "", + "2024-12-14T14:39:49.417000", "bikes", - "ac1ad3a71ca1438f930cf61cdaf4dda2", + "ae9f673f6b264240bb79ffd94ca49fe2", "", - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/ac1ad3a71ca1438f930cf61cdaf4dda2/artifacts/model", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/ae9f673f6b264240bb79ffd94ca49fe2/artifacts/model", "READY", "", {}, @@ -3512,11 +3548,11 @@ null, "None", "", - "2024-12-12T21:15:44.106000", + "2024-12-14T14:37:45.487000", "bikes", - "797710899d04491e8b9e91394c59ccd9", + "d2aed973c12b475f849743599f7bc973", "", - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/797710899d04491e8b9e91394c59ccd9/artifacts/model", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/d2aed973c12b475f849743599f7bc973/artifacts/model", "READY", "", {}, @@ -3528,6 +3564,7 @@ "hoveron": "points", "hovertemplate": "%{hovertext}

name=%{customdata[4]}
creation_timestamp=%{x}
aliases=%{customdata[0]}
current_stage=%{customdata[1]}
description=%{customdata[2]}
last_updated_timestamp=%{customdata[3]}
run_id=%{customdata[5]}
run_link=%{customdata[6]}
source=%{customdata[7]}
status=%{customdata[8]}
status_message=%{customdata[9]}
tags=%{customdata[10]}
user_id=%{customdata[11]}
version=%{customdata[12]}", "hovertext": [ + "bikes", "bikes", "bikes" ], @@ -3545,8 +3582,9 @@ "showlegend": true, "type": "box", "x": [ - "2024-12-13T21:29:30.793000", - "2024-12-12T21:15:44.106000" + "2024-12-14T14:41:48.936000", + "2024-12-14T14:39:49.417000", + "2024-12-14T14:37:45.487000" ], "x0": " ", "xaxis": "x", @@ -4433,13 +4471,13 @@ "boxpoints": "all", "customdata": [ [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/92d0973c64dc419cacb89efe2df006a8/artifacts", - "2024-12-13T21:30:22.859000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/9923cb99c1824857b68c0bedb63f8446/artifacts", + "2024-12-14T14:42:28.056000", + "300971336194126583", "active", - "92d0973c64dc419cacb89efe2df006a8", + "9923cb99c1824857b68c0bedb63f8446", "Explanations", - "92d0973c64dc419cacb89efe2df006a8", + "9923cb99c1824857b68c0bedb63f8446", "FINISHED", "fmind", {}, @@ -4452,18 +4490,18 @@ "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Explanations", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", "mlflow.user": "fmind" }, - 30.161, + 11.979, "fmind", "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Explanations", @@ -4476,24 +4514,24 @@ null ], [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/855a19513f6d4282a217ef920a0d69f5/artifacts", - "2024-12-13T21:29:50.751000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/bfce074e34834054b84e5794450a4fa2/artifacts", + "2024-12-14T14:42:13.733000", + "300971336194126583", "active", - "855a19513f6d4282a217ef920a0d69f5", + "bfce074e34834054b84e5794450a4fa2", "Evaluations", - "855a19513f6d4282a217ef920a0d69f5", + "bfce074e34834054b84e5794450a4fa2", "FINISHED", "fmind", { "example_count": 13903, "max_error": 4294967295, - "mean_absolute_error": 2044457567.3205063, - "mean_absolute_percentage_error": 55189262.03890929, + "mean_absolute_error": 1959503528.083579, + "mean_absolute_percentage_error": 23650884.88200852, "mean_on_target": 174.63914263108683, - "mean_squared_error": 296.66338200388407, - "r2_score": 0.9893562621162568, - "root_mean_squared_error": 17.223918892165166, + "mean_squared_error": 4.060274760842984, + "r2_score": 0.9998543247906146, + "root_mean_squared_error": 2.0150123475658863, "sum_on_target": 2428008 }, { @@ -4505,18 +4543,18 @@ "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Evaluations", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", "mlflow.user": "fmind" }, - 4.938, + 6.245, "fmind", "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Evaluations", @@ -4529,13 +4567,13 @@ null ], [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/48f318dd0eed4c05b4bd5823f7d352f6/artifacts", - "2024-12-13T21:29:43.951000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/5ebe28d67ed54300a177eb61825a6688/artifacts", + "2024-12-14T14:42:05.031000", + "300971336194126583", "active", - "48f318dd0eed4c05b4bd5823f7d352f6", + "5ebe28d67ed54300a177eb61825a6688", "Inference", - "48f318dd0eed4c05b4bd5823f7d352f6", + "5ebe28d67ed54300a177eb61825a6688", "FINISHED", "fmind", {}, @@ -4548,18 +4586,18 @@ "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Inference", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", "mlflow.user": "fmind" }, - 4.312, + 5.424, "fmind", "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Inference", @@ -4572,13 +4610,13 @@ null ], [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/05a8c27ae65a40008ae4962ad13691cf/artifacts", - "2024-12-13T21:29:37.770000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/f29b930df5a54f1fa9ec5fe4b27df8b9/artifacts", + "2024-12-14T14:41:57.245000", + "300971336194126583", "active", - "05a8c27ae65a40008ae4962ad13691cf", + "f29b930df5a54f1fa9ec5fe4b27df8b9", "Promotion", - "05a8c27ae65a40008ae4962ad13691cf", + "f29b930df5a54f1fa9ec5fe4b27df8b9", "FINISHED", "fmind", {}, @@ -4591,18 +4629,18 @@ "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Promotion", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", "mlflow.user": "fmind" }, - 3.646, + 4.606, "fmind", "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Promotion", @@ -4615,30 +4653,30 @@ null ], [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/ac1ad3a71ca1438f930cf61cdaf4dda2/artifacts", - "2024-12-13T21:29:31.698000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/4753bf6b106845d19eca79b7cb329343/artifacts", + "2024-12-14T14:41:49.910000", + "300971336194126583", "active", - "ac1ad3a71ca1438f930cf61cdaf4dda2", + "4753bf6b106845d19eca79b7cb329343", "Training", - "ac1ad3a71ca1438f930cf61cdaf4dda2", + "4753bf6b106845d19eca79b7cb329343", "FINISHED", "fmind", { - "mean_squared_error": -1786.7527777777777, - "system/cpu_utilization_percentage": 0, - "system/disk_available_megabytes": 14473.2, - "system/disk_usage_megabytes": 101021.7, - "system/disk_usage_percentage": 87.5, + "mean_squared_error": -24.55763888888889, + "system/cpu_utilization_percentage": 14.3, + "system/disk_available_megabytes": 7454.1, + "system/disk_usage_megabytes": 108457.2, + "system/disk_usage_percentage": 93.6, "system/network_receive_megabytes": 0, "system/network_transmit_megabytes": 0, - "system/system_memory_usage_megabytes": 4633.6, - "system/system_memory_usage_percentage": 30.7, - "training_mean_absolute_error": 6.8051192198812736, - "training_mean_squared_error": 124.51054615575788, - "training_r2_score": 0.9948851411922456, - "training_root_mean_squared_error": 11.158429376742852, - "training_score": 0.9948851411922456 + "system/system_memory_usage_megabytes": 4700.3, + "system/system_memory_usage_percentage": 31.2, + "training_mean_absolute_error": 0.3561289343195786, + "training_mean_squared_error": 1.2806655854526316, + "training_r2_score": 0.9999473906118655, + "training_root_mean_squared_error": 1.1316649616616359, + "training_score": 0.9999473906118655 }, { "conf_file": "confs/training.yaml", @@ -4662,8 +4700,8 @@ "regressor__random_state": "42", "regressor__verbose": "0", "regressor__warm_start": "False", - "steps": "[('transformer', ColumnTransformer(transformers=[('categoricals',\n OneHotEncoder(handle_unknown='ignore',\n sparse_output=False),\n ['season', 'weathersit']),\n ('numericals', 'passthrough',\n ['yr', 'mnth', 'hr', 'holiday', 'weekday',\n 'workingday', 'temp', 'atemp', 'hum',\n 'windspeed', 'casual'])])), ('regressor', RandomForestRegressor(max_depth=20, n_estimators=200, random_state=42))]", - "transformer": "ColumnTransformer(transformers=[('categoricals',\n OneHotEncoder(handle_unknown='ignore',\n sparse_output=False),\n ['season', 'weathersit']),\n ('numericals', 'passthrough',\n ['yr', 'mnth', 'hr', 'holiday', 'weekday',\n 'workingday', 'temp', 'atemp', 'hum',\n 'windspeed', 'casual'])])", + "steps": "[('transformer', ColumnTransformer(transformers=[('categoricals',\n OneHotEncoder(handle_unknown='ignore',\n sparse_output=False),\n ['season', 'weathersit']),\n ('numericals', 'passthrough',\n ['yr', 'mnth', 'hr', 'holiday', 'weekday',\n 'workingday', 'temp', 'atemp', 'hum',\n 'windspeed', 'casual', 'registered'])])), ('regressor', RandomForestRegressor(max_depth=20, n_estimators=200, random_state=42))]", + "transformer": "ColumnTransformer(transformers=[('categoricals',\n OneHotEncoder(handle_unknown='ignore',\n sparse_output=False),\n ['season', 'weathersit']),\n ('numericals', 'passthrough',\n ['yr', 'mnth', 'hr', 'holiday', 'weekday',\n 'workingday', 'temp', 'atemp', 'hum',\n 'windspeed', 'casual', 'registered'])])", "transformer__categoricals": "OneHotEncoder(handle_unknown='ignore', sparse_output=False)", "transformer__categoricals__categories": "auto", "transformer__categoricals__drop": "None", @@ -4679,7 +4717,7 @@ "transformer__remainder": "drop", "transformer__sparse_threshold": "0.3", "transformer__transformer_weights": "None", - "transformer__transformers": "[('categoricals', OneHotEncoder(handle_unknown='ignore', sparse_output=False), ['season', 'weathersit']), ('numericals', 'passthrough', ['yr', 'mnth', 'hr', 'holiday', 'weekday', 'workingday', 'temp', 'atemp', 'hum', 'windspeed', 'casual'])]", + "transformer__transformers": "[('categoricals', OneHotEncoder(handle_unknown='ignore', sparse_output=False), ['season', 'weathersit']), ('numericals', 'passthrough', ['yr', 'mnth', 'hr', 'holiday', 'weekday', 'workingday', 'temp', 'atemp', 'hum', 'windspeed', 'casual', 'registered'])]", "transformer__verbose": "False", "transformer__verbose_feature_names_out": "True", "verbose": "False" @@ -4688,23 +4726,23 @@ "estimator_class": "sklearn.pipeline.Pipeline", "estimator_name": "Pipeline", "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", - "mlflow.log-model.history": "[{\"run_id\": \"ac1ad3a71ca1438f930cf61cdaf4dda2\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-13 21:29:20.506337\", \"model_uuid\": \"c5766fb689b4467d801a544963fff164\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"ac1ad3a71ca1438f930cf61cdaf4dda2\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-13 21:29:24.749297\", \"model_uuid\": \"d6869a0c970d4ed09d65cf72c604fe4b\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.1.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}}]", + "mlflow.log-model.history": "[{\"run_id\": \"4753bf6b106845d19eca79b7cb329343\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:41:38.398638\", \"model_uuid\": \"77e276c4bf79429ca932062f2825649b\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"4753bf6b106845d19eca79b7cb329343\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:41:42.667182\", \"model_uuid\": \"50dd5f99ebb944c7a02879fd4dc8d43c\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.1.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}}]", "mlflow.project.backend": "local", "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Training", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", "mlflow.user": "fmind" }, - 23.051, + 25.996, "fmind", "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Training", @@ -4712,99 +4750,31 @@ "local", "Pipeline", "sklearn.pipeline.Pipeline", - "[{\"run_id\": \"ac1ad3a71ca1438f930cf61cdaf4dda2\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-13 21:29:20.506337\", \"model_uuid\": \"c5766fb689b4467d801a544963fff164\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"ac1ad3a71ca1438f930cf61cdaf4dda2\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-13 21:29:24.749297\", \"model_uuid\": \"d6869a0c970d4ed09d65cf72c604fe4b\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.1.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}}]", - null, - null - ], - [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/0dea01ed478c44e094187a66e64d6fd3/artifacts", - "2024-12-13T21:29:06.705000", - "451770521480793486", - "active", - "0dea01ed478c44e094187a66e64d6fd3", - "Tuning", - "0dea01ed478c44e094187a66e64d6fd3", - "FINISHED", - "fmind", - { - "best_cv_score": -5517.252604166667, - "system/cpu_utilization_percentage": 32.7, - "system/disk_available_megabytes": 14477.4, - "system/disk_usage_megabytes": 101031.6, - "system/disk_usage_percentage": 87.5, - "system/network_receive_megabytes": 1.3911820000000148, - "system/network_transmit_megabytes": 0.5366739999999997, - "system/system_memory_usage_megabytes": 3524.9, - "system/system_memory_usage_percentage": 23.4, - "training_score": -1951.0630079838884 - }, - { - "best_max_depth": "7", - "conf_file": "confs/tuning.yaml", - "cv": "KIND='TimeSeriesSplitter' gap=0 n_splits=4 test_size=1440", - "error_score": "raise", - "estimator": "KIND='BaselineSklearnModel' max_depth=20 n_estimators=200 random_state=42", - "n_jobs": "None", - "param_grid": "{'max_depth': [3, 5, 7]}", - "pre_dispatch": "2*n_jobs", - "refit": "True", - "return_train_score": "False", - "scoring": "", - "verbose": "3" - }, - { - "estimator_class": "sklearn.model_selection._search.GridSearchCV", - "estimator_name": "GridSearchCV", - "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", - "mlflow.log-model.history": "[{\"run_id\": \"0dea01ed478c44e094187a66e64d6fd3\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-13 21:28:51.664691\", \"model_uuid\": \"9be480ca5e234af5988dc10b51520109\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"0dea01ed478c44e094187a66e64d6fd3\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-12-13 21:29:01.248602\", \"model_uuid\": \"a30a719a7ca048b5ad5506a1e06b6b2f\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}]", - "mlflow.project.backend": "local", - "mlflow.project.entryPoint": "main", - "mlflow.project.env": "virtualenv", - "mlflow.runName": "Tuning", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", - "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", - "mlflow.source.name": "file:///home/fmind/mlops-python-package", - "mlflow.source.type": "PROJECT", - "mlflow.user": "fmind" - }, - 46.108, - "fmind", - "file:///home/fmind/mlops-python-package", - "PROJECT", - "main", - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", - "git@github.com:fmind/mlops-python-package", - "git@github.com:fmind/mlops-python-package", - "Tuning", - "virtualenv", - "local", - "GridSearchCV", - "sklearn.model_selection._search.GridSearchCV", - "[{\"run_id\": \"0dea01ed478c44e094187a66e64d6fd3\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-13 21:28:51.664691\", \"model_uuid\": \"9be480ca5e234af5988dc10b51520109\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"0dea01ed478c44e094187a66e64d6fd3\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-12-13 21:29:01.248602\", \"model_uuid\": \"a30a719a7ca048b5ad5506a1e06b6b2f\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}]", + "[{\"run_id\": \"4753bf6b106845d19eca79b7cb329343\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:41:38.398638\", \"model_uuid\": \"77e276c4bf79429ca932062f2825649b\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"4753bf6b106845d19eca79b7cb329343\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:41:42.667182\", \"model_uuid\": \"50dd5f99ebb944c7a02879fd4dc8d43c\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.1.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}}]", null, null ], [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/79124d00e3154ce99b08d7c7ea1cbbe6/artifacts", - "2024-12-13T21:29:06.057000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/066cf65cd3214378a7675e2536c6eb60/artifacts", + "2024-12-14T14:41:20.607000", + "300971336194126583", "active", - "79124d00e3154ce99b08d7c7ea1cbbe6", - "grandiose-ape-36", - "79124d00e3154ce99b08d7c7ea1cbbe6", + "066cf65cd3214378a7675e2536c6eb60", + "wise-hound-335", + "066cf65cd3214378a7675e2536c6eb60", "FINISHED", "fmind", { - "mean_fit_time": 2.5753661394119263, - "mean_score_time": 0.055255353450775146, - "mean_test_score": -5517.252604166667, - "rank_test_score": 1, - "std_fit_time": 0.6625575564971679, - "std_score_time": 0.01109660600750438, - "std_test_score": 1613.520146542553 + "mean_fit_time": 2.2717891335487366, + "mean_score_time": 0.04655104875564575, + "mean_test_score": -711.7982638888889, + "rank_test_score": 2, + "std_fit_time": 0.2744423843818404, + "std_score_time": 0.0008752424197515631, + "std_test_score": 506.2583283876414 }, { - "max_depth": "7", + "max_depth": "5", "n_estimators": "200", "random_state": "42" }, @@ -4812,51 +4782,51 @@ "estimator_class": "bikes.core.models.BaselineSklearnModel", "estimator_name": "BaselineSklearnModel", "mlflow.autologging": "sklearn", - "mlflow.parentRunId": "0dea01ed478c44e094187a66e64d6fd3", - "mlflow.runName": "grandiose-ape-36", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.parentRunId": "6f68ed7fee59407f83bff115536fdfc0", + "mlflow.runName": "wise-hound-335", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", "mlflow.source.type": "LOCAL", "mlflow.user": "fmind" }, - 45.46, + 46.191, "fmind", "/home/fmind/mlops-python-package/src/bikes/__main__.py", "LOCAL", null, - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", null, null, - "grandiose-ape-36", + "wise-hound-335", null, null, "BaselineSklearnModel", "bikes.core.models.BaselineSklearnModel", null, "sklearn", - "0dea01ed478c44e094187a66e64d6fd3" + "6f68ed7fee59407f83bff115536fdfc0" ], [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/9140f254fae3497a9ddaf25d4c037e17/artifacts", - "2024-12-13T21:29:06.057000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/0cdfaf5a0e7b44ea88d7297746e6af1f/artifacts", + "2024-12-14T14:41:20.607000", + "300971336194126583", "active", - "9140f254fae3497a9ddaf25d4c037e17", - "skillful-trout-792", - "9140f254fae3497a9ddaf25d4c037e17", + "0cdfaf5a0e7b44ea88d7297746e6af1f", + "auspicious-fly-358", + "0cdfaf5a0e7b44ea88d7297746e6af1f", "FINISHED", "fmind", { - "mean_fit_time": 1.020466387271881, - "mean_score_time": 0.03910714387893677, - "mean_test_score": -16644.957118055558, - "rank_test_score": 3, - "std_fit_time": 0.16778432404695146, - "std_score_time": 0.00713338602919564, - "std_test_score": 5315.459715152708 + "mean_fit_time": 3.0942174792289734, + "mean_score_time": 0.054158151149749756, + "mean_test_score": -319.5045138888889, + "rank_test_score": 1, + "std_fit_time": 0.41821529328335627, + "std_score_time": 0.0011713553122119475, + "std_test_score": 350.4638291591938 }, { - "max_depth": "3", + "max_depth": "7", "n_estimators": "200", "random_state": "42" }, @@ -4864,51 +4834,119 @@ "estimator_class": "bikes.core.models.BaselineSklearnModel", "estimator_name": "BaselineSklearnModel", "mlflow.autologging": "sklearn", - "mlflow.parentRunId": "0dea01ed478c44e094187a66e64d6fd3", - "mlflow.runName": "skillful-trout-792", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.parentRunId": "6f68ed7fee59407f83bff115536fdfc0", + "mlflow.runName": "auspicious-fly-358", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", "mlflow.source.type": "LOCAL", "mlflow.user": "fmind" }, - 45.46, + 46.191, "fmind", "/home/fmind/mlops-python-package/src/bikes/__main__.py", "LOCAL", null, - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", null, null, - "skillful-trout-792", + "auspicious-fly-358", null, null, "BaselineSklearnModel", "bikes.core.models.BaselineSklearnModel", null, "sklearn", - "0dea01ed478c44e094187a66e64d6fd3" + "6f68ed7fee59407f83bff115536fdfc0" ], [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/ac382f5f1fb84516bbcd6c5183890987/artifacts", - "2024-12-13T21:29:06.057000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/6f68ed7fee59407f83bff115536fdfc0/artifacts", + "2024-12-14T14:41:21.575000", + "300971336194126583", "active", - "ac382f5f1fb84516bbcd6c5183890987", - "adorable-crane-156", - "ac382f5f1fb84516bbcd6c5183890987", + "6f68ed7fee59407f83bff115536fdfc0", + "Tuning", + "6f68ed7fee59407f83bff115536fdfc0", "FINISHED", "fmind", { - "mean_fit_time": 1.9187955260276794, - "mean_score_time": 0.0433354377746582, - "mean_test_score": -8287.860416666666, - "rank_test_score": 2, - "std_fit_time": 0.34773834085305333, - "std_score_time": 0.006716265683045477, - "std_test_score": 1045.7595024691313 + "best_cv_score": -319.5045138888889, + "system/cpu_utilization_percentage": 13.8, + "system/disk_available_megabytes": 7460.8, + "system/disk_usage_megabytes": 108450.2, + "system/disk_usage_percentage": 93.6, + "system/network_receive_megabytes": 0.1935390000001007, + "system/network_transmit_megabytes": 0.2145869999999377, + "system/system_memory_usage_megabytes": 4516.7, + "system/system_memory_usage_percentage": 30, + "training_score": -25.253110839387183 }, { - "max_depth": "5", + "best_max_depth": "7", + "conf_file": "confs/tuning.yaml", + "cv": "KIND='TimeSeriesSplitter' gap=0 n_splits=4 test_size=1440", + "error_score": "raise", + "estimator": "KIND='BaselineSklearnModel' max_depth=20 n_estimators=200 random_state=42", + "n_jobs": "None", + "param_grid": "{'max_depth': [3, 5, 7]}", + "pre_dispatch": "2*n_jobs", + "refit": "True", + "return_train_score": "False", + "scoring": "", + "verbose": "3" + }, + { + "estimator_class": "sklearn.model_selection._search.GridSearchCV", + "estimator_name": "GridSearchCV", + "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.log-model.history": "[{\"run_id\": \"6f68ed7fee59407f83bff115536fdfc0\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:41:11.433265\", \"model_uuid\": \"77b9177b6a914d2d83f8c6062bcaa438\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"6f68ed7fee59407f83bff115536fdfc0\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-12-14 14:41:16.492519\", \"model_uuid\": \"862871d930c845ec882f4b82890fc495\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}]", + "mlflow.project.backend": "local", + "mlflow.project.entryPoint": "main", + "mlflow.project.env": "virtualenv", + "mlflow.runName": "Tuning", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.source.name": "file:///home/fmind/mlops-python-package", + "mlflow.source.type": "PROJECT", + "mlflow.user": "fmind" + }, + 47.159, + "fmind", + "file:///home/fmind/mlops-python-package", + "PROJECT", + "main", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + "git@github.com:fmind/mlops-python-package", + "git@github.com:fmind/mlops-python-package", + "Tuning", + "virtualenv", + "local", + "GridSearchCV", + "sklearn.model_selection._search.GridSearchCV", + "[{\"run_id\": \"6f68ed7fee59407f83bff115536fdfc0\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:41:11.433265\", \"model_uuid\": \"77b9177b6a914d2d83f8c6062bcaa438\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"6f68ed7fee59407f83bff115536fdfc0\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-12-14 14:41:16.492519\", \"model_uuid\": \"862871d930c845ec882f4b82890fc495\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}]", + null, + null + ], + [ + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/e3975321ef4645b698cd8832a2ead79d/artifacts", + "2024-12-14T14:41:20.607000", + "300971336194126583", + "active", + "e3975321ef4645b698cd8832a2ead79d", + "lyrical-asp-40", + "e3975321ef4645b698cd8832a2ead79d", + "FINISHED", + "fmind", + { + "mean_fit_time": 1.5403740406036377, + "mean_score_time": 0.04439198970794678, + "mean_test_score": -2845.011111111111, + "rank_test_score": 3, + "std_fit_time": 0.26986769561457347, + "std_score_time": 0.0011455098275932603, + "std_test_score": 1362.0703338739036 + }, + { + "max_depth": "3", "n_estimators": "200", "random_state": "42" }, @@ -4916,38 +4954,38 @@ "estimator_class": "bikes.core.models.BaselineSklearnModel", "estimator_name": "BaselineSklearnModel", "mlflow.autologging": "sklearn", - "mlflow.parentRunId": "0dea01ed478c44e094187a66e64d6fd3", - "mlflow.runName": "adorable-crane-156", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.parentRunId": "6f68ed7fee59407f83bff115536fdfc0", + "mlflow.runName": "lyrical-asp-40", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", "mlflow.source.type": "LOCAL", "mlflow.user": "fmind" }, - 45.46, + 46.191, "fmind", "/home/fmind/mlops-python-package/src/bikes/__main__.py", "LOCAL", null, - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", null, null, - "adorable-crane-156", + "lyrical-asp-40", null, null, "BaselineSklearnModel", "bikes.core.models.BaselineSklearnModel", null, "sklearn", - "0dea01ed478c44e094187a66e64d6fd3" + "6f68ed7fee59407f83bff115536fdfc0" ], [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/b93a8935f9844745bec8dd796a0a8a73/artifacts", - "2024-12-12T21:16:43.849000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/149bc47563a94ae5bc05bbcb7853c122/artifacts", + "2024-12-14T14:40:29.333000", + "300971336194126583", "active", - "b93a8935f9844745bec8dd796a0a8a73", + "149bc47563a94ae5bc05bbcb7853c122", "Explanations", - "b93a8935f9844745bec8dd796a0a8a73", + "149bc47563a94ae5bc05bbcb7853c122", "FINISHED", "fmind", {}, @@ -4960,18 +4998,18 @@ "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Explanations", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", "mlflow.user": "fmind" }, - 33.46, + 12.229, "fmind", "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Explanations", @@ -4984,24 +5022,24 @@ null ], [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/f2b3bf2f37334c35b362c594f4378f27/artifacts", - "2024-12-12T21:16:08.320000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/534a4ff3a1b04ae3b7c5c5e5295b87a8/artifacts", + "2024-12-14T14:40:14.595000", + "300971336194126583", "active", - "f2b3bf2f37334c35b362c594f4378f27", + "534a4ff3a1b04ae3b7c5c5e5295b87a8", "Evaluations", - "f2b3bf2f37334c35b362c594f4378f27", + "534a4ff3a1b04ae3b7c5c5e5295b87a8", "FINISHED", "fmind", { "example_count": 13903, "max_error": 4294967295, - "mean_absolute_error": 2044457567.3205063, - "mean_absolute_percentage_error": 55189262.03890929, + "mean_absolute_error": 1959503528.083579, + "mean_absolute_percentage_error": 23650884.88200852, "mean_on_target": 174.63914263108683, - "mean_squared_error": 296.66338200388407, - "r2_score": 0.9893562621162568, - "root_mean_squared_error": 17.223918892165166, + "mean_squared_error": 4.060274760842984, + "r2_score": 0.9998543247906146, + "root_mean_squared_error": 2.0150123475658863, "sum_on_target": 2428008 }, { @@ -5013,18 +5051,18 @@ "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Evaluations", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", "mlflow.user": "fmind" }, - 5.883, + 6.616, "fmind", "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Evaluations", @@ -5037,13 +5075,13 @@ null ], [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/1b6dd4593a654170be21ec38a29c78e7/artifacts", - "2024-12-12T21:16:00.091000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/4a629039b6c84ad3947f7529f9a28e21/artifacts", + "2024-12-14T14:40:05.598000", + "300971336194126583", "active", - "1b6dd4593a654170be21ec38a29c78e7", + "4a629039b6c84ad3947f7529f9a28e21", "Inference", - "1b6dd4593a654170be21ec38a29c78e7", + "4a629039b6c84ad3947f7529f9a28e21", "FINISHED", "fmind", {}, @@ -5056,18 +5094,18 @@ "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Inference", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", "mlflow.user": "fmind" }, - 5.035, + 5.034, "fmind", "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Inference", @@ -5080,13 +5118,13 @@ null ], [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/cfcc7f0fb7c141b2b4781eefff9a6081/artifacts", - "2024-12-12T21:15:52.759000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/e20be51c8bbb4cfb98ad440209dd2ea6/artifacts", + "2024-12-14T14:39:58.173000", + "300971336194126583", "active", - "cfcc7f0fb7c141b2b4781eefff9a6081", + "e20be51c8bbb4cfb98ad440209dd2ea6", "Promotion", - "cfcc7f0fb7c141b2b4781eefff9a6081", + "e20be51c8bbb4cfb98ad440209dd2ea6", "FINISHED", "fmind", {}, @@ -5099,18 +5137,18 @@ "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Promotion", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", "mlflow.user": "fmind" }, - 4.756, + 5.05, "fmind", "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Promotion", @@ -5123,30 +5161,30 @@ null ], [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/797710899d04491e8b9e91394c59ccd9/artifacts", - "2024-12-12T21:15:45.193000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/ae9f673f6b264240bb79ffd94ca49fe2/artifacts", + "2024-12-14T14:39:50.546000", + "300971336194126583", "active", - "797710899d04491e8b9e91394c59ccd9", + "ae9f673f6b264240bb79ffd94ca49fe2", "Training", - "797710899d04491e8b9e91394c59ccd9", + "ae9f673f6b264240bb79ffd94ca49fe2", "FINISHED", "fmind", { - "mean_squared_error": -1786.7527777777777, - "system/cpu_utilization_percentage": 13.9, - "system/disk_available_megabytes": 15157.1, - "system/disk_usage_megabytes": 100333.4, - "system/disk_usage_percentage": 86.9, - "system/network_receive_megabytes": 0.014109999999999623, - "system/network_transmit_megabytes": 0, - "system/system_memory_usage_megabytes": 4962.9, - "system/system_memory_usage_percentage": 32.9, - "training_mean_absolute_error": 6.8051192198812736, - "training_mean_squared_error": 124.51054615575788, - "training_r2_score": 0.9948851411922456, - "training_root_mean_squared_error": 11.158429376742852, - "training_score": 0.9948851411922456 + "mean_squared_error": -24.55763888888889, + "system/cpu_utilization_percentage": 14.8, + "system/disk_available_megabytes": 7735.1, + "system/disk_usage_megabytes": 108174.9, + "system/disk_usage_percentage": 93.3, + "system/network_receive_megabytes": 0.006746999999904801, + "system/network_transmit_megabytes": 0.006637000000068838, + "system/system_memory_usage_megabytes": 4542, + "system/system_memory_usage_percentage": 30.1, + "training_mean_absolute_error": 0.3561289343195786, + "training_mean_squared_error": 1.2806655854526316, + "training_r2_score": 0.9999473906118655, + "training_root_mean_squared_error": 1.1316649616616359, + "training_score": 0.9999473906118655 }, { "conf_file": "confs/training.yaml", @@ -5170,8 +5208,8 @@ "regressor__random_state": "42", "regressor__verbose": "0", "regressor__warm_start": "False", - "steps": "[('transformer', ColumnTransformer(transformers=[('categoricals',\n OneHotEncoder(handle_unknown='ignore',\n sparse_output=False),\n ['season', 'weathersit']),\n ('numericals', 'passthrough',\n ['yr', 'mnth', 'hr', 'holiday', 'weekday',\n 'workingday', 'temp', 'atemp', 'hum',\n 'windspeed', 'casual'])])), ('regressor', RandomForestRegressor(max_depth=20, n_estimators=200, random_state=42))]", - "transformer": "ColumnTransformer(transformers=[('categoricals',\n OneHotEncoder(handle_unknown='ignore',\n sparse_output=False),\n ['season', 'weathersit']),\n ('numericals', 'passthrough',\n ['yr', 'mnth', 'hr', 'holiday', 'weekday',\n 'workingday', 'temp', 'atemp', 'hum',\n 'windspeed', 'casual'])])", + "steps": "[('transformer', ColumnTransformer(transformers=[('categoricals',\n OneHotEncoder(handle_unknown='ignore',\n sparse_output=False),\n ['season', 'weathersit']),\n ('numericals', 'passthrough',\n ['yr', 'mnth', 'hr', 'holiday', 'weekday',\n 'workingday', 'temp', 'atemp', 'hum',\n 'windspeed', 'casual', 'registered'])])), ('regressor', RandomForestRegressor(max_depth=20, n_estimators=200, random_state=42))]", + "transformer": "ColumnTransformer(transformers=[('categoricals',\n OneHotEncoder(handle_unknown='ignore',\n sparse_output=False),\n ['season', 'weathersit']),\n ('numericals', 'passthrough',\n ['yr', 'mnth', 'hr', 'holiday', 'weekday',\n 'workingday', 'temp', 'atemp', 'hum',\n 'windspeed', 'casual', 'registered'])])", "transformer__categoricals": "OneHotEncoder(handle_unknown='ignore', sparse_output=False)", "transformer__categoricals__categories": "auto", "transformer__categoricals__drop": "None", @@ -5187,7 +5225,7 @@ "transformer__remainder": "drop", "transformer__sparse_threshold": "0.3", "transformer__transformer_weights": "None", - "transformer__transformers": "[('categoricals', OneHotEncoder(handle_unknown='ignore', sparse_output=False), ['season', 'weathersit']), ('numericals', 'passthrough', ['yr', 'mnth', 'hr', 'holiday', 'weekday', 'workingday', 'temp', 'atemp', 'hum', 'windspeed', 'casual'])]", + "transformer__transformers": "[('categoricals', OneHotEncoder(handle_unknown='ignore', sparse_output=False), ['season', 'weathersit']), ('numericals', 'passthrough', ['yr', 'mnth', 'hr', 'holiday', 'weekday', 'workingday', 'temp', 'atemp', 'hum', 'windspeed', 'casual', 'registered'])]", "transformer__verbose": "False", "transformer__verbose_feature_names_out": "True", "verbose": "False" @@ -5196,23 +5234,23 @@ "estimator_class": "sklearn.pipeline.Pipeline", "estimator_name": "Pipeline", "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", - "mlflow.log-model.history": "[{\"run_id\": \"797710899d04491e8b9e91394c59ccd9\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-12 21:15:29.891094\", \"model_uuid\": \"877c83b49a57483690581eac11e3117b\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"797710899d04491e8b9e91394c59ccd9\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-12 21:15:34.802679\", \"model_uuid\": \"c78c06c609274cb9b0c9123b3456258a\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.1.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}}]", + "mlflow.log-model.history": "[{\"run_id\": \"ae9f673f6b264240bb79ffd94ca49fe2\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:39:38.524131\", \"model_uuid\": \"18f54df2a682488593dd0412c7be229e\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"ae9f673f6b264240bb79ffd94ca49fe2\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:39:42.939094\", \"model_uuid\": \"4cc5e6d8a7d841059b37797a371ea10d\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.1.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}}]", "mlflow.project.backend": "local", "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Training", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", "mlflow.user": "fmind" }, - 28.807, + 25.986, "fmind", "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Training", @@ -5220,31 +5258,31 @@ "local", "Pipeline", "sklearn.pipeline.Pipeline", - "[{\"run_id\": \"797710899d04491e8b9e91394c59ccd9\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-12 21:15:29.891094\", \"model_uuid\": \"877c83b49a57483690581eac11e3117b\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"797710899d04491e8b9e91394c59ccd9\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-12 21:15:34.802679\", \"model_uuid\": \"c78c06c609274cb9b0c9123b3456258a\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.1.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}}]", + "[{\"run_id\": \"ae9f673f6b264240bb79ffd94ca49fe2\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:39:38.524131\", \"model_uuid\": \"18f54df2a682488593dd0412c7be229e\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"ae9f673f6b264240bb79ffd94ca49fe2\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:39:42.939094\", \"model_uuid\": \"4cc5e6d8a7d841059b37797a371ea10d\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.1.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}}]", null, null ], [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/1c4c425e915346fcbe97f728f378100d/artifacts", - "2024-12-12T21:15:12.635000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/71d90d8febd9448584236ff7da490944/artifacts", + "2024-12-14T14:39:21.213000", + "300971336194126583", "active", - "1c4c425e915346fcbe97f728f378100d", - "bedecked-snake-279", - "1c4c425e915346fcbe97f728f378100d", + "71d90d8febd9448584236ff7da490944", + "classy-yak-743", + "71d90d8febd9448584236ff7da490944", "FINISHED", "fmind", { - "mean_fit_time": 2.3949788212776184, - "mean_score_time": 0.04650747776031494, - "mean_test_score": -5517.252604166667, - "rank_test_score": 1, - "std_fit_time": 0.3323838231985541, - "std_score_time": 0.0013898028864495558, - "std_test_score": 1613.520146542553 + "mean_fit_time": 2.310912549495697, + "mean_score_time": 0.04688429832458496, + "mean_test_score": -711.7982638888889, + "rank_test_score": 2, + "std_fit_time": 0.34795851007651757, + "std_score_time": 0.0015674315113117095, + "std_test_score": 506.2583283876414 }, { - "max_depth": "7", + "max_depth": "5", "n_estimators": "200", "random_state": "42" }, @@ -5252,51 +5290,51 @@ "estimator_class": "bikes.core.models.BaselineSklearnModel", "estimator_name": "BaselineSklearnModel", "mlflow.autologging": "sklearn", - "mlflow.parentRunId": "41808f5b32074c5f8dddccdaa4221684", - "mlflow.runName": "bedecked-snake-279", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.parentRunId": "9c36f396f2214f7bb0c6d9713d5e833e", + "mlflow.runName": "classy-yak-743", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", "mlflow.source.type": "LOCAL", "mlflow.user": "fmind" }, - 103.824, + 46.567, "fmind", "/home/fmind/mlops-python-package/src/bikes/__main__.py", "LOCAL", null, - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", null, null, - "bedecked-snake-279", + "classy-yak-743", null, null, "BaselineSklearnModel", "bikes.core.models.BaselineSklearnModel", null, "sklearn", - "41808f5b32074c5f8dddccdaa4221684" + "9c36f396f2214f7bb0c6d9713d5e833e" ], [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/41808f5b32074c5f8dddccdaa4221684/artifacts", - "2024-12-12T21:15:13.555000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/9c36f396f2214f7bb0c6d9713d5e833e/artifacts", + "2024-12-14T14:39:22.225000", + "300971336194126583", "active", - "41808f5b32074c5f8dddccdaa4221684", + "9c36f396f2214f7bb0c6d9713d5e833e", "Tuning", - "41808f5b32074c5f8dddccdaa4221684", + "9c36f396f2214f7bb0c6d9713d5e833e", "FINISHED", "fmind", { - "best_cv_score": -5517.252604166667, - "system/cpu_utilization_percentage": 13.9, - "system/disk_available_megabytes": 15172.3, - "system/disk_usage_megabytes": 100317.7, - "system/disk_usage_percentage": 86.9, - "system/network_receive_megabytes": 0.0561379999999998, - "system/network_transmit_megabytes": 0.005031999999999925, - "system/system_memory_usage_megabytes": 4646.3, - "system/system_memory_usage_percentage": 30.8, - "training_score": -1951.0630079838884 + "best_cv_score": -319.5045138888889, + "system/cpu_utilization_percentage": 13.7, + "system/disk_available_megabytes": 7735.1, + "system/disk_usage_megabytes": 108174.9, + "system/disk_usage_percentage": 93.3, + "system/network_receive_megabytes": 0.013674000000037267, + "system/network_transmit_megabytes": 0.0075299999999742795, + "system/system_memory_usage_megabytes": 4324.7, + "system/system_memory_usage_percentage": 28.7, + "training_score": -25.253110839387183 }, { "best_max_depth": "7", @@ -5316,23 +5354,23 @@ "estimator_class": "sklearn.model_selection._search.GridSearchCV", "estimator_name": "GridSearchCV", "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", - "mlflow.log-model.history": "[{\"run_id\": \"41808f5b32074c5f8dddccdaa4221684\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-12 21:15:03.536059\", \"model_uuid\": \"aa1690180a414c58a2c9598fa6099393\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"41808f5b32074c5f8dddccdaa4221684\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-12-12 21:15:08.639146\", \"model_uuid\": \"657186289da24155bbdc03abf97c540b\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}]", + "mlflow.log-model.history": "[{\"run_id\": \"9c36f396f2214f7bb0c6d9713d5e833e\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:39:11.770616\", \"model_uuid\": \"ba0e722effe1437ba691fb61e730dfb7\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"9c36f396f2214f7bb0c6d9713d5e833e\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-12-14 14:39:16.824355\", \"model_uuid\": \"c561b4012c1445eca99fcd5d7260ad62\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}]", "mlflow.project.backend": "local", "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Tuning", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", "mlflow.user": "fmind" }, - 104.744, + 47.579, "fmind", "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Tuning", @@ -5340,31 +5378,31 @@ "local", "GridSearchCV", "sklearn.model_selection._search.GridSearchCV", - "[{\"run_id\": \"41808f5b32074c5f8dddccdaa4221684\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-12 21:15:03.536059\", \"model_uuid\": \"aa1690180a414c58a2c9598fa6099393\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"41808f5b32074c5f8dddccdaa4221684\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-12-12 21:15:08.639146\", \"model_uuid\": \"657186289da24155bbdc03abf97c540b\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}]", + "[{\"run_id\": \"9c36f396f2214f7bb0c6d9713d5e833e\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:39:11.770616\", \"model_uuid\": \"ba0e722effe1437ba691fb61e730dfb7\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"9c36f396f2214f7bb0c6d9713d5e833e\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-12-14 14:39:16.824355\", \"model_uuid\": \"c561b4012c1445eca99fcd5d7260ad62\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}]", null, null ], [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/a15819213ad34dd9a6ed09d23d7f1f50/artifacts", - "2024-12-12T21:15:12.635000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/d927facc28d74fbe8d607c7f1656321a/artifacts", + "2024-12-14T14:39:21.213000", + "300971336194126583", "active", - "a15819213ad34dd9a6ed09d23d7f1f50", - "colorful-mule-167", - "a15819213ad34dd9a6ed09d23d7f1f50", + "d927facc28d74fbe8d607c7f1656321a", + "legendary-dove-782", + "d927facc28d74fbe8d607c7f1656321a", "FINISHED", "fmind", { - "mean_fit_time": 1.118449330329895, - "mean_score_time": 0.03912538290023804, - "mean_test_score": -16644.957118055558, - "rank_test_score": 3, - "std_fit_time": 0.15970737568385646, - "std_score_time": 0.0012380048739150742, - "std_test_score": 5315.459715152708 + "mean_fit_time": 3.1809995770454407, + "mean_score_time": 0.05519115924835205, + "mean_test_score": -319.5045138888889, + "rank_test_score": 1, + "std_fit_time": 0.4297416271813794, + "std_score_time": 0.002215700766888834, + "std_test_score": 350.4638291591938 }, { - "max_depth": "3", + "max_depth": "7", "n_estimators": "200", "random_state": "42" }, @@ -5372,51 +5410,51 @@ "estimator_class": "bikes.core.models.BaselineSklearnModel", "estimator_name": "BaselineSklearnModel", "mlflow.autologging": "sklearn", - "mlflow.parentRunId": "41808f5b32074c5f8dddccdaa4221684", - "mlflow.runName": "colorful-mule-167", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.parentRunId": "9c36f396f2214f7bb0c6d9713d5e833e", + "mlflow.runName": "legendary-dove-782", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", "mlflow.source.type": "LOCAL", "mlflow.user": "fmind" }, - 103.824, + 46.567, "fmind", "/home/fmind/mlops-python-package/src/bikes/__main__.py", "LOCAL", null, - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", null, null, - "colorful-mule-167", + "legendary-dove-782", null, null, "BaselineSklearnModel", "bikes.core.models.BaselineSklearnModel", null, "sklearn", - "41808f5b32074c5f8dddccdaa4221684" + "9c36f396f2214f7bb0c6d9713d5e833e" ], [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/cbc1f6a92cdf4a6fb03f60d8cd9fc6e5/artifacts", - "2024-12-12T21:15:12.635000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/dafb45859edf45979643cccb32ea3828/artifacts", + "2024-12-14T14:39:21.213000", + "300971336194126583", "active", - "cbc1f6a92cdf4a6fb03f60d8cd9fc6e5", - "righteous-grub-422", - "cbc1f6a92cdf4a6fb03f60d8cd9fc6e5", + "dafb45859edf45979643cccb32ea3828", + "big-duck-612", + "dafb45859edf45979643cccb32ea3828", "FINISHED", "fmind", { - "mean_fit_time": 1.7803198099136353, - "mean_score_time": 0.04240947961807251, - "mean_test_score": -8287.860416666666, - "rank_test_score": 2, - "std_fit_time": 0.2563473143454279, - "std_score_time": 0.0014697793935521128, - "std_test_score": 1045.7595024691313 + "mean_fit_time": 1.4297820329666138, + "mean_score_time": 0.042337894439697266, + "mean_test_score": -2845.011111111111, + "rank_test_score": 3, + "std_fit_time": 0.1887011060177697, + "std_score_time": 0.0005584766538439517, + "std_test_score": 1362.0703338739036 }, { - "max_depth": "5", + "max_depth": "3", "n_estimators": "200", "random_state": "42" }, @@ -5424,65 +5462,65 @@ "estimator_class": "bikes.core.models.BaselineSklearnModel", "estimator_name": "BaselineSklearnModel", "mlflow.autologging": "sklearn", - "mlflow.parentRunId": "41808f5b32074c5f8dddccdaa4221684", - "mlflow.runName": "righteous-grub-422", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.parentRunId": "9c36f396f2214f7bb0c6d9713d5e833e", + "mlflow.runName": "big-duck-612", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", "mlflow.source.type": "LOCAL", "mlflow.user": "fmind" }, - 103.824, + 46.567, "fmind", "/home/fmind/mlops-python-package/src/bikes/__main__.py", "LOCAL", null, - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", null, null, - "righteous-grub-422", + "big-duck-612", null, null, "BaselineSklearnModel", "bikes.core.models.BaselineSklearnModel", null, "sklearn", - "41808f5b32074c5f8dddccdaa4221684" + "9c36f396f2214f7bb0c6d9713d5e833e" ], [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/b4d8d557f5d94a24b035d6e77c765857/artifacts", - "2024-12-12T21:12:59.320000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/422986fde3df4962b0765cdf008a721b/artifacts", + "2024-12-14T14:38:26.878000", + "300971336194126583", "active", - "b4d8d557f5d94a24b035d6e77c765857", - "Tuning", - "b4d8d557f5d94a24b035d6e77c765857", - "FAILED", + "422986fde3df4962b0765cdf008a721b", + "Explanations", + "422986fde3df4962b0765cdf008a721b", + "FINISHED", "fmind", {}, { - "conf_file": "confs/tuning.yaml" + "conf_file": "confs/explanations.yaml" }, { "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", "mlflow.project.backend": "local", "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", - "mlflow.runName": "Tuning", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.runName": "Explanations", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", "mlflow.user": "fmind" }, - 0.38, + 12.349, "fmind", "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", - "Tuning", + "Explanations", "virtualenv", "local", null, @@ -5490,128 +5528,609 @@ null, null, null - ] - ], - "fillcolor": "rgba(255,255,255,0)", - "hoveron": "points", - "hovertemplate": "%{hovertext}

experiment_id=%{customdata[2]}
start_time=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_name=%{customdata[5]}
run_uuid=%{customdata[6]}
status=%{customdata[7]}
user_id=%{customdata[8]}
metrics=%{customdata[9]}
params=%{customdata[10]}
tags=%{customdata[11]}
run_time_secs=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
estimator_name=%{customdata[23]}
estimator_class=%{customdata[24]}
mlflow.log-model.history=%{customdata[25]}
mlflow.autologging=%{customdata[26]}
mlflow.parentRunId=%{customdata[27]}", - "hovertext": [ - "Explanations", - "Evaluations", - "Inference", - "Promotion", - "Training", - "Tuning", - "grandiose-ape-36", - "skillful-trout-792", - "adorable-crane-156", - "Explanations", - "Evaluations", - "Inference", - "Promotion", - "Training", - "bedecked-snake-279", - "Tuning", - "colorful-mule-167", - "righteous-grub-422", - "Tuning" - ], - "legendgroup": "451770521480793486", - "line": { - "color": "rgba(255,255,255,0)" - }, - "marker": { - "color": "#636efa" - }, - "name": "451770521480793486", - "offsetgroup": "451770521480793486", - "orientation": "h", - "pointpos": 0, - "showlegend": true, - "type": "box", - "x": [ - "2024-12-13T21:29:52.698000", - "2024-12-13T21:29:45.813000", - "2024-12-13T21:29:39.639000", - "2024-12-13T21:29:34.124000", - "2024-12-13T21:29:08.647000", - "2024-12-13T21:28:20.597000", - "2024-12-13T21:28:20.597000", - "2024-12-13T21:28:20.597000", - "2024-12-13T21:28:20.597000", - "2024-12-12T21:16:10.389000", - "2024-12-12T21:16:02.437000", - "2024-12-12T21:15:55.056000", - "2024-12-12T21:15:48.003000", - "2024-12-12T21:15:16.386000", - "2024-12-12T21:13:28.811000", - "2024-12-12T21:13:28.811000", - "2024-12-12T21:13:28.811000", - "2024-12-12T21:13:28.811000", - "2024-12-12T21:12:58.940000" - ], - "x0": " ", - "xaxis": "x", - "y0": " ", - "yaxis": "y" - } - ], - "layout": { - "boxmode": "group", - "legend": { - "title": { - "text": "experiment_id" - }, - "tracegroupgap": 0 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } ], - "barpolar": [ + [ + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/b486861e5799446c9bc40c37413acf46/artifacts", + "2024-12-14T14:38:12.143000", + "300971336194126583", + "active", + "b486861e5799446c9bc40c37413acf46", + "Evaluations", + "b486861e5799446c9bc40c37413acf46", + "FINISHED", + "fmind", { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ + "example_count": 13903, + "max_error": 4294967295, + "mean_absolute_error": 1959503528.083579, + "mean_absolute_percentage_error": 23650884.88200852, + "mean_on_target": 174.63914263108683, + "mean_squared_error": 4.060274760842984, + "r2_score": 0.9998543247906146, + "root_mean_squared_error": 2.0150123475658863, + "sum_on_target": 2428008 + }, { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" + "conf_file": "confs/evaluations.yaml" + }, + { + "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.project.backend": "local", + "mlflow.project.entryPoint": "main", + "mlflow.project.env": "virtualenv", + "mlflow.runName": "Evaluations", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.source.name": "file:///home/fmind/mlops-python-package", + "mlflow.source.type": "PROJECT", + "mlflow.user": "fmind" + }, + 6.338, + "fmind", + "file:///home/fmind/mlops-python-package", + "PROJECT", + "main", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + "git@github.com:fmind/mlops-python-package", + "git@github.com:fmind/mlops-python-package", + "Evaluations", + "virtualenv", + "local", + null, + null, + null, + null, + null + ], + [ + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/dd848a2a73d6469d860c54c519b4cab4/artifacts", + "2024-12-14T14:38:03.147000", + "300971336194126583", + "active", + "dd848a2a73d6469d860c54c519b4cab4", + "Inference", + "dd848a2a73d6469d860c54c519b4cab4", + "FINISHED", + "fmind", + {}, + { + "conf_file": "confs/inference.yaml" + }, + { + "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.project.backend": "local", + "mlflow.project.entryPoint": "main", + "mlflow.project.env": "virtualenv", + "mlflow.runName": "Inference", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.source.name": "file:///home/fmind/mlops-python-package", + "mlflow.source.type": "PROJECT", + "mlflow.user": "fmind" + }, + 5.776, + "fmind", + "file:///home/fmind/mlops-python-package", + "PROJECT", + "main", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + "git@github.com:fmind/mlops-python-package", + "git@github.com:fmind/mlops-python-package", + "Inference", + "virtualenv", + "local", + null, + null, + null, + null, + null + ], + [ + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/a9225f3845ab4da6baf77885d9c75dfd/artifacts", + "2024-12-14T14:37:54.740000", + "300971336194126583", + "active", + "a9225f3845ab4da6baf77885d9c75dfd", + "Promotion", + "a9225f3845ab4da6baf77885d9c75dfd", + "FINISHED", + "fmind", + {}, + { + "conf_file": "confs/promotion.yaml" + }, + { + "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.project.backend": "local", + "mlflow.project.entryPoint": "main", + "mlflow.project.env": "virtualenv", + "mlflow.runName": "Promotion", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.source.name": "file:///home/fmind/mlops-python-package", + "mlflow.source.type": "PROJECT", + "mlflow.user": "fmind" + }, + 5.117, + "fmind", + "file:///home/fmind/mlops-python-package", + "PROJECT", + "main", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + "git@github.com:fmind/mlops-python-package", + "git@github.com:fmind/mlops-python-package", + "Promotion", + "virtualenv", + "local", + null, + null, + null, + null, + null + ], + [ + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/d2aed973c12b475f849743599f7bc973/artifacts", + "2024-12-14T14:37:46.512000", + "300971336194126583", + "active", + "d2aed973c12b475f849743599f7bc973", + "Training", + "d2aed973c12b475f849743599f7bc973", + "FINISHED", + "fmind", + { + "mean_squared_error": -24.55763888888889, + "system/cpu_utilization_percentage": 20.8, + "system/disk_available_megabytes": 8002.4, + "system/disk_usage_megabytes": 107906.7, + "system/disk_usage_percentage": 93.1, + "system/network_receive_megabytes": 0.006799000000000888, + "system/network_transmit_megabytes": 0.004778000000101201, + "system/system_memory_usage_megabytes": 4375.5, + "system/system_memory_usage_percentage": 29, + "training_mean_absolute_error": 0.3561289343195786, + "training_mean_squared_error": 1.2806655854526316, + "training_r2_score": 0.9999473906118655, + "training_root_mean_squared_error": 1.1316649616616359, + "training_score": 0.9999473906118655 + }, + { + "conf_file": "confs/training.yaml", + "memory": "None", + "regressor": "RandomForestRegressor(max_depth=20, n_estimators=200, random_state=42)", + "regressor__bootstrap": "True", + "regressor__ccp_alpha": "0.0", + "regressor__criterion": "squared_error", + "regressor__max_depth": "20", + "regressor__max_features": "1.0", + "regressor__max_leaf_nodes": "None", + "regressor__max_samples": "None", + "regressor__min_impurity_decrease": "0.0", + "regressor__min_samples_leaf": "1", + "regressor__min_samples_split": "2", + "regressor__min_weight_fraction_leaf": "0.0", + "regressor__monotonic_cst": "None", + "regressor__n_estimators": "200", + "regressor__n_jobs": "None", + "regressor__oob_score": "False", + "regressor__random_state": "42", + "regressor__verbose": "0", + "regressor__warm_start": "False", + "steps": "[('transformer', ColumnTransformer(transformers=[('categoricals',\n OneHotEncoder(handle_unknown='ignore',\n sparse_output=False),\n ['season', 'weathersit']),\n ('numericals', 'passthrough',\n ['yr', 'mnth', 'hr', 'holiday', 'weekday',\n 'workingday', 'temp', 'atemp', 'hum',\n 'windspeed', 'casual', 'registered'])])), ('regressor', RandomForestRegressor(max_depth=20, n_estimators=200, random_state=42))]", + "transformer": "ColumnTransformer(transformers=[('categoricals',\n OneHotEncoder(handle_unknown='ignore',\n sparse_output=False),\n ['season', 'weathersit']),\n ('numericals', 'passthrough',\n ['yr', 'mnth', 'hr', 'holiday', 'weekday',\n 'workingday', 'temp', 'atemp', 'hum',\n 'windspeed', 'casual', 'registered'])])", + "transformer__categoricals": "OneHotEncoder(handle_unknown='ignore', sparse_output=False)", + "transformer__categoricals__categories": "auto", + "transformer__categoricals__drop": "None", + "transformer__categoricals__dtype": "", + "transformer__categoricals__feature_name_combiner": "concat", + "transformer__categoricals__handle_unknown": "ignore", + "transformer__categoricals__max_categories": "None", + "transformer__categoricals__min_frequency": "None", + "transformer__categoricals__sparse_output": "False", + "transformer__force_int_remainder_cols": "True", + "transformer__n_jobs": "None", + "transformer__numericals": "passthrough", + "transformer__remainder": "drop", + "transformer__sparse_threshold": "0.3", + "transformer__transformer_weights": "None", + "transformer__transformers": "[('categoricals', OneHotEncoder(handle_unknown='ignore', sparse_output=False), ['season', 'weathersit']), ('numericals', 'passthrough', ['yr', 'mnth', 'hr', 'holiday', 'weekday', 'workingday', 'temp', 'atemp', 'hum', 'windspeed', 'casual', 'registered'])]", + "transformer__verbose": "False", + "transformer__verbose_feature_names_out": "True", + "verbose": "False" + }, + { + "estimator_class": "sklearn.pipeline.Pipeline", + "estimator_name": "Pipeline", + "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.log-model.history": "[{\"run_id\": \"d2aed973c12b475f849743599f7bc973\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:37:33.468367\", \"model_uuid\": \"e6f77661d7214385a83cc9a45c689a0a\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"d2aed973c12b475f849743599f7bc973\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:37:38.175626\", \"model_uuid\": \"4b143c2fc8234dac9c98bbdfb03aaa1a\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.1.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}}]", + "mlflow.project.backend": "local", + "mlflow.project.entryPoint": "main", + "mlflow.project.env": "virtualenv", + "mlflow.runName": "Training", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.source.name": "file:///home/fmind/mlops-python-package", + "mlflow.source.type": "PROJECT", + "mlflow.user": "fmind" + }, + 28.042, + "fmind", + "file:///home/fmind/mlops-python-package", + "PROJECT", + "main", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + "git@github.com:fmind/mlops-python-package", + "git@github.com:fmind/mlops-python-package", + "Training", + "virtualenv", + "local", + "Pipeline", + "sklearn.pipeline.Pipeline", + "[{\"run_id\": \"d2aed973c12b475f849743599f7bc973\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:37:33.468367\", \"model_uuid\": \"e6f77661d7214385a83cc9a45c689a0a\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"d2aed973c12b475f849743599f7bc973\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:37:38.175626\", \"model_uuid\": \"4b143c2fc8234dac9c98bbdfb03aaa1a\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.1.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}}]", + null, + null + ], + [ + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/006ccc2cf48e489099b285ab6d538d1a/artifacts", + "2024-12-14T14:37:15.261000", + "300971336194126583", + "active", + "006ccc2cf48e489099b285ab6d538d1a", + "sincere-sow-522", + "006ccc2cf48e489099b285ab6d538d1a", + "FINISHED", + "fmind", + { + "mean_fit_time": 1.635141909122467, + "mean_score_time": 0.04768478870391846, + "mean_test_score": -2845.011111111111, + "rank_test_score": 3, + "std_fit_time": 0.16971366972379937, + "std_score_time": 0.002114185952165752, + "std_test_score": 1362.0703338739036 + }, + { + "max_depth": "3", + "n_estimators": "200", + "random_state": "42" + }, + { + "estimator_class": "bikes.core.models.BaselineSklearnModel", + "estimator_name": "BaselineSklearnModel", + "mlflow.autologging": "sklearn", + "mlflow.parentRunId": "857f0dd0a344439693b8cb9ecbf3ee10", + "mlflow.runName": "sincere-sow-522", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", + "mlflow.source.type": "LOCAL", + "mlflow.user": "fmind" + }, + 132.755, + "fmind", + "/home/fmind/mlops-python-package/src/bikes/__main__.py", + "LOCAL", + null, + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + null, + null, + "sincere-sow-522", + null, + null, + "BaselineSklearnModel", + "bikes.core.models.BaselineSklearnModel", + null, + "sklearn", + "857f0dd0a344439693b8cb9ecbf3ee10" + ], + [ + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/44be742accc846c784acacab379cdca3/artifacts", + "2024-12-14T14:37:15.261000", + "300971336194126583", + "active", + "44be742accc846c784acacab379cdca3", + "bittersweet-fowl-631", + "44be742accc846c784acacab379cdca3", + "FINISHED", + "fmind", + { + "mean_fit_time": 2.448797047138214, + "mean_score_time": 0.05008918046951294, + "mean_test_score": -711.7982638888889, + "rank_test_score": 2, + "std_fit_time": 0.33258931824071436, + "std_score_time": 0.0004049252455184904, + "std_test_score": 506.2583283876414 + }, + { + "max_depth": "5", + "n_estimators": "200", + "random_state": "42" + }, + { + "estimator_class": "bikes.core.models.BaselineSklearnModel", + "estimator_name": "BaselineSklearnModel", + "mlflow.autologging": "sklearn", + "mlflow.parentRunId": "857f0dd0a344439693b8cb9ecbf3ee10", + "mlflow.runName": "bittersweet-fowl-631", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", + "mlflow.source.type": "LOCAL", + "mlflow.user": "fmind" + }, + 132.755, + "fmind", + "/home/fmind/mlops-python-package/src/bikes/__main__.py", + "LOCAL", + null, + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + null, + null, + "bittersweet-fowl-631", + null, + null, + "BaselineSklearnModel", + "bikes.core.models.BaselineSklearnModel", + null, + "sklearn", + "857f0dd0a344439693b8cb9ecbf3ee10" + ], + [ + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/857f0dd0a344439693b8cb9ecbf3ee10/artifacts", + "2024-12-14T14:37:16.048000", + "300971336194126583", + "active", + "857f0dd0a344439693b8cb9ecbf3ee10", + "Tuning", + "857f0dd0a344439693b8cb9ecbf3ee10", + "FINISHED", + "fmind", + { + "best_cv_score": -319.5045138888889, + "system/cpu_utilization_percentage": 21.5, + "system/disk_available_megabytes": 8003.8, + "system/disk_usage_megabytes": 107904.9, + "system/disk_usage_percentage": 93.1, + "system/network_receive_megabytes": 0.012895999999955166, + "system/network_transmit_megabytes": 0.0012200000001030276, + "system/system_memory_usage_megabytes": 4608.4, + "system/system_memory_usage_percentage": 30.6, + "training_score": -25.253110839387183 + }, + { + "best_max_depth": "7", + "conf_file": "confs/tuning.yaml", + "cv": "KIND='TimeSeriesSplitter' gap=0 n_splits=4 test_size=1440", + "error_score": "raise", + "estimator": "KIND='BaselineSklearnModel' max_depth=20 n_estimators=200 random_state=42", + "n_jobs": "None", + "param_grid": "{'max_depth': [3, 5, 7]}", + "pre_dispatch": "2*n_jobs", + "refit": "True", + "return_train_score": "False", + "scoring": "", + "verbose": "3" + }, + { + "estimator_class": "sklearn.model_selection._search.GridSearchCV", + "estimator_name": "GridSearchCV", + "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.log-model.history": "[{\"run_id\": \"857f0dd0a344439693b8cb9ecbf3ee10\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:37:05.731840\", \"model_uuid\": \"4ada6a336e424391bf2cdf750e2c7042\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"857f0dd0a344439693b8cb9ecbf3ee10\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-12-14 14:37:11.174511\", \"model_uuid\": \"7be250b39fd343ec99975be2a910fb2a\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}]", + "mlflow.project.backend": "local", + "mlflow.project.entryPoint": "main", + "mlflow.project.env": "virtualenv", + "mlflow.runName": "Tuning", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.source.name": "file:///home/fmind/mlops-python-package", + "mlflow.source.type": "PROJECT", + "mlflow.user": "fmind" + }, + 133.542, + "fmind", + "file:///home/fmind/mlops-python-package", + "PROJECT", + "main", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + "git@github.com:fmind/mlops-python-package", + "git@github.com:fmind/mlops-python-package", + "Tuning", + "virtualenv", + "local", + "GridSearchCV", + "sklearn.model_selection._search.GridSearchCV", + "[{\"run_id\": \"857f0dd0a344439693b8cb9ecbf3ee10\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:37:05.731840\", \"model_uuid\": \"4ada6a336e424391bf2cdf750e2c7042\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"857f0dd0a344439693b8cb9ecbf3ee10\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-12-14 14:37:11.174511\", \"model_uuid\": \"7be250b39fd343ec99975be2a910fb2a\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}]", + null, + null + ], + [ + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/e9980ab9c8db4f80a18aadfa47a3e83e/artifacts", + "2024-12-14T14:37:15.261000", + "300971336194126583", + "active", + "e9980ab9c8db4f80a18aadfa47a3e83e", + "smiling-hound-227", + "e9980ab9c8db4f80a18aadfa47a3e83e", + "FINISHED", + "fmind", + { + "mean_fit_time": 3.4514302015304565, + "mean_score_time": 0.060173630714416504, + "mean_test_score": -319.5045138888889, + "rank_test_score": 1, + "std_fit_time": 0.44103751840131455, + "std_score_time": 0.002450930454703554, + "std_test_score": 350.4638291591938 + }, + { + "max_depth": "7", + "n_estimators": "200", + "random_state": "42" + }, + { + "estimator_class": "bikes.core.models.BaselineSklearnModel", + "estimator_name": "BaselineSklearnModel", + "mlflow.autologging": "sklearn", + "mlflow.parentRunId": "857f0dd0a344439693b8cb9ecbf3ee10", + "mlflow.runName": "smiling-hound-227", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", + "mlflow.source.type": "LOCAL", + "mlflow.user": "fmind" + }, + 132.755, + "fmind", + "/home/fmind/mlops-python-package/src/bikes/__main__.py", + "LOCAL", + null, + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + null, + null, + "smiling-hound-227", + null, + null, + "BaselineSklearnModel", + "bikes.core.models.BaselineSklearnModel", + null, + "sklearn", + "857f0dd0a344439693b8cb9ecbf3ee10" + ] + ], + "fillcolor": "rgba(255,255,255,0)", + "hoveron": "points", + "hovertemplate": "%{hovertext}

experiment_id=%{customdata[2]}
start_time=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_name=%{customdata[5]}
run_uuid=%{customdata[6]}
status=%{customdata[7]}
user_id=%{customdata[8]}
metrics=%{customdata[9]}
params=%{customdata[10]}
tags=%{customdata[11]}
run_time_secs=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
estimator_name=%{customdata[23]}
estimator_class=%{customdata[24]}
mlflow.log-model.history=%{customdata[25]}
mlflow.autologging=%{customdata[26]}
mlflow.parentRunId=%{customdata[27]}", + "hovertext": [ + "Explanations", + "Evaluations", + "Inference", + "Promotion", + "Training", + "wise-hound-335", + "auspicious-fly-358", + "Tuning", + "lyrical-asp-40", + "Explanations", + "Evaluations", + "Inference", + "Promotion", + "Training", + "classy-yak-743", + "Tuning", + "legendary-dove-782", + "big-duck-612", + "Explanations", + "Evaluations", + "Inference", + "Promotion", + "Training", + "sincere-sow-522", + "bittersweet-fowl-631", + "Tuning", + "smiling-hound-227" + ], + "legendgroup": "300971336194126583", + "line": { + "color": "rgba(255,255,255,0)" + }, + "marker": { + "color": "#636efa" + }, + "name": "300971336194126583", + "offsetgroup": "300971336194126583", + "orientation": "h", + "pointpos": 0, + "showlegend": true, + "type": "box", + "x": [ + "2024-12-14T14:42:16.077000", + "2024-12-14T14:42:07.488000", + "2024-12-14T14:41:59.607000", + "2024-12-14T14:41:52.639000", + "2024-12-14T14:41:23.914000", + "2024-12-14T14:40:34.416000", + "2024-12-14T14:40:34.416000", + "2024-12-14T14:40:34.416000", + "2024-12-14T14:40:34.416000", + "2024-12-14T14:40:17.104000", + "2024-12-14T14:40:07.979000", + "2024-12-14T14:40:00.564000", + "2024-12-14T14:39:53.123000", + "2024-12-14T14:39:24.560000", + "2024-12-14T14:38:34.646000", + "2024-12-14T14:38:34.646000", + "2024-12-14T14:38:34.646000", + "2024-12-14T14:38:34.646000", + "2024-12-14T14:38:14.529000", + "2024-12-14T14:38:05.805000", + "2024-12-14T14:37:57.371000", + "2024-12-14T14:37:49.623000", + "2024-12-14T14:37:18.470000", + "2024-12-14T14:35:02.506000", + "2024-12-14T14:35:02.506000", + "2024-12-14T14:35:02.506000", + "2024-12-14T14:35:02.506000" + ], + "x0": " ", + "xaxis": "x", + "y0": " ", + "yaxis": "y" + } + ], + "layout": { + "boxmode": "group", + "legend": { + "title": { + "text": "experiment_id" + }, + "tracegroupgap": 0 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", @@ -6435,14 +6954,57 @@ "boxpoints": "all", "customdata": [ [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/92d0973c64dc419cacb89efe2df006a8/artifacts", - "2024-12-13T21:30:22.859000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/9923cb99c1824857b68c0bedb63f8446/artifacts", + "2024-12-14T14:42:28.056000", + "300971336194126583", + "active", + "9923cb99c1824857b68c0bedb63f8446", + "Explanations", + "9923cb99c1824857b68c0bedb63f8446", + "2024-12-14T14:42:16.077000", + "FINISHED", + "fmind", + {}, + { + "conf_file": "confs/explanations.yaml" + }, + { + "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.project.backend": "local", + "mlflow.project.entryPoint": "main", + "mlflow.project.env": "virtualenv", + "mlflow.runName": "Explanations", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.source.name": "file:///home/fmind/mlops-python-package", + "mlflow.source.type": "PROJECT", + "mlflow.user": "fmind" + }, + "fmind", + "file:///home/fmind/mlops-python-package", + "PROJECT", + "main", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + "git@github.com:fmind/mlops-python-package", + "git@github.com:fmind/mlops-python-package", + "Explanations", + "virtualenv", + "local", + null, + null, + null, + null, + null + ], + [ + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/149bc47563a94ae5bc05bbcb7853c122/artifacts", + "2024-12-14T14:40:29.333000", + "300971336194126583", "active", - "92d0973c64dc419cacb89efe2df006a8", + "149bc47563a94ae5bc05bbcb7853c122", "Explanations", - "92d0973c64dc419cacb89efe2df006a8", - "2024-12-13T21:29:52.698000", + "149bc47563a94ae5bc05bbcb7853c122", + "2024-12-14T14:40:17.104000", "FINISHED", "fmind", {}, @@ -6455,7 +7017,7 @@ "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Explanations", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", @@ -6465,7 +7027,7 @@ "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Explanations", @@ -6478,14 +7040,14 @@ null ], [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/b93a8935f9844745bec8dd796a0a8a73/artifacts", - "2024-12-12T21:16:43.849000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/422986fde3df4962b0765cdf008a721b/artifacts", + "2024-12-14T14:38:26.878000", + "300971336194126583", "active", - "b93a8935f9844745bec8dd796a0a8a73", + "422986fde3df4962b0765cdf008a721b", "Explanations", - "b93a8935f9844745bec8dd796a0a8a73", - "2024-12-12T21:16:10.389000", + "422986fde3df4962b0765cdf008a721b", + "2024-12-14T14:38:14.529000", "FINISHED", "fmind", {}, @@ -6498,7 +7060,7 @@ "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Explanations", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", @@ -6508,7 +7070,7 @@ "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Explanations", @@ -6525,8 +7087,9 @@ "hoveron": "points", "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
estimator_name=%{customdata[23]}
estimator_class=%{customdata[24]}
mlflow.log-model.history=%{customdata[25]}
mlflow.autologging=%{customdata[26]}
mlflow.parentRunId=%{customdata[27]}", "hovertext": [ - "92d0973c64dc419cacb89efe2df006a8", - "b93a8935f9844745bec8dd796a0a8a73" + "9923cb99c1824857b68c0bedb63f8446", + "149bc47563a94ae5bc05bbcb7853c122", + "422986fde3df4962b0765cdf008a721b" ], "legendgroup": "Explanations", "line": { @@ -6542,8 +7105,9 @@ "showlegend": true, "type": "box", "x": [ - 30.161, - 33.46 + 11.979, + 12.229, + 12.349 ], "x0": " ", "xaxis": "x", @@ -6555,25 +7119,78 @@ "boxpoints": "all", "customdata": [ [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/855a19513f6d4282a217ef920a0d69f5/artifacts", - "2024-12-13T21:29:50.751000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/bfce074e34834054b84e5794450a4fa2/artifacts", + "2024-12-14T14:42:13.733000", + "300971336194126583", + "active", + "bfce074e34834054b84e5794450a4fa2", + "Evaluations", + "bfce074e34834054b84e5794450a4fa2", + "2024-12-14T14:42:07.488000", + "FINISHED", + "fmind", + { + "example_count": 13903, + "max_error": 4294967295, + "mean_absolute_error": 1959503528.083579, + "mean_absolute_percentage_error": 23650884.88200852, + "mean_on_target": 174.63914263108683, + "mean_squared_error": 4.060274760842984, + "r2_score": 0.9998543247906146, + "root_mean_squared_error": 2.0150123475658863, + "sum_on_target": 2428008 + }, + { + "conf_file": "confs/evaluations.yaml" + }, + { + "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.project.backend": "local", + "mlflow.project.entryPoint": "main", + "mlflow.project.env": "virtualenv", + "mlflow.runName": "Evaluations", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.source.name": "file:///home/fmind/mlops-python-package", + "mlflow.source.type": "PROJECT", + "mlflow.user": "fmind" + }, + "fmind", + "file:///home/fmind/mlops-python-package", + "PROJECT", + "main", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + "git@github.com:fmind/mlops-python-package", + "git@github.com:fmind/mlops-python-package", + "Evaluations", + "virtualenv", + "local", + null, + null, + null, + null, + null + ], + [ + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/534a4ff3a1b04ae3b7c5c5e5295b87a8/artifacts", + "2024-12-14T14:40:14.595000", + "300971336194126583", "active", - "855a19513f6d4282a217ef920a0d69f5", + "534a4ff3a1b04ae3b7c5c5e5295b87a8", "Evaluations", - "855a19513f6d4282a217ef920a0d69f5", - "2024-12-13T21:29:45.813000", + "534a4ff3a1b04ae3b7c5c5e5295b87a8", + "2024-12-14T14:40:07.979000", "FINISHED", "fmind", { "example_count": 13903, "max_error": 4294967295, - "mean_absolute_error": 2044457567.3205063, - "mean_absolute_percentage_error": 55189262.03890929, + "mean_absolute_error": 1959503528.083579, + "mean_absolute_percentage_error": 23650884.88200852, "mean_on_target": 174.63914263108683, - "mean_squared_error": 296.66338200388407, - "r2_score": 0.9893562621162568, - "root_mean_squared_error": 17.223918892165166, + "mean_squared_error": 4.060274760842984, + "r2_score": 0.9998543247906146, + "root_mean_squared_error": 2.0150123475658863, "sum_on_target": 2428008 }, { @@ -6585,7 +7202,7 @@ "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Evaluations", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", @@ -6595,7 +7212,7 @@ "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Evaluations", @@ -6608,25 +7225,25 @@ null ], [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/f2b3bf2f37334c35b362c594f4378f27/artifacts", - "2024-12-12T21:16:08.320000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/b486861e5799446c9bc40c37413acf46/artifacts", + "2024-12-14T14:38:12.143000", + "300971336194126583", "active", - "f2b3bf2f37334c35b362c594f4378f27", + "b486861e5799446c9bc40c37413acf46", "Evaluations", - "f2b3bf2f37334c35b362c594f4378f27", - "2024-12-12T21:16:02.437000", + "b486861e5799446c9bc40c37413acf46", + "2024-12-14T14:38:05.805000", "FINISHED", "fmind", { "example_count": 13903, "max_error": 4294967295, - "mean_absolute_error": 2044457567.3205063, - "mean_absolute_percentage_error": 55189262.03890929, + "mean_absolute_error": 1959503528.083579, + "mean_absolute_percentage_error": 23650884.88200852, "mean_on_target": 174.63914263108683, - "mean_squared_error": 296.66338200388407, - "r2_score": 0.9893562621162568, - "root_mean_squared_error": 17.223918892165166, + "mean_squared_error": 4.060274760842984, + "r2_score": 0.9998543247906146, + "root_mean_squared_error": 2.0150123475658863, "sum_on_target": 2428008 }, { @@ -6638,7 +7255,7 @@ "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Evaluations", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", @@ -6648,7 +7265,7 @@ "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Evaluations", @@ -6665,8 +7282,9 @@ "hoveron": "points", "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
estimator_name=%{customdata[23]}
estimator_class=%{customdata[24]}
mlflow.log-model.history=%{customdata[25]}
mlflow.autologging=%{customdata[26]}
mlflow.parentRunId=%{customdata[27]}", "hovertext": [ - "855a19513f6d4282a217ef920a0d69f5", - "f2b3bf2f37334c35b362c594f4378f27" + "bfce074e34834054b84e5794450a4fa2", + "534a4ff3a1b04ae3b7c5c5e5295b87a8", + "b486861e5799446c9bc40c37413acf46" ], "legendgroup": "Evaluations", "line": { @@ -6682,8 +7300,9 @@ "showlegend": true, "type": "box", "x": [ - 4.938, - 5.883 + 6.245, + 6.616, + 6.338 ], "x0": " ", "xaxis": "x", @@ -6695,14 +7314,57 @@ "boxpoints": "all", "customdata": [ [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/48f318dd0eed4c05b4bd5823f7d352f6/artifacts", - "2024-12-13T21:29:43.951000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/5ebe28d67ed54300a177eb61825a6688/artifacts", + "2024-12-14T14:42:05.031000", + "300971336194126583", + "active", + "5ebe28d67ed54300a177eb61825a6688", + "Inference", + "5ebe28d67ed54300a177eb61825a6688", + "2024-12-14T14:41:59.607000", + "FINISHED", + "fmind", + {}, + { + "conf_file": "confs/inference.yaml" + }, + { + "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.project.backend": "local", + "mlflow.project.entryPoint": "main", + "mlflow.project.env": "virtualenv", + "mlflow.runName": "Inference", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.source.name": "file:///home/fmind/mlops-python-package", + "mlflow.source.type": "PROJECT", + "mlflow.user": "fmind" + }, + "fmind", + "file:///home/fmind/mlops-python-package", + "PROJECT", + "main", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + "git@github.com:fmind/mlops-python-package", + "git@github.com:fmind/mlops-python-package", + "Inference", + "virtualenv", + "local", + null, + null, + null, + null, + null + ], + [ + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/4a629039b6c84ad3947f7529f9a28e21/artifacts", + "2024-12-14T14:40:05.598000", + "300971336194126583", "active", - "48f318dd0eed4c05b4bd5823f7d352f6", + "4a629039b6c84ad3947f7529f9a28e21", "Inference", - "48f318dd0eed4c05b4bd5823f7d352f6", - "2024-12-13T21:29:39.639000", + "4a629039b6c84ad3947f7529f9a28e21", + "2024-12-14T14:40:00.564000", "FINISHED", "fmind", {}, @@ -6715,7 +7377,7 @@ "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Inference", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", @@ -6725,7 +7387,7 @@ "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Inference", @@ -6738,14 +7400,14 @@ null ], [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/1b6dd4593a654170be21ec38a29c78e7/artifacts", - "2024-12-12T21:16:00.091000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/dd848a2a73d6469d860c54c519b4cab4/artifacts", + "2024-12-14T14:38:03.147000", + "300971336194126583", "active", - "1b6dd4593a654170be21ec38a29c78e7", + "dd848a2a73d6469d860c54c519b4cab4", "Inference", - "1b6dd4593a654170be21ec38a29c78e7", - "2024-12-12T21:15:55.056000", + "dd848a2a73d6469d860c54c519b4cab4", + "2024-12-14T14:37:57.371000", "FINISHED", "fmind", {}, @@ -6758,7 +7420,7 @@ "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Inference", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", @@ -6768,7 +7430,7 @@ "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Inference", @@ -6785,8 +7447,9 @@ "hoveron": "points", "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
estimator_name=%{customdata[23]}
estimator_class=%{customdata[24]}
mlflow.log-model.history=%{customdata[25]}
mlflow.autologging=%{customdata[26]}
mlflow.parentRunId=%{customdata[27]}", "hovertext": [ - "48f318dd0eed4c05b4bd5823f7d352f6", - "1b6dd4593a654170be21ec38a29c78e7" + "5ebe28d67ed54300a177eb61825a6688", + "4a629039b6c84ad3947f7529f9a28e21", + "dd848a2a73d6469d860c54c519b4cab4" ], "legendgroup": "Inference", "line": { @@ -6802,8 +7465,9 @@ "showlegend": true, "type": "box", "x": [ - 4.312, - 5.035 + 5.424, + 5.034, + 5.776 ], "x0": " ", "xaxis": "x", @@ -6815,14 +7479,57 @@ "boxpoints": "all", "customdata": [ [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/05a8c27ae65a40008ae4962ad13691cf/artifacts", - "2024-12-13T21:29:37.770000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/f29b930df5a54f1fa9ec5fe4b27df8b9/artifacts", + "2024-12-14T14:41:57.245000", + "300971336194126583", + "active", + "f29b930df5a54f1fa9ec5fe4b27df8b9", + "Promotion", + "f29b930df5a54f1fa9ec5fe4b27df8b9", + "2024-12-14T14:41:52.639000", + "FINISHED", + "fmind", + {}, + { + "conf_file": "confs/promotion.yaml" + }, + { + "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.project.backend": "local", + "mlflow.project.entryPoint": "main", + "mlflow.project.env": "virtualenv", + "mlflow.runName": "Promotion", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.source.name": "file:///home/fmind/mlops-python-package", + "mlflow.source.type": "PROJECT", + "mlflow.user": "fmind" + }, + "fmind", + "file:///home/fmind/mlops-python-package", + "PROJECT", + "main", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + "git@github.com:fmind/mlops-python-package", + "git@github.com:fmind/mlops-python-package", + "Promotion", + "virtualenv", + "local", + null, + null, + null, + null, + null + ], + [ + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/e20be51c8bbb4cfb98ad440209dd2ea6/artifacts", + "2024-12-14T14:39:58.173000", + "300971336194126583", "active", - "05a8c27ae65a40008ae4962ad13691cf", + "e20be51c8bbb4cfb98ad440209dd2ea6", "Promotion", - "05a8c27ae65a40008ae4962ad13691cf", - "2024-12-13T21:29:34.124000", + "e20be51c8bbb4cfb98ad440209dd2ea6", + "2024-12-14T14:39:53.123000", "FINISHED", "fmind", {}, @@ -6835,7 +7542,7 @@ "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Promotion", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", @@ -6845,7 +7552,7 @@ "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Promotion", @@ -6858,14 +7565,14 @@ null ], [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/cfcc7f0fb7c141b2b4781eefff9a6081/artifacts", - "2024-12-12T21:15:52.759000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/a9225f3845ab4da6baf77885d9c75dfd/artifacts", + "2024-12-14T14:37:54.740000", + "300971336194126583", "active", - "cfcc7f0fb7c141b2b4781eefff9a6081", + "a9225f3845ab4da6baf77885d9c75dfd", "Promotion", - "cfcc7f0fb7c141b2b4781eefff9a6081", - "2024-12-12T21:15:48.003000", + "a9225f3845ab4da6baf77885d9c75dfd", + "2024-12-14T14:37:49.623000", "FINISHED", "fmind", {}, @@ -6878,7 +7585,7 @@ "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Promotion", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", @@ -6888,7 +7595,7 @@ "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Promotion", @@ -6905,8 +7612,9 @@ "hoveron": "points", "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
estimator_name=%{customdata[23]}
estimator_class=%{customdata[24]}
mlflow.log-model.history=%{customdata[25]}
mlflow.autologging=%{customdata[26]}
mlflow.parentRunId=%{customdata[27]}", "hovertext": [ - "05a8c27ae65a40008ae4962ad13691cf", - "cfcc7f0fb7c141b2b4781eefff9a6081" + "f29b930df5a54f1fa9ec5fe4b27df8b9", + "e20be51c8bbb4cfb98ad440209dd2ea6", + "a9225f3845ab4da6baf77885d9c75dfd" ], "legendgroup": "Promotion", "line": { @@ -6922,8 +7630,9 @@ "showlegend": true, "type": "box", "x": [ - 3.646, - 4.756 + 4.606, + 5.05, + 5.117 ], "x0": " ", "xaxis": "x", @@ -6935,31 +7644,133 @@ "boxpoints": "all", "customdata": [ [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/ac1ad3a71ca1438f930cf61cdaf4dda2/artifacts", - "2024-12-13T21:29:31.698000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/4753bf6b106845d19eca79b7cb329343/artifacts", + "2024-12-14T14:41:49.910000", + "300971336194126583", + "active", + "4753bf6b106845d19eca79b7cb329343", + "Training", + "4753bf6b106845d19eca79b7cb329343", + "2024-12-14T14:41:23.914000", + "FINISHED", + "fmind", + { + "mean_squared_error": -24.55763888888889, + "system/cpu_utilization_percentage": 14.3, + "system/disk_available_megabytes": 7454.1, + "system/disk_usage_megabytes": 108457.2, + "system/disk_usage_percentage": 93.6, + "system/network_receive_megabytes": 0, + "system/network_transmit_megabytes": 0, + "system/system_memory_usage_megabytes": 4700.3, + "system/system_memory_usage_percentage": 31.2, + "training_mean_absolute_error": 0.3561289343195786, + "training_mean_squared_error": 1.2806655854526316, + "training_r2_score": 0.9999473906118655, + "training_root_mean_squared_error": 1.1316649616616359, + "training_score": 0.9999473906118655 + }, + { + "conf_file": "confs/training.yaml", + "memory": "None", + "regressor": "RandomForestRegressor(max_depth=20, n_estimators=200, random_state=42)", + "regressor__bootstrap": "True", + "regressor__ccp_alpha": "0.0", + "regressor__criterion": "squared_error", + "regressor__max_depth": "20", + "regressor__max_features": "1.0", + "regressor__max_leaf_nodes": "None", + "regressor__max_samples": "None", + "regressor__min_impurity_decrease": "0.0", + "regressor__min_samples_leaf": "1", + "regressor__min_samples_split": "2", + "regressor__min_weight_fraction_leaf": "0.0", + "regressor__monotonic_cst": "None", + "regressor__n_estimators": "200", + "regressor__n_jobs": "None", + "regressor__oob_score": "False", + "regressor__random_state": "42", + "regressor__verbose": "0", + "regressor__warm_start": "False", + "steps": "[('transformer', ColumnTransformer(transformers=[('categoricals',\n OneHotEncoder(handle_unknown='ignore',\n sparse_output=False),\n ['season', 'weathersit']),\n ('numericals', 'passthrough',\n ['yr', 'mnth', 'hr', 'holiday', 'weekday',\n 'workingday', 'temp', 'atemp', 'hum',\n 'windspeed', 'casual', 'registered'])])), ('regressor', RandomForestRegressor(max_depth=20, n_estimators=200, random_state=42))]", + "transformer": "ColumnTransformer(transformers=[('categoricals',\n OneHotEncoder(handle_unknown='ignore',\n sparse_output=False),\n ['season', 'weathersit']),\n ('numericals', 'passthrough',\n ['yr', 'mnth', 'hr', 'holiday', 'weekday',\n 'workingday', 'temp', 'atemp', 'hum',\n 'windspeed', 'casual', 'registered'])])", + "transformer__categoricals": "OneHotEncoder(handle_unknown='ignore', sparse_output=False)", + "transformer__categoricals__categories": "auto", + "transformer__categoricals__drop": "None", + "transformer__categoricals__dtype": "", + "transformer__categoricals__feature_name_combiner": "concat", + "transformer__categoricals__handle_unknown": "ignore", + "transformer__categoricals__max_categories": "None", + "transformer__categoricals__min_frequency": "None", + "transformer__categoricals__sparse_output": "False", + "transformer__force_int_remainder_cols": "True", + "transformer__n_jobs": "None", + "transformer__numericals": "passthrough", + "transformer__remainder": "drop", + "transformer__sparse_threshold": "0.3", + "transformer__transformer_weights": "None", + "transformer__transformers": "[('categoricals', OneHotEncoder(handle_unknown='ignore', sparse_output=False), ['season', 'weathersit']), ('numericals', 'passthrough', ['yr', 'mnth', 'hr', 'holiday', 'weekday', 'workingday', 'temp', 'atemp', 'hum', 'windspeed', 'casual', 'registered'])]", + "transformer__verbose": "False", + "transformer__verbose_feature_names_out": "True", + "verbose": "False" + }, + { + "estimator_class": "sklearn.pipeline.Pipeline", + "estimator_name": "Pipeline", + "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.log-model.history": "[{\"run_id\": \"4753bf6b106845d19eca79b7cb329343\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:41:38.398638\", \"model_uuid\": \"77e276c4bf79429ca932062f2825649b\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"4753bf6b106845d19eca79b7cb329343\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:41:42.667182\", \"model_uuid\": \"50dd5f99ebb944c7a02879fd4dc8d43c\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.1.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}}]", + "mlflow.project.backend": "local", + "mlflow.project.entryPoint": "main", + "mlflow.project.env": "virtualenv", + "mlflow.runName": "Training", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.source.name": "file:///home/fmind/mlops-python-package", + "mlflow.source.type": "PROJECT", + "mlflow.user": "fmind" + }, + "fmind", + "file:///home/fmind/mlops-python-package", + "PROJECT", + "main", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + "git@github.com:fmind/mlops-python-package", + "git@github.com:fmind/mlops-python-package", + "Training", + "virtualenv", + "local", + "Pipeline", + "sklearn.pipeline.Pipeline", + "[{\"run_id\": \"4753bf6b106845d19eca79b7cb329343\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:41:38.398638\", \"model_uuid\": \"77e276c4bf79429ca932062f2825649b\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"4753bf6b106845d19eca79b7cb329343\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:41:42.667182\", \"model_uuid\": \"50dd5f99ebb944c7a02879fd4dc8d43c\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.1.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}}]", + null, + null + ], + [ + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/ae9f673f6b264240bb79ffd94ca49fe2/artifacts", + "2024-12-14T14:39:50.546000", + "300971336194126583", "active", - "ac1ad3a71ca1438f930cf61cdaf4dda2", + "ae9f673f6b264240bb79ffd94ca49fe2", "Training", - "ac1ad3a71ca1438f930cf61cdaf4dda2", - "2024-12-13T21:29:08.647000", + "ae9f673f6b264240bb79ffd94ca49fe2", + "2024-12-14T14:39:24.560000", "FINISHED", "fmind", { - "mean_squared_error": -1786.7527777777777, - "system/cpu_utilization_percentage": 0, - "system/disk_available_megabytes": 14473.2, - "system/disk_usage_megabytes": 101021.7, - "system/disk_usage_percentage": 87.5, - "system/network_receive_megabytes": 0, - "system/network_transmit_megabytes": 0, - "system/system_memory_usage_megabytes": 4633.6, - "system/system_memory_usage_percentage": 30.7, - "training_mean_absolute_error": 6.8051192198812736, - "training_mean_squared_error": 124.51054615575788, - "training_r2_score": 0.9948851411922456, - "training_root_mean_squared_error": 11.158429376742852, - "training_score": 0.9948851411922456 + "mean_squared_error": -24.55763888888889, + "system/cpu_utilization_percentage": 14.8, + "system/disk_available_megabytes": 7735.1, + "system/disk_usage_megabytes": 108174.9, + "system/disk_usage_percentage": 93.3, + "system/network_receive_megabytes": 0.006746999999904801, + "system/network_transmit_megabytes": 0.006637000000068838, + "system/system_memory_usage_megabytes": 4542, + "system/system_memory_usage_percentage": 30.1, + "training_mean_absolute_error": 0.3561289343195786, + "training_mean_squared_error": 1.2806655854526316, + "training_r2_score": 0.9999473906118655, + "training_root_mean_squared_error": 1.1316649616616359, + "training_score": 0.9999473906118655 }, { "conf_file": "confs/training.yaml", @@ -6983,8 +7794,8 @@ "regressor__random_state": "42", "regressor__verbose": "0", "regressor__warm_start": "False", - "steps": "[('transformer', ColumnTransformer(transformers=[('categoricals',\n OneHotEncoder(handle_unknown='ignore',\n sparse_output=False),\n ['season', 'weathersit']),\n ('numericals', 'passthrough',\n ['yr', 'mnth', 'hr', 'holiday', 'weekday',\n 'workingday', 'temp', 'atemp', 'hum',\n 'windspeed', 'casual'])])), ('regressor', RandomForestRegressor(max_depth=20, n_estimators=200, random_state=42))]", - "transformer": "ColumnTransformer(transformers=[('categoricals',\n OneHotEncoder(handle_unknown='ignore',\n sparse_output=False),\n ['season', 'weathersit']),\n ('numericals', 'passthrough',\n ['yr', 'mnth', 'hr', 'holiday', 'weekday',\n 'workingday', 'temp', 'atemp', 'hum',\n 'windspeed', 'casual'])])", + "steps": "[('transformer', ColumnTransformer(transformers=[('categoricals',\n OneHotEncoder(handle_unknown='ignore',\n sparse_output=False),\n ['season', 'weathersit']),\n ('numericals', 'passthrough',\n ['yr', 'mnth', 'hr', 'holiday', 'weekday',\n 'workingday', 'temp', 'atemp', 'hum',\n 'windspeed', 'casual', 'registered'])])), ('regressor', RandomForestRegressor(max_depth=20, n_estimators=200, random_state=42))]", + "transformer": "ColumnTransformer(transformers=[('categoricals',\n OneHotEncoder(handle_unknown='ignore',\n sparse_output=False),\n ['season', 'weathersit']),\n ('numericals', 'passthrough',\n ['yr', 'mnth', 'hr', 'holiday', 'weekday',\n 'workingday', 'temp', 'atemp', 'hum',\n 'windspeed', 'casual', 'registered'])])", "transformer__categoricals": "OneHotEncoder(handle_unknown='ignore', sparse_output=False)", "transformer__categoricals__categories": "auto", "transformer__categoricals__drop": "None", @@ -7000,7 +7811,7 @@ "transformer__remainder": "drop", "transformer__sparse_threshold": "0.3", "transformer__transformer_weights": "None", - "transformer__transformers": "[('categoricals', OneHotEncoder(handle_unknown='ignore', sparse_output=False), ['season', 'weathersit']), ('numericals', 'passthrough', ['yr', 'mnth', 'hr', 'holiday', 'weekday', 'workingday', 'temp', 'atemp', 'hum', 'windspeed', 'casual'])]", + "transformer__transformers": "[('categoricals', OneHotEncoder(handle_unknown='ignore', sparse_output=False), ['season', 'weathersit']), ('numericals', 'passthrough', ['yr', 'mnth', 'hr', 'holiday', 'weekday', 'workingday', 'temp', 'atemp', 'hum', 'windspeed', 'casual', 'registered'])]", "transformer__verbose": "False", "transformer__verbose_feature_names_out": "True", "verbose": "False" @@ -7009,12 +7820,12 @@ "estimator_class": "sklearn.pipeline.Pipeline", "estimator_name": "Pipeline", "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", - "mlflow.log-model.history": "[{\"run_id\": \"ac1ad3a71ca1438f930cf61cdaf4dda2\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-13 21:29:20.506337\", \"model_uuid\": \"c5766fb689b4467d801a544963fff164\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"ac1ad3a71ca1438f930cf61cdaf4dda2\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-13 21:29:24.749297\", \"model_uuid\": \"d6869a0c970d4ed09d65cf72c604fe4b\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.1.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}}]", + "mlflow.log-model.history": "[{\"run_id\": \"ae9f673f6b264240bb79ffd94ca49fe2\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:39:38.524131\", \"model_uuid\": \"18f54df2a682488593dd0412c7be229e\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"ae9f673f6b264240bb79ffd94ca49fe2\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:39:42.939094\", \"model_uuid\": \"4cc5e6d8a7d841059b37797a371ea10d\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.1.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}}]", "mlflow.project.backend": "local", "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Training", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", @@ -7024,7 +7835,7 @@ "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Training", @@ -7032,36 +7843,36 @@ "local", "Pipeline", "sklearn.pipeline.Pipeline", - "[{\"run_id\": \"ac1ad3a71ca1438f930cf61cdaf4dda2\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-13 21:29:20.506337\", \"model_uuid\": \"c5766fb689b4467d801a544963fff164\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"ac1ad3a71ca1438f930cf61cdaf4dda2\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-13 21:29:24.749297\", \"model_uuid\": \"d6869a0c970d4ed09d65cf72c604fe4b\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.1.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}}]", + "[{\"run_id\": \"ae9f673f6b264240bb79ffd94ca49fe2\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:39:38.524131\", \"model_uuid\": \"18f54df2a682488593dd0412c7be229e\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"ae9f673f6b264240bb79ffd94ca49fe2\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:39:42.939094\", \"model_uuid\": \"4cc5e6d8a7d841059b37797a371ea10d\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.1.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}}]", null, null ], [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/797710899d04491e8b9e91394c59ccd9/artifacts", - "2024-12-12T21:15:45.193000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/d2aed973c12b475f849743599f7bc973/artifacts", + "2024-12-14T14:37:46.512000", + "300971336194126583", "active", - "797710899d04491e8b9e91394c59ccd9", + "d2aed973c12b475f849743599f7bc973", "Training", - "797710899d04491e8b9e91394c59ccd9", - "2024-12-12T21:15:16.386000", + "d2aed973c12b475f849743599f7bc973", + "2024-12-14T14:37:18.470000", "FINISHED", "fmind", { - "mean_squared_error": -1786.7527777777777, - "system/cpu_utilization_percentage": 13.9, - "system/disk_available_megabytes": 15157.1, - "system/disk_usage_megabytes": 100333.4, - "system/disk_usage_percentage": 86.9, - "system/network_receive_megabytes": 0.014109999999999623, - "system/network_transmit_megabytes": 0, - "system/system_memory_usage_megabytes": 4962.9, - "system/system_memory_usage_percentage": 32.9, - "training_mean_absolute_error": 6.8051192198812736, - "training_mean_squared_error": 124.51054615575788, - "training_r2_score": 0.9948851411922456, - "training_root_mean_squared_error": 11.158429376742852, - "training_score": 0.9948851411922456 + "mean_squared_error": -24.55763888888889, + "system/cpu_utilization_percentage": 20.8, + "system/disk_available_megabytes": 8002.4, + "system/disk_usage_megabytes": 107906.7, + "system/disk_usage_percentage": 93.1, + "system/network_receive_megabytes": 0.006799000000000888, + "system/network_transmit_megabytes": 0.004778000000101201, + "system/system_memory_usage_megabytes": 4375.5, + "system/system_memory_usage_percentage": 29, + "training_mean_absolute_error": 0.3561289343195786, + "training_mean_squared_error": 1.2806655854526316, + "training_r2_score": 0.9999473906118655, + "training_root_mean_squared_error": 1.1316649616616359, + "training_score": 0.9999473906118655 }, { "conf_file": "confs/training.yaml", @@ -7085,8 +7896,8 @@ "regressor__random_state": "42", "regressor__verbose": "0", "regressor__warm_start": "False", - "steps": "[('transformer', ColumnTransformer(transformers=[('categoricals',\n OneHotEncoder(handle_unknown='ignore',\n sparse_output=False),\n ['season', 'weathersit']),\n ('numericals', 'passthrough',\n ['yr', 'mnth', 'hr', 'holiday', 'weekday',\n 'workingday', 'temp', 'atemp', 'hum',\n 'windspeed', 'casual'])])), ('regressor', RandomForestRegressor(max_depth=20, n_estimators=200, random_state=42))]", - "transformer": "ColumnTransformer(transformers=[('categoricals',\n OneHotEncoder(handle_unknown='ignore',\n sparse_output=False),\n ['season', 'weathersit']),\n ('numericals', 'passthrough',\n ['yr', 'mnth', 'hr', 'holiday', 'weekday',\n 'workingday', 'temp', 'atemp', 'hum',\n 'windspeed', 'casual'])])", + "steps": "[('transformer', ColumnTransformer(transformers=[('categoricals',\n OneHotEncoder(handle_unknown='ignore',\n sparse_output=False),\n ['season', 'weathersit']),\n ('numericals', 'passthrough',\n ['yr', 'mnth', 'hr', 'holiday', 'weekday',\n 'workingday', 'temp', 'atemp', 'hum',\n 'windspeed', 'casual', 'registered'])])), ('regressor', RandomForestRegressor(max_depth=20, n_estimators=200, random_state=42))]", + "transformer": "ColumnTransformer(transformers=[('categoricals',\n OneHotEncoder(handle_unknown='ignore',\n sparse_output=False),\n ['season', 'weathersit']),\n ('numericals', 'passthrough',\n ['yr', 'mnth', 'hr', 'holiday', 'weekday',\n 'workingday', 'temp', 'atemp', 'hum',\n 'windspeed', 'casual', 'registered'])])", "transformer__categoricals": "OneHotEncoder(handle_unknown='ignore', sparse_output=False)", "transformer__categoricals__categories": "auto", "transformer__categoricals__drop": "None", @@ -7102,7 +7913,7 @@ "transformer__remainder": "drop", "transformer__sparse_threshold": "0.3", "transformer__transformer_weights": "None", - "transformer__transformers": "[('categoricals', OneHotEncoder(handle_unknown='ignore', sparse_output=False), ['season', 'weathersit']), ('numericals', 'passthrough', ['yr', 'mnth', 'hr', 'holiday', 'weekday', 'workingday', 'temp', 'atemp', 'hum', 'windspeed', 'casual'])]", + "transformer__transformers": "[('categoricals', OneHotEncoder(handle_unknown='ignore', sparse_output=False), ['season', 'weathersit']), ('numericals', 'passthrough', ['yr', 'mnth', 'hr', 'holiday', 'weekday', 'workingday', 'temp', 'atemp', 'hum', 'windspeed', 'casual', 'registered'])]", "transformer__verbose": "False", "transformer__verbose_feature_names_out": "True", "verbose": "False" @@ -7111,12 +7922,12 @@ "estimator_class": "sklearn.pipeline.Pipeline", "estimator_name": "Pipeline", "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", - "mlflow.log-model.history": "[{\"run_id\": \"797710899d04491e8b9e91394c59ccd9\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-12 21:15:29.891094\", \"model_uuid\": \"877c83b49a57483690581eac11e3117b\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"797710899d04491e8b9e91394c59ccd9\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-12 21:15:34.802679\", \"model_uuid\": \"c78c06c609274cb9b0c9123b3456258a\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.1.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}}]", + "mlflow.log-model.history": "[{\"run_id\": \"d2aed973c12b475f849743599f7bc973\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:37:33.468367\", \"model_uuid\": \"e6f77661d7214385a83cc9a45c689a0a\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"d2aed973c12b475f849743599f7bc973\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:37:38.175626\", \"model_uuid\": \"4b143c2fc8234dac9c98bbdfb03aaa1a\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.1.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}}]", "mlflow.project.backend": "local", "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Training", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", @@ -7126,7 +7937,7 @@ "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Training", @@ -7134,7 +7945,7 @@ "local", "Pipeline", "sklearn.pipeline.Pipeline", - "[{\"run_id\": \"797710899d04491e8b9e91394c59ccd9\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-12 21:15:29.891094\", \"model_uuid\": \"877c83b49a57483690581eac11e3117b\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"797710899d04491e8b9e91394c59ccd9\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-12 21:15:34.802679\", \"model_uuid\": \"c78c06c609274cb9b0c9123b3456258a\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.1.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}}]", + "[{\"run_id\": \"d2aed973c12b475f849743599f7bc973\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:37:33.468367\", \"model_uuid\": \"e6f77661d7214385a83cc9a45c689a0a\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"d2aed973c12b475f849743599f7bc973\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:37:38.175626\", \"model_uuid\": \"4b143c2fc8234dac9c98bbdfb03aaa1a\", \"flavors\": {\"python_function\": {\"streamable\": false, \"cloudpickle_version\": \"3.1.0\", \"python_model\": \"python_model.pkl\", \"loader_module\": \"mlflow.pyfunc.model\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}, \"code\": null}}}]", null, null ] @@ -7143,8 +7954,9 @@ "hoveron": "points", "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
estimator_name=%{customdata[23]}
estimator_class=%{customdata[24]}
mlflow.log-model.history=%{customdata[25]}
mlflow.autologging=%{customdata[26]}
mlflow.parentRunId=%{customdata[27]}", "hovertext": [ - "ac1ad3a71ca1438f930cf61cdaf4dda2", - "797710899d04491e8b9e91394c59ccd9" + "4753bf6b106845d19eca79b7cb329343", + "ae9f673f6b264240bb79ffd94ca49fe2", + "d2aed973c12b475f849743599f7bc973" ], "legendgroup": "Training", "line": { @@ -7160,8 +7972,177 @@ "showlegend": true, "type": "box", "x": [ - 23.051, - 28.807 + 25.996, + 25.986, + 28.042 + ], + "x0": " ", + "xaxis": "x", + "y0": " ", + "yaxis": "y" + }, + { + "alignmentgroup": "True", + "boxpoints": "all", + "customdata": [ + [ + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/066cf65cd3214378a7675e2536c6eb60/artifacts", + "2024-12-14T14:41:20.607000", + "300971336194126583", + "active", + "066cf65cd3214378a7675e2536c6eb60", + "wise-hound-335", + "066cf65cd3214378a7675e2536c6eb60", + "2024-12-14T14:40:34.416000", + "FINISHED", + "fmind", + { + "mean_fit_time": 2.2717891335487366, + "mean_score_time": 0.04655104875564575, + "mean_test_score": -711.7982638888889, + "rank_test_score": 2, + "std_fit_time": 0.2744423843818404, + "std_score_time": 0.0008752424197515631, + "std_test_score": 506.2583283876414 + }, + { + "max_depth": "5", + "n_estimators": "200", + "random_state": "42" + }, + { + "estimator_class": "bikes.core.models.BaselineSklearnModel", + "estimator_name": "BaselineSklearnModel", + "mlflow.autologging": "sklearn", + "mlflow.parentRunId": "6f68ed7fee59407f83bff115536fdfc0", + "mlflow.runName": "wise-hound-335", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", + "mlflow.source.type": "LOCAL", + "mlflow.user": "fmind" + }, + "fmind", + "/home/fmind/mlops-python-package/src/bikes/__main__.py", + "LOCAL", + null, + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + null, + null, + "wise-hound-335", + null, + null, + "BaselineSklearnModel", + "bikes.core.models.BaselineSklearnModel", + null, + "sklearn", + "6f68ed7fee59407f83bff115536fdfc0" + ] + ], + "fillcolor": "rgba(255,255,255,0)", + "hoveron": "points", + "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
estimator_name=%{customdata[23]}
estimator_class=%{customdata[24]}
mlflow.log-model.history=%{customdata[25]}
mlflow.autologging=%{customdata[26]}
mlflow.parentRunId=%{customdata[27]}", + "hovertext": [ + "066cf65cd3214378a7675e2536c6eb60" + ], + "legendgroup": "wise-hound-335", + "line": { + "color": "rgba(255,255,255,0)" + }, + "marker": { + "color": "#19d3f3" + }, + "name": "wise-hound-335", + "offsetgroup": "wise-hound-335", + "orientation": "h", + "pointpos": 0, + "showlegend": true, + "type": "box", + "x": [ + 46.191 + ], + "x0": " ", + "xaxis": "x", + "y0": " ", + "yaxis": "y" + }, + { + "alignmentgroup": "True", + "boxpoints": "all", + "customdata": [ + [ + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/0cdfaf5a0e7b44ea88d7297746e6af1f/artifacts", + "2024-12-14T14:41:20.607000", + "300971336194126583", + "active", + "0cdfaf5a0e7b44ea88d7297746e6af1f", + "auspicious-fly-358", + "0cdfaf5a0e7b44ea88d7297746e6af1f", + "2024-12-14T14:40:34.416000", + "FINISHED", + "fmind", + { + "mean_fit_time": 3.0942174792289734, + "mean_score_time": 0.054158151149749756, + "mean_test_score": -319.5045138888889, + "rank_test_score": 1, + "std_fit_time": 0.41821529328335627, + "std_score_time": 0.0011713553122119475, + "std_test_score": 350.4638291591938 + }, + { + "max_depth": "7", + "n_estimators": "200", + "random_state": "42" + }, + { + "estimator_class": "bikes.core.models.BaselineSklearnModel", + "estimator_name": "BaselineSklearnModel", + "mlflow.autologging": "sklearn", + "mlflow.parentRunId": "6f68ed7fee59407f83bff115536fdfc0", + "mlflow.runName": "auspicious-fly-358", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", + "mlflow.source.type": "LOCAL", + "mlflow.user": "fmind" + }, + "fmind", + "/home/fmind/mlops-python-package/src/bikes/__main__.py", + "LOCAL", + null, + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + null, + null, + "auspicious-fly-358", + null, + null, + "BaselineSklearnModel", + "bikes.core.models.BaselineSklearnModel", + null, + "sklearn", + "6f68ed7fee59407f83bff115536fdfc0" + ] + ], + "fillcolor": "rgba(255,255,255,0)", + "hoveron": "points", + "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
estimator_name=%{customdata[23]}
estimator_class=%{customdata[24]}
mlflow.log-model.history=%{customdata[25]}
mlflow.autologging=%{customdata[26]}
mlflow.parentRunId=%{customdata[27]}", + "hovertext": [ + "0cdfaf5a0e7b44ea88d7297746e6af1f" + ], + "legendgroup": "auspicious-fly-358", + "line": { + "color": "rgba(255,255,255,0)" + }, + "marker": { + "color": "#FF6692" + }, + "name": "auspicious-fly-358", + "offsetgroup": "auspicious-fly-358", + "orientation": "h", + "pointpos": 0, + "showlegend": true, + "type": "box", + "x": [ + 46.191 ], "x0": " ", "xaxis": "x", @@ -7173,27 +8154,27 @@ "boxpoints": "all", "customdata": [ [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/0dea01ed478c44e094187a66e64d6fd3/artifacts", - "2024-12-13T21:29:06.705000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/6f68ed7fee59407f83bff115536fdfc0/artifacts", + "2024-12-14T14:41:21.575000", + "300971336194126583", "active", - "0dea01ed478c44e094187a66e64d6fd3", + "6f68ed7fee59407f83bff115536fdfc0", "Tuning", - "0dea01ed478c44e094187a66e64d6fd3", - "2024-12-13T21:28:20.597000", + "6f68ed7fee59407f83bff115536fdfc0", + "2024-12-14T14:40:34.416000", "FINISHED", "fmind", { - "best_cv_score": -5517.252604166667, - "system/cpu_utilization_percentage": 32.7, - "system/disk_available_megabytes": 14477.4, - "system/disk_usage_megabytes": 101031.6, - "system/disk_usage_percentage": 87.5, - "system/network_receive_megabytes": 1.3911820000000148, - "system/network_transmit_megabytes": 0.5366739999999997, - "system/system_memory_usage_megabytes": 3524.9, - "system/system_memory_usage_percentage": 23.4, - "training_score": -1951.0630079838884 + "best_cv_score": -319.5045138888889, + "system/cpu_utilization_percentage": 13.8, + "system/disk_available_megabytes": 7460.8, + "system/disk_usage_megabytes": 108450.2, + "system/disk_usage_percentage": 93.6, + "system/network_receive_megabytes": 0.1935390000001007, + "system/network_transmit_megabytes": 0.2145869999999377, + "system/system_memory_usage_megabytes": 4516.7, + "system/system_memory_usage_percentage": 30, + "training_score": -25.253110839387183 }, { "best_max_depth": "7", @@ -7213,12 +8194,12 @@ "estimator_class": "sklearn.model_selection._search.GridSearchCV", "estimator_name": "GridSearchCV", "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", - "mlflow.log-model.history": "[{\"run_id\": \"0dea01ed478c44e094187a66e64d6fd3\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-13 21:28:51.664691\", \"model_uuid\": \"9be480ca5e234af5988dc10b51520109\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"0dea01ed478c44e094187a66e64d6fd3\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-12-13 21:29:01.248602\", \"model_uuid\": \"a30a719a7ca048b5ad5506a1e06b6b2f\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}]", + "mlflow.log-model.history": "[{\"run_id\": \"6f68ed7fee59407f83bff115536fdfc0\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:41:11.433265\", \"model_uuid\": \"77b9177b6a914d2d83f8c6062bcaa438\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"6f68ed7fee59407f83bff115536fdfc0\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-12-14 14:41:16.492519\", \"model_uuid\": \"862871d930c845ec882f4b82890fc495\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}]", "mlflow.project.backend": "local", "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Tuning", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", @@ -7228,7 +8209,7 @@ "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Tuning", @@ -7236,32 +8217,32 @@ "local", "GridSearchCV", "sklearn.model_selection._search.GridSearchCV", - "[{\"run_id\": \"0dea01ed478c44e094187a66e64d6fd3\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-13 21:28:51.664691\", \"model_uuid\": \"9be480ca5e234af5988dc10b51520109\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"0dea01ed478c44e094187a66e64d6fd3\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-12-13 21:29:01.248602\", \"model_uuid\": \"a30a719a7ca048b5ad5506a1e06b6b2f\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}]", + "[{\"run_id\": \"6f68ed7fee59407f83bff115536fdfc0\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:41:11.433265\", \"model_uuid\": \"77b9177b6a914d2d83f8c6062bcaa438\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"6f68ed7fee59407f83bff115536fdfc0\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-12-14 14:41:16.492519\", \"model_uuid\": \"862871d930c845ec882f4b82890fc495\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}]", null, null ], [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/41808f5b32074c5f8dddccdaa4221684/artifacts", - "2024-12-12T21:15:13.555000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/9c36f396f2214f7bb0c6d9713d5e833e/artifacts", + "2024-12-14T14:39:22.225000", + "300971336194126583", "active", - "41808f5b32074c5f8dddccdaa4221684", + "9c36f396f2214f7bb0c6d9713d5e833e", "Tuning", - "41808f5b32074c5f8dddccdaa4221684", - "2024-12-12T21:13:28.811000", + "9c36f396f2214f7bb0c6d9713d5e833e", + "2024-12-14T14:38:34.646000", "FINISHED", "fmind", { - "best_cv_score": -5517.252604166667, - "system/cpu_utilization_percentage": 13.9, - "system/disk_available_megabytes": 15172.3, - "system/disk_usage_megabytes": 100317.7, - "system/disk_usage_percentage": 86.9, - "system/network_receive_megabytes": 0.0561379999999998, - "system/network_transmit_megabytes": 0.005031999999999925, - "system/system_memory_usage_megabytes": 4646.3, - "system/system_memory_usage_percentage": 30.8, - "training_score": -1951.0630079838884 + "best_cv_score": -319.5045138888889, + "system/cpu_utilization_percentage": 13.7, + "system/disk_available_megabytes": 7735.1, + "system/disk_usage_megabytes": 108174.9, + "system/disk_usage_percentage": 93.3, + "system/network_receive_megabytes": 0.013674000000037267, + "system/network_transmit_megabytes": 0.0075299999999742795, + "system/system_memory_usage_megabytes": 4324.7, + "system/system_memory_usage_percentage": 28.7, + "training_score": -25.253110839387183 }, { "best_max_depth": "7", @@ -7281,12 +8262,12 @@ "estimator_class": "sklearn.model_selection._search.GridSearchCV", "estimator_name": "GridSearchCV", "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", - "mlflow.log-model.history": "[{\"run_id\": \"41808f5b32074c5f8dddccdaa4221684\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-12 21:15:03.536059\", \"model_uuid\": \"aa1690180a414c58a2c9598fa6099393\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"41808f5b32074c5f8dddccdaa4221684\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-12-12 21:15:08.639146\", \"model_uuid\": \"657186289da24155bbdc03abf97c540b\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}]", + "mlflow.log-model.history": "[{\"run_id\": \"9c36f396f2214f7bb0c6d9713d5e833e\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:39:11.770616\", \"model_uuid\": \"ba0e722effe1437ba691fb61e730dfb7\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"9c36f396f2214f7bb0c6d9713d5e833e\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-12-14 14:39:16.824355\", \"model_uuid\": \"c561b4012c1445eca99fcd5d7260ad62\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}]", "mlflow.project.backend": "local", "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Tuning", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", @@ -7296,7 +8277,7 @@ "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Tuning", @@ -7304,32 +8285,57 @@ "local", "GridSearchCV", "sklearn.model_selection._search.GridSearchCV", - "[{\"run_id\": \"41808f5b32074c5f8dddccdaa4221684\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-12 21:15:03.536059\", \"model_uuid\": \"aa1690180a414c58a2c9598fa6099393\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"41808f5b32074c5f8dddccdaa4221684\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-12-12 21:15:08.639146\", \"model_uuid\": \"657186289da24155bbdc03abf97c540b\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}]", + "[{\"run_id\": \"9c36f396f2214f7bb0c6d9713d5e833e\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:39:11.770616\", \"model_uuid\": \"ba0e722effe1437ba691fb61e730dfb7\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"9c36f396f2214f7bb0c6d9713d5e833e\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-12-14 14:39:16.824355\", \"model_uuid\": \"c561b4012c1445eca99fcd5d7260ad62\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}]", null, null ], [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/b4d8d557f5d94a24b035d6e77c765857/artifacts", - "2024-12-12T21:12:59.320000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/857f0dd0a344439693b8cb9ecbf3ee10/artifacts", + "2024-12-14T14:37:16.048000", + "300971336194126583", "active", - "b4d8d557f5d94a24b035d6e77c765857", + "857f0dd0a344439693b8cb9ecbf3ee10", "Tuning", - "b4d8d557f5d94a24b035d6e77c765857", - "2024-12-12T21:12:58.940000", - "FAILED", + "857f0dd0a344439693b8cb9ecbf3ee10", + "2024-12-14T14:35:02.506000", + "FINISHED", "fmind", - {}, { - "conf_file": "confs/tuning.yaml" + "best_cv_score": -319.5045138888889, + "system/cpu_utilization_percentage": 21.5, + "system/disk_available_megabytes": 8003.8, + "system/disk_usage_megabytes": 107904.9, + "system/disk_usage_percentage": 93.1, + "system/network_receive_megabytes": 0.012895999999955166, + "system/network_transmit_megabytes": 0.0012200000001030276, + "system/system_memory_usage_megabytes": 4608.4, + "system/system_memory_usage_percentage": 30.6, + "training_score": -25.253110839387183 + }, + { + "best_max_depth": "7", + "conf_file": "confs/tuning.yaml", + "cv": "KIND='TimeSeriesSplitter' gap=0 n_splits=4 test_size=1440", + "error_score": "raise", + "estimator": "KIND='BaselineSklearnModel' max_depth=20 n_estimators=200 random_state=42", + "n_jobs": "None", + "param_grid": "{'max_depth': [3, 5, 7]}", + "pre_dispatch": "2*n_jobs", + "refit": "True", + "return_train_score": "False", + "scoring": "", + "verbose": "3" }, { + "estimator_class": "sklearn.model_selection._search.GridSearchCV", + "estimator_name": "GridSearchCV", "mlflow.gitRepoURL": "git@github.com:fmind/mlops-python-package", + "mlflow.log-model.history": "[{\"run_id\": \"857f0dd0a344439693b8cb9ecbf3ee10\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:37:05.731840\", \"model_uuid\": \"4ada6a336e424391bf2cdf750e2c7042\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"857f0dd0a344439693b8cb9ecbf3ee10\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-12-14 14:37:11.174511\", \"model_uuid\": \"7be250b39fd343ec99975be2a910fb2a\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}]", "mlflow.project.backend": "local", "mlflow.project.entryPoint": "main", "mlflow.project.env": "virtualenv", "mlflow.runName": "Tuning", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.git.repoURL": "git@github.com:fmind/mlops-python-package", "mlflow.source.name": "file:///home/fmind/mlops-python-package", "mlflow.source.type": "PROJECT", @@ -7339,15 +8345,15 @@ "file:///home/fmind/mlops-python-package", "PROJECT", "main", - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "git@github.com:fmind/mlops-python-package", "git@github.com:fmind/mlops-python-package", "Tuning", "virtualenv", "local", - null, - null, - null, + "GridSearchCV", + "sklearn.model_selection._search.GridSearchCV", + "[{\"run_id\": \"857f0dd0a344439693b8cb9ecbf3ee10\", \"artifact_path\": \"model\", \"utc_time_created\": \"2024-12-14 14:37:05.731840\", \"model_uuid\": \"4ada6a336e424391bf2cdf750e2c7042\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}, {\"run_id\": \"857f0dd0a344439693b8cb9ecbf3ee10\", \"artifact_path\": \"best_estimator\", \"utc_time_created\": \"2024-12-14 14:37:11.174511\", \"model_uuid\": \"7be250b39fd343ec99975be2a910fb2a\", \"flavors\": {\"python_function\": {\"model_path\": \"model.pkl\", \"predict_fn\": \"predict\", \"loader_module\": \"mlflow.sklearn\", \"python_version\": \"3.12.7\", \"env\": {\"conda\": \"conda.yaml\", \"virtualenv\": \"python_env.yaml\"}}, \"sklearn\": {\"pickled_model\": \"model.pkl\", \"sklearn_version\": \"1.5.2\", \"serialization_format\": \"cloudpickle\", \"code\": null}}}]", null, null ] @@ -7356,16 +8362,16 @@ "hoveron": "points", "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
estimator_name=%{customdata[23]}
estimator_class=%{customdata[24]}
mlflow.log-model.history=%{customdata[25]}
mlflow.autologging=%{customdata[26]}
mlflow.parentRunId=%{customdata[27]}", "hovertext": [ - "0dea01ed478c44e094187a66e64d6fd3", - "41808f5b32074c5f8dddccdaa4221684", - "b4d8d557f5d94a24b035d6e77c765857" + "6f68ed7fee59407f83bff115536fdfc0", + "9c36f396f2214f7bb0c6d9713d5e833e", + "857f0dd0a344439693b8cb9ecbf3ee10" ], "legendgroup": "Tuning", "line": { "color": "rgba(255,255,255,0)" }, "marker": { - "color": "#19d3f3" + "color": "#B6E880" }, "name": "Tuning", "offsetgroup": "Tuning", @@ -7374,9 +8380,9 @@ "showlegend": true, "type": "box", "x": [ - 46.108, - 104.744, - 0.38 + 47.159, + 47.579, + 133.542 ], "x0": " ", "xaxis": "x", @@ -7388,27 +8394,27 @@ "boxpoints": "all", "customdata": [ [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/79124d00e3154ce99b08d7c7ea1cbbe6/artifacts", - "2024-12-13T21:29:06.057000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/e3975321ef4645b698cd8832a2ead79d/artifacts", + "2024-12-14T14:41:20.607000", + "300971336194126583", "active", - "79124d00e3154ce99b08d7c7ea1cbbe6", - "grandiose-ape-36", - "79124d00e3154ce99b08d7c7ea1cbbe6", - "2024-12-13T21:28:20.597000", + "e3975321ef4645b698cd8832a2ead79d", + "lyrical-asp-40", + "e3975321ef4645b698cd8832a2ead79d", + "2024-12-14T14:40:34.416000", "FINISHED", "fmind", { - "mean_fit_time": 2.5753661394119263, - "mean_score_time": 0.055255353450775146, - "mean_test_score": -5517.252604166667, - "rank_test_score": 1, - "std_fit_time": 0.6625575564971679, - "std_score_time": 0.01109660600750438, - "std_test_score": 1613.520146542553 + "mean_fit_time": 1.5403740406036377, + "mean_score_time": 0.04439198970794678, + "mean_test_score": -2845.011111111111, + "rank_test_score": 3, + "std_fit_time": 0.26986769561457347, + "std_score_time": 0.0011455098275932603, + "std_test_score": 1362.0703338739036 }, { - "max_depth": "7", + "max_depth": "3", "n_estimators": "200", "random_state": "42" }, @@ -7416,9 +8422,9 @@ "estimator_class": "bikes.core.models.BaselineSklearnModel", "estimator_name": "BaselineSklearnModel", "mlflow.autologging": "sklearn", - "mlflow.parentRunId": "0dea01ed478c44e094187a66e64d6fd3", - "mlflow.runName": "grandiose-ape-36", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.parentRunId": "6f68ed7fee59407f83bff115536fdfc0", + "mlflow.runName": "lyrical-asp-40", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", "mlflow.source.type": "LOCAL", "mlflow.user": "fmind" @@ -7427,40 +8433,40 @@ "/home/fmind/mlops-python-package/src/bikes/__main__.py", "LOCAL", null, - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", null, null, - "grandiose-ape-36", + "lyrical-asp-40", null, null, "BaselineSklearnModel", "bikes.core.models.BaselineSklearnModel", null, "sklearn", - "0dea01ed478c44e094187a66e64d6fd3" + "6f68ed7fee59407f83bff115536fdfc0" ] ], "fillcolor": "rgba(255,255,255,0)", "hoveron": "points", "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
estimator_name=%{customdata[23]}
estimator_class=%{customdata[24]}
mlflow.log-model.history=%{customdata[25]}
mlflow.autologging=%{customdata[26]}
mlflow.parentRunId=%{customdata[27]}", "hovertext": [ - "79124d00e3154ce99b08d7c7ea1cbbe6" + "e3975321ef4645b698cd8832a2ead79d" ], - "legendgroup": "grandiose-ape-36", + "legendgroup": "lyrical-asp-40", "line": { "color": "rgba(255,255,255,0)" }, "marker": { - "color": "#FF6692" + "color": "#FF97FF" }, - "name": "grandiose-ape-36", - "offsetgroup": "grandiose-ape-36", + "name": "lyrical-asp-40", + "offsetgroup": "lyrical-asp-40", "orientation": "h", "pointpos": 0, "showlegend": true, "type": "box", "x": [ - 45.46 + 46.191 ], "x0": " ", "xaxis": "x", @@ -7472,27 +8478,27 @@ "boxpoints": "all", "customdata": [ [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/9140f254fae3497a9ddaf25d4c037e17/artifacts", - "2024-12-13T21:29:06.057000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/71d90d8febd9448584236ff7da490944/artifacts", + "2024-12-14T14:39:21.213000", + "300971336194126583", "active", - "9140f254fae3497a9ddaf25d4c037e17", - "skillful-trout-792", - "9140f254fae3497a9ddaf25d4c037e17", - "2024-12-13T21:28:20.597000", + "71d90d8febd9448584236ff7da490944", + "classy-yak-743", + "71d90d8febd9448584236ff7da490944", + "2024-12-14T14:38:34.646000", "FINISHED", "fmind", { - "mean_fit_time": 1.020466387271881, - "mean_score_time": 0.03910714387893677, - "mean_test_score": -16644.957118055558, - "rank_test_score": 3, - "std_fit_time": 0.16778432404695146, - "std_score_time": 0.00713338602919564, - "std_test_score": 5315.459715152708 + "mean_fit_time": 2.310912549495697, + "mean_score_time": 0.04688429832458496, + "mean_test_score": -711.7982638888889, + "rank_test_score": 2, + "std_fit_time": 0.34795851007651757, + "std_score_time": 0.0015674315113117095, + "std_test_score": 506.2583283876414 }, { - "max_depth": "3", + "max_depth": "5", "n_estimators": "200", "random_state": "42" }, @@ -7500,9 +8506,9 @@ "estimator_class": "bikes.core.models.BaselineSklearnModel", "estimator_name": "BaselineSklearnModel", "mlflow.autologging": "sklearn", - "mlflow.parentRunId": "0dea01ed478c44e094187a66e64d6fd3", - "mlflow.runName": "skillful-trout-792", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.parentRunId": "9c36f396f2214f7bb0c6d9713d5e833e", + "mlflow.runName": "classy-yak-743", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", "mlflow.source.type": "LOCAL", "mlflow.user": "fmind" @@ -7511,40 +8517,40 @@ "/home/fmind/mlops-python-package/src/bikes/__main__.py", "LOCAL", null, - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", null, null, - "skillful-trout-792", + "classy-yak-743", null, null, "BaselineSklearnModel", "bikes.core.models.BaselineSklearnModel", null, "sklearn", - "0dea01ed478c44e094187a66e64d6fd3" + "9c36f396f2214f7bb0c6d9713d5e833e" ] ], "fillcolor": "rgba(255,255,255,0)", "hoveron": "points", "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
estimator_name=%{customdata[23]}
estimator_class=%{customdata[24]}
mlflow.log-model.history=%{customdata[25]}
mlflow.autologging=%{customdata[26]}
mlflow.parentRunId=%{customdata[27]}", "hovertext": [ - "9140f254fae3497a9ddaf25d4c037e17" + "71d90d8febd9448584236ff7da490944" ], - "legendgroup": "skillful-trout-792", + "legendgroup": "classy-yak-743", "line": { "color": "rgba(255,255,255,0)" }, "marker": { - "color": "#B6E880" + "color": "#FECB52" }, - "name": "skillful-trout-792", - "offsetgroup": "skillful-trout-792", + "name": "classy-yak-743", + "offsetgroup": "classy-yak-743", "orientation": "h", "pointpos": 0, "showlegend": true, "type": "box", "x": [ - 45.46 + 46.567 ], "x0": " ", "xaxis": "x", @@ -7556,27 +8562,27 @@ "boxpoints": "all", "customdata": [ [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/ac382f5f1fb84516bbcd6c5183890987/artifacts", - "2024-12-13T21:29:06.057000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/d927facc28d74fbe8d607c7f1656321a/artifacts", + "2024-12-14T14:39:21.213000", + "300971336194126583", "active", - "ac382f5f1fb84516bbcd6c5183890987", - "adorable-crane-156", - "ac382f5f1fb84516bbcd6c5183890987", - "2024-12-13T21:28:20.597000", + "d927facc28d74fbe8d607c7f1656321a", + "legendary-dove-782", + "d927facc28d74fbe8d607c7f1656321a", + "2024-12-14T14:38:34.646000", "FINISHED", "fmind", { - "mean_fit_time": 1.9187955260276794, - "mean_score_time": 0.0433354377746582, - "mean_test_score": -8287.860416666666, - "rank_test_score": 2, - "std_fit_time": 0.34773834085305333, - "std_score_time": 0.006716265683045477, - "std_test_score": 1045.7595024691313 + "mean_fit_time": 3.1809995770454407, + "mean_score_time": 0.05519115924835205, + "mean_test_score": -319.5045138888889, + "rank_test_score": 1, + "std_fit_time": 0.4297416271813794, + "std_score_time": 0.002215700766888834, + "std_test_score": 350.4638291591938 }, { - "max_depth": "5", + "max_depth": "7", "n_estimators": "200", "random_state": "42" }, @@ -7584,9 +8590,9 @@ "estimator_class": "bikes.core.models.BaselineSklearnModel", "estimator_name": "BaselineSklearnModel", "mlflow.autologging": "sklearn", - "mlflow.parentRunId": "0dea01ed478c44e094187a66e64d6fd3", - "mlflow.runName": "adorable-crane-156", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.parentRunId": "9c36f396f2214f7bb0c6d9713d5e833e", + "mlflow.runName": "legendary-dove-782", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", "mlflow.source.type": "LOCAL", "mlflow.user": "fmind" @@ -7595,40 +8601,40 @@ "/home/fmind/mlops-python-package/src/bikes/__main__.py", "LOCAL", null, - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", null, null, - "adorable-crane-156", + "legendary-dove-782", null, null, "BaselineSklearnModel", "bikes.core.models.BaselineSklearnModel", null, "sklearn", - "0dea01ed478c44e094187a66e64d6fd3" + "9c36f396f2214f7bb0c6d9713d5e833e" ] ], "fillcolor": "rgba(255,255,255,0)", "hoveron": "points", "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
estimator_name=%{customdata[23]}
estimator_class=%{customdata[24]}
mlflow.log-model.history=%{customdata[25]}
mlflow.autologging=%{customdata[26]}
mlflow.parentRunId=%{customdata[27]}", "hovertext": [ - "ac382f5f1fb84516bbcd6c5183890987" + "d927facc28d74fbe8d607c7f1656321a" ], - "legendgroup": "adorable-crane-156", + "legendgroup": "legendary-dove-782", "line": { "color": "rgba(255,255,255,0)" }, "marker": { - "color": "#FF97FF" + "color": "#636efa" }, - "name": "adorable-crane-156", - "offsetgroup": "adorable-crane-156", + "name": "legendary-dove-782", + "offsetgroup": "legendary-dove-782", "orientation": "h", "pointpos": 0, "showlegend": true, "type": "box", "x": [ - 45.46 + 46.567 ], "x0": " ", "xaxis": "x", @@ -7640,27 +8646,27 @@ "boxpoints": "all", "customdata": [ [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/1c4c425e915346fcbe97f728f378100d/artifacts", - "2024-12-12T21:15:12.635000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/dafb45859edf45979643cccb32ea3828/artifacts", + "2024-12-14T14:39:21.213000", + "300971336194126583", "active", - "1c4c425e915346fcbe97f728f378100d", - "bedecked-snake-279", - "1c4c425e915346fcbe97f728f378100d", - "2024-12-12T21:13:28.811000", + "dafb45859edf45979643cccb32ea3828", + "big-duck-612", + "dafb45859edf45979643cccb32ea3828", + "2024-12-14T14:38:34.646000", "FINISHED", "fmind", { - "mean_fit_time": 2.3949788212776184, - "mean_score_time": 0.04650747776031494, - "mean_test_score": -5517.252604166667, - "rank_test_score": 1, - "std_fit_time": 0.3323838231985541, - "std_score_time": 0.0013898028864495558, - "std_test_score": 1613.520146542553 + "mean_fit_time": 1.4297820329666138, + "mean_score_time": 0.042337894439697266, + "mean_test_score": -2845.011111111111, + "rank_test_score": 3, + "std_fit_time": 0.1887011060177697, + "std_score_time": 0.0005584766538439517, + "std_test_score": 1362.0703338739036 }, { - "max_depth": "7", + "max_depth": "3", "n_estimators": "200", "random_state": "42" }, @@ -7668,9 +8674,9 @@ "estimator_class": "bikes.core.models.BaselineSklearnModel", "estimator_name": "BaselineSklearnModel", "mlflow.autologging": "sklearn", - "mlflow.parentRunId": "41808f5b32074c5f8dddccdaa4221684", - "mlflow.runName": "bedecked-snake-279", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.parentRunId": "9c36f396f2214f7bb0c6d9713d5e833e", + "mlflow.runName": "big-duck-612", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", "mlflow.source.type": "LOCAL", "mlflow.user": "fmind" @@ -7679,40 +8685,40 @@ "/home/fmind/mlops-python-package/src/bikes/__main__.py", "LOCAL", null, - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", null, null, - "bedecked-snake-279", + "big-duck-612", null, null, "BaselineSklearnModel", "bikes.core.models.BaselineSklearnModel", null, "sklearn", - "41808f5b32074c5f8dddccdaa4221684" + "9c36f396f2214f7bb0c6d9713d5e833e" ] ], "fillcolor": "rgba(255,255,255,0)", "hoveron": "points", "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
estimator_name=%{customdata[23]}
estimator_class=%{customdata[24]}
mlflow.log-model.history=%{customdata[25]}
mlflow.autologging=%{customdata[26]}
mlflow.parentRunId=%{customdata[27]}", "hovertext": [ - "1c4c425e915346fcbe97f728f378100d" + "dafb45859edf45979643cccb32ea3828" ], - "legendgroup": "bedecked-snake-279", + "legendgroup": "big-duck-612", "line": { "color": "rgba(255,255,255,0)" }, "marker": { - "color": "#FECB52" + "color": "#EF553B" }, - "name": "bedecked-snake-279", - "offsetgroup": "bedecked-snake-279", + "name": "big-duck-612", + "offsetgroup": "big-duck-612", "orientation": "h", "pointpos": 0, "showlegend": true, "type": "box", "x": [ - 103.824 + 46.567 ], "x0": " ", "xaxis": "x", @@ -7724,24 +8730,24 @@ "boxpoints": "all", "customdata": [ [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/a15819213ad34dd9a6ed09d23d7f1f50/artifacts", - "2024-12-12T21:15:12.635000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/006ccc2cf48e489099b285ab6d538d1a/artifacts", + "2024-12-14T14:37:15.261000", + "300971336194126583", "active", - "a15819213ad34dd9a6ed09d23d7f1f50", - "colorful-mule-167", - "a15819213ad34dd9a6ed09d23d7f1f50", - "2024-12-12T21:13:28.811000", + "006ccc2cf48e489099b285ab6d538d1a", + "sincere-sow-522", + "006ccc2cf48e489099b285ab6d538d1a", + "2024-12-14T14:35:02.506000", "FINISHED", "fmind", { - "mean_fit_time": 1.118449330329895, - "mean_score_time": 0.03912538290023804, - "mean_test_score": -16644.957118055558, + "mean_fit_time": 1.635141909122467, + "mean_score_time": 0.04768478870391846, + "mean_test_score": -2845.011111111111, "rank_test_score": 3, - "std_fit_time": 0.15970737568385646, - "std_score_time": 0.0012380048739150742, - "std_test_score": 5315.459715152708 + "std_fit_time": 0.16971366972379937, + "std_score_time": 0.002114185952165752, + "std_test_score": 1362.0703338739036 }, { "max_depth": "3", @@ -7752,9 +8758,9 @@ "estimator_class": "bikes.core.models.BaselineSklearnModel", "estimator_name": "BaselineSklearnModel", "mlflow.autologging": "sklearn", - "mlflow.parentRunId": "41808f5b32074c5f8dddccdaa4221684", - "mlflow.runName": "colorful-mule-167", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.parentRunId": "857f0dd0a344439693b8cb9ecbf3ee10", + "mlflow.runName": "sincere-sow-522", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", "mlflow.source.type": "LOCAL", "mlflow.user": "fmind" @@ -7763,40 +8769,40 @@ "/home/fmind/mlops-python-package/src/bikes/__main__.py", "LOCAL", null, - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", null, null, - "colorful-mule-167", + "sincere-sow-522", null, null, "BaselineSklearnModel", "bikes.core.models.BaselineSklearnModel", null, "sklearn", - "41808f5b32074c5f8dddccdaa4221684" + "857f0dd0a344439693b8cb9ecbf3ee10" ] ], "fillcolor": "rgba(255,255,255,0)", "hoveron": "points", "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
estimator_name=%{customdata[23]}
estimator_class=%{customdata[24]}
mlflow.log-model.history=%{customdata[25]}
mlflow.autologging=%{customdata[26]}
mlflow.parentRunId=%{customdata[27]}", "hovertext": [ - "a15819213ad34dd9a6ed09d23d7f1f50" + "006ccc2cf48e489099b285ab6d538d1a" ], - "legendgroup": "colorful-mule-167", + "legendgroup": "sincere-sow-522", "line": { "color": "rgba(255,255,255,0)" }, "marker": { - "color": "#636efa" + "color": "#00cc96" }, - "name": "colorful-mule-167", - "offsetgroup": "colorful-mule-167", + "name": "sincere-sow-522", + "offsetgroup": "sincere-sow-522", "orientation": "h", "pointpos": 0, "showlegend": true, "type": "box", "x": [ - 103.824 + 132.755 ], "x0": " ", "xaxis": "x", @@ -7808,24 +8814,24 @@ "boxpoints": "all", "customdata": [ [ - "file:///home/fmind/mlops-python-package/mlruns/451770521480793486/cbc1f6a92cdf4a6fb03f60d8cd9fc6e5/artifacts", - "2024-12-12T21:15:12.635000", - "451770521480793486", + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/44be742accc846c784acacab379cdca3/artifacts", + "2024-12-14T14:37:15.261000", + "300971336194126583", "active", - "cbc1f6a92cdf4a6fb03f60d8cd9fc6e5", - "righteous-grub-422", - "cbc1f6a92cdf4a6fb03f60d8cd9fc6e5", - "2024-12-12T21:13:28.811000", + "44be742accc846c784acacab379cdca3", + "bittersweet-fowl-631", + "44be742accc846c784acacab379cdca3", + "2024-12-14T14:35:02.506000", "FINISHED", "fmind", { - "mean_fit_time": 1.7803198099136353, - "mean_score_time": 0.04240947961807251, - "mean_test_score": -8287.860416666666, + "mean_fit_time": 2.448797047138214, + "mean_score_time": 0.05008918046951294, + "mean_test_score": -711.7982638888889, "rank_test_score": 2, - "std_fit_time": 0.2563473143454279, - "std_score_time": 0.0014697793935521128, - "std_test_score": 1045.7595024691313 + "std_fit_time": 0.33258931824071436, + "std_score_time": 0.0004049252455184904, + "std_test_score": 506.2583283876414 }, { "max_depth": "5", @@ -7836,9 +8842,9 @@ "estimator_class": "bikes.core.models.BaselineSklearnModel", "estimator_name": "BaselineSklearnModel", "mlflow.autologging": "sklearn", - "mlflow.parentRunId": "41808f5b32074c5f8dddccdaa4221684", - "mlflow.runName": "righteous-grub-422", - "mlflow.source.git.commit": "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "mlflow.parentRunId": "857f0dd0a344439693b8cb9ecbf3ee10", + "mlflow.runName": "bittersweet-fowl-631", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", "mlflow.source.type": "LOCAL", "mlflow.user": "fmind" @@ -7847,40 +8853,124 @@ "/home/fmind/mlops-python-package/src/bikes/__main__.py", "LOCAL", null, - "5e7c0b8c7b49c29802893c9821ae8546e45952b0", + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", null, null, - "righteous-grub-422", + "bittersweet-fowl-631", null, null, "BaselineSklearnModel", "bikes.core.models.BaselineSklearnModel", null, "sklearn", - "41808f5b32074c5f8dddccdaa4221684" + "857f0dd0a344439693b8cb9ecbf3ee10" ] ], "fillcolor": "rgba(255,255,255,0)", "hoveron": "points", "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
estimator_name=%{customdata[23]}
estimator_class=%{customdata[24]}
mlflow.log-model.history=%{customdata[25]}
mlflow.autologging=%{customdata[26]}
mlflow.parentRunId=%{customdata[27]}", "hovertext": [ - "cbc1f6a92cdf4a6fb03f60d8cd9fc6e5" + "44be742accc846c784acacab379cdca3" ], - "legendgroup": "righteous-grub-422", + "legendgroup": "bittersweet-fowl-631", "line": { "color": "rgba(255,255,255,0)" }, "marker": { - "color": "#EF553B" + "color": "#ab63fa" + }, + "name": "bittersweet-fowl-631", + "offsetgroup": "bittersweet-fowl-631", + "orientation": "h", + "pointpos": 0, + "showlegend": true, + "type": "box", + "x": [ + 132.755 + ], + "x0": " ", + "xaxis": "x", + "y0": " ", + "yaxis": "y" + }, + { + "alignmentgroup": "True", + "boxpoints": "all", + "customdata": [ + [ + "file:///home/fmind/mlops-python-package/mlruns/300971336194126583/e9980ab9c8db4f80a18aadfa47a3e83e/artifacts", + "2024-12-14T14:37:15.261000", + "300971336194126583", + "active", + "e9980ab9c8db4f80a18aadfa47a3e83e", + "smiling-hound-227", + "e9980ab9c8db4f80a18aadfa47a3e83e", + "2024-12-14T14:35:02.506000", + "FINISHED", + "fmind", + { + "mean_fit_time": 3.4514302015304565, + "mean_score_time": 0.060173630714416504, + "mean_test_score": -319.5045138888889, + "rank_test_score": 1, + "std_fit_time": 0.44103751840131455, + "std_score_time": 0.002450930454703554, + "std_test_score": 350.4638291591938 + }, + { + "max_depth": "7", + "n_estimators": "200", + "random_state": "42" + }, + { + "estimator_class": "bikes.core.models.BaselineSklearnModel", + "estimator_name": "BaselineSklearnModel", + "mlflow.autologging": "sklearn", + "mlflow.parentRunId": "857f0dd0a344439693b8cb9ecbf3ee10", + "mlflow.runName": "smiling-hound-227", + "mlflow.source.git.commit": "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + "mlflow.source.name": "/home/fmind/mlops-python-package/src/bikes/__main__.py", + "mlflow.source.type": "LOCAL", + "mlflow.user": "fmind" + }, + "fmind", + "/home/fmind/mlops-python-package/src/bikes/__main__.py", + "LOCAL", + null, + "1a4b8a25a32f0e933a7db9ec47f763cc7bd17d1c", + null, + null, + "smiling-hound-227", + null, + null, + "BaselineSklearnModel", + "bikes.core.models.BaselineSklearnModel", + null, + "sklearn", + "857f0dd0a344439693b8cb9ecbf3ee10" + ] + ], + "fillcolor": "rgba(255,255,255,0)", + "hoveron": "points", + "hovertemplate": "%{hovertext}

run_name=%{customdata[5]}
run_time_secs=%{x}
artifact_uri=%{customdata[0]}
end_time=%{customdata[1]}
experiment_id=%{customdata[2]}
lifecycle_stage=%{customdata[3]}
run_id=%{customdata[4]}
run_uuid=%{customdata[6]}
start_time=%{customdata[7]}
status=%{customdata[8]}
user_id=%{customdata[9]}
metrics=%{customdata[10]}
params=%{customdata[11]}
tags=%{customdata[12]}
mlflow.user=%{customdata[13]}
mlflow.source.name=%{customdata[14]}
mlflow.source.type=%{customdata[15]}
mlflow.project.entryPoint=%{customdata[16]}
mlflow.source.git.commit=%{customdata[17]}
mlflow.source.git.repoURL=%{customdata[18]}
mlflow.gitRepoURL=%{customdata[19]}
mlflow.runName=%{customdata[20]}
mlflow.project.env=%{customdata[21]}
mlflow.project.backend=%{customdata[22]}
estimator_name=%{customdata[23]}
estimator_class=%{customdata[24]}
mlflow.log-model.history=%{customdata[25]}
mlflow.autologging=%{customdata[26]}
mlflow.parentRunId=%{customdata[27]}", + "hovertext": [ + "e9980ab9c8db4f80a18aadfa47a3e83e" + ], + "legendgroup": "smiling-hound-227", + "line": { + "color": "rgba(255,255,255,0)" + }, + "marker": { + "color": "#FFA15A" }, - "name": "righteous-grub-422", - "offsetgroup": "righteous-grub-422", + "name": "smiling-hound-227", + "offsetgroup": "smiling-hound-227", "orientation": "h", "pointpos": 0, "showlegend": true, "type": "box", "x": [ - 103.824 + 132.755 ], "x0": " ", "xaxis": "x", @@ -8784,9 +9874,9 @@ null, null, "sklearn.pipeline.Pipeline", - "sklearn.model_selection._search.GridSearchCV", "bikes.core.models.BaselineSklearnModel", "bikes.core.models.BaselineSklearnModel", + "sklearn.model_selection._search.GridSearchCV", "bikes.core.models.BaselineSklearnModel", null, null, @@ -8797,7 +9887,15 @@ "sklearn.model_selection._search.GridSearchCV", "bikes.core.models.BaselineSklearnModel", "bikes.core.models.BaselineSklearnModel", - null + null, + null, + null, + null, + "sklearn.pipeline.Pipeline", + "bikes.core.models.BaselineSklearnModel", + "bikes.core.models.BaselineSklearnModel", + "sklearn.model_selection._search.GridSearchCV", + "bikes.core.models.BaselineSklearnModel" ], "xaxis": "x", "y": [ @@ -8819,6 +9917,14 @@ 1, 1, 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, 1 ], "yaxis": "y" diff --git a/notebooks/prototype.ipynb b/notebooks/prototype.ipynb index e5e5954..fc52d1e 100644 --- a/notebooks/prototype.ipynb +++ b/notebooks/prototype.ipynb @@ -24,31 +24,9 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 1, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[autoreload of _virtualenv failed: Traceback (most recent call last):\n", - " File \"/home/fmind/mlops-python-package/.venv/lib/python3.12/site-packages/IPython/extensions/autoreload.py\", line 276, in check\n", - " superreload(m, reload, self.old_objects)\n", - " File \"/home/fmind/mlops-python-package/.venv/lib/python3.12/site-packages/IPython/extensions/autoreload.py\", line 475, in superreload\n", - " module = reload(module)\n", - " ^^^^^^^^^^^^^^\n", - " File \"/home/fmind/.local/share/uv/python/cpython-3.12.5-linux-x86_64-gnu/lib/python3.12/importlib/__init__.py\", line 128, in reload\n", - " spec = module.__spec__ = _bootstrap._find_spec(name, pkgpath, target)\n", - " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", - " File \"\", line 1262, in _find_spec\n", - " File \"/home/fmind/mlops-python-package/.venv/lib/python3.12/site-packages/_virtualenv.py\", line 51, in find_spec\n", - " if fullname in _DISTUTILS_PATCH and self.fullname is None:\n", - " ^^^^^^^^^^^^^^^^\n", - "NameError: name '_DISTUTILS_PATCH' is not defined\n", - "]\n" - ] - } - ], + "outputs": [], "source": [ "from pathlib import Path" ] @@ -62,7 +40,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -90,7 +68,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -106,7 +84,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -124,7 +102,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -141,7 +119,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -157,7 +135,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -175,7 +153,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -202,7 +180,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -220,7 +198,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -237,7 +215,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -262,7 +240,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -448,7 +426,7 @@ "5 1 0.24 0.2879 0.75 0.0 0 1 1 " ] }, - "execution_count": 50, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -461,7 +439,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -514,7 +492,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -824,7 +802,7 @@ "max 977.000000 " ] }, - "execution_count": 52, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -842,7 +820,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -106090,7 +106068,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -106115,7 +106093,7 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -106137,7 +106115,7 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -106166,7 +106144,7 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ @@ -106181,7 +106159,7 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ @@ -106206,7 +106184,7 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -106222,13 +106200,13 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/html": [ - "
Pipeline(memory='../.cache',\n",
+       "
Pipeline(memory='../.cache',\n",
        "         steps=[('transformer',\n",
        "                 ColumnTransformer(transformers=[('categoricals',\n",
        "                                                  OneHotEncoder(handle_unknown='ignore',\n",
@@ -106644,7 +106622,7 @@
        "                                                   'workingday', 'temp',\n",
        "                                                   'atemp', 'hum', 'windspeed',\n",
        "                                                   'casual'])])),\n",
-       "                ('regressor', RandomForestRegressor(random_state=42))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
['season', 'weathersit']
OneHotEncoder(handle_unknown='ignore', sparse_output=False)
['yr', 'mnth', 'hr', 'holiday', 'weekday', 'workingday', 'temp', 'atemp', 'hum', 'windspeed', 'casual']
passthrough
RandomForestRegressor(random_state=42)
" ], "text/plain": [ "Pipeline(memory='../.cache',\n", @@ -106681,7 +106659,7 @@ " ('regressor', RandomForestRegressor(random_state=42))])" ] }, - "execution_count": 60, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } @@ -106726,7 +106704,7 @@ }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 23, "metadata": {}, "outputs": [ { @@ -106757,7 +106735,7 @@ }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 24, "metadata": {}, "outputs": [ { @@ -106773,26 +106751,30 @@ "text": [ "/home/fmind/mlops-python-package/.venv/lib/python3.12/site-packages/joblib/memory.py:577: UserWarning:\n", "\n", - "Persisting input arguments took 0.52s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function.\n", + "Persisting input arguments took 0.68s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function.\n", + "\n", + "/home/fmind/mlops-python-package/.venv/lib/python3.12/site-packages/joblib/memory.py:577: UserWarning:\n", + "\n", + "Persisting input arguments took 0.69s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function.\n", "\n", "/home/fmind/mlops-python-package/.venv/lib/python3.12/site-packages/joblib/memory.py:577: UserWarning:\n", "\n", - "Persisting input arguments took 0.56s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function.\n", + "Persisting input arguments took 0.79s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function.\n", "\n", "/home/fmind/mlops-python-package/.venv/lib/python3.12/site-packages/joblib/memory.py:577: UserWarning:\n", "\n", - "Persisting input arguments took 0.63s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function.\n", + "Persisting input arguments took 0.90s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function.\n", "\n", "/home/fmind/mlops-python-package/.venv/lib/python3.12/site-packages/joblib/memory.py:577: UserWarning:\n", "\n", - "Persisting input arguments took 0.76s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function.\n", + "Persisting input arguments took 1.00s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function.\n", "\n" ] }, { "data": { "text/html": [ - "
GridSearchCV(cv=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=4, test_size=1440),\n",
+       "
GridSearchCV(cv=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=4, test_size=1440),\n",
        "             estimator=Pipeline(memory='../.cache',\n",
        "                                steps=[('transformer',\n",
        "                                        ColumnTransformer(transformers=[('categoricals',\n",
@@ -107221,7 +107203,7 @@
        "                                        RandomForestRegressor(random_state=42))]),\n",
        "             param_grid={'regressor__max_depth': [15, 20, 25],\n",
        "                         'regressor__n_estimators': [150, 200, 250]},\n",
-       "             scoring='neg_mean_squared_error', verbose=1)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
['season', 'weathersit']
OneHotEncoder(handle_unknown='ignore', sparse_output=False)
['yr', 'mnth', 'hr', 'holiday', 'weekday', 'workingday', 'temp', 'atemp', 'hum', 'windspeed', 'casual']
passthrough
RandomForestRegressor(max_depth=20, n_estimators=200, random_state=42)
" ], "text/plain": [ "GridSearchCV(cv=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=4, test_size=1440),\n", @@ -107298,7 +107280,7 @@ " scoring='neg_mean_squared_error', verbose=1)" ] }, - "execution_count": 62, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -107319,7 +107301,7 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 25, "metadata": {}, "outputs": [ { @@ -107362,10 +107344,10 @@ " \n", " \n", " 4\n", - " 8.197777\n", - " 1.114588\n", - " 0.049695\n", - " 0.005310\n", + " 9.947961\n", + " 1.757322\n", + " 0.065129\n", + " 0.012880\n", " 20\n", " 200\n", " {'regressor__max_depth': 20, 'regressor__n_est...\n", @@ -107379,10 +107361,10 @@ " \n", " \n", " 1\n", - " 7.157419\n", - " 1.018962\n", - " 0.045709\n", - " 0.005739\n", + " 9.226854\n", + " 0.965719\n", + " 0.050904\n", + " 0.002971\n", " 15\n", " 200\n", " {'regressor__max_depth': 15, 'regressor__n_est...\n", @@ -107396,10 +107378,10 @@ " \n", " \n", " 5\n", - " 10.689916\n", - " 1.444524\n", - " 0.064643\n", - " 0.012777\n", + " 11.779174\n", + " 1.353100\n", + " 0.066897\n", + " 0.005953\n", " 20\n", " 250\n", " {'regressor__max_depth': 20, 'regressor__n_est...\n", @@ -107413,10 +107395,10 @@ " \n", " \n", " 7\n", - " 8.259196\n", - " 0.936581\n", - " 0.048372\n", - " 0.004113\n", + " 9.096495\n", + " 1.247697\n", + " 0.054601\n", + " 0.006268\n", " 25\n", " 200\n", " {'regressor__max_depth': 25, 'regressor__n_est...\n", @@ -107430,10 +107412,10 @@ " \n", " \n", " 2\n", - " 9.029868\n", - " 1.144401\n", - " 0.055069\n", - " 0.004822\n", + " 10.684988\n", + " 1.501814\n", + " 0.064013\n", + " 0.008608\n", " 15\n", " 250\n", " {'regressor__max_depth': 15, 'regressor__n_est...\n", @@ -107451,11 +107433,11 @@ ], "text/plain": [ " mean_fit_time std_fit_time mean_score_time std_score_time \\\n", - "4 8.197777 1.114588 0.049695 0.005310 \n", - "1 7.157419 1.018962 0.045709 0.005739 \n", - "5 10.689916 1.444524 0.064643 0.012777 \n", - "7 8.259196 0.936581 0.048372 0.004113 \n", - "2 9.029868 1.144401 0.055069 0.004822 \n", + "4 9.947961 1.757322 0.065129 0.012880 \n", + "1 9.226854 0.965719 0.050904 0.002971 \n", + "5 11.779174 1.353100 0.066897 0.005953 \n", + "7 9.096495 1.247697 0.054601 0.006268 \n", + "2 10.684988 1.501814 0.064013 0.008608 \n", "\n", " param_regressor__max_depth param_regressor__n_estimators \\\n", "4 20 200 \n", @@ -107486,7 +107468,7 @@ "2 2504.611918 5 " ] }, - "execution_count": 63, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } @@ -107514,13 +107496,13 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/html": [ - "
Pipeline(memory='../.cache',\n",
+       "
Pipeline(memory='../.cache',\n",
        "         steps=[('transformer',\n",
        "                 ColumnTransformer(transformers=[('categoricals',\n",
        "                                                  OneHotEncoder(handle_unknown='ignore',\n",
@@ -107938,7 +107920,7 @@
        "                                                   'casual'])])),\n",
        "                ('regressor',\n",
        "                 RandomForestRegressor(max_depth=20, n_estimators=200,\n",
-       "                                       random_state=42))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
['season', 'weathersit']
OneHotEncoder(handle_unknown='ignore', sparse_output=False)
['yr', 'mnth', 'hr', 'holiday', 'weekday', 'workingday', 'temp', 'atemp', 'hum', 'windspeed', 'casual']
passthrough
RandomForestRegressor(max_depth=20, n_estimators=200, random_state=42)
" ], "text/plain": [ "Pipeline(memory='../.cache',\n", @@ -107979,7 +107961,7 @@ " random_state=42))])" ] }, - "execution_count": 64, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } @@ -107998,7 +107980,7 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 27, "metadata": {}, "outputs": [ { @@ -108043,7 +108025,7 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 28, "metadata": {}, "outputs": [ { @@ -108065,7 +108047,7 @@ "dtype: float64" ] }, - "execution_count": 66, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -108085,7 +108067,7 @@ }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 29, "metadata": {}, "outputs": [ { @@ -108102,7 +108084,7 @@ "dtype: float64" ] }, - "execution_count": 67, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } @@ -108128,7 +108110,7 @@ }, { "cell_type": "code", - "execution_count": 68, + "execution_count": 30, "metadata": {}, "outputs": [ { @@ -109042,7 +109024,7 @@ }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 31, "metadata": {}, "outputs": [ { @@ -110006,7 +109988,7 @@ }, { "cell_type": "code", - "execution_count": 70, + "execution_count": 32, "metadata": {}, "outputs": [ { @@ -110015,7 +109997,7 @@ "np.float64(4706.147416021958)" ] }, - "execution_count": 70, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } @@ -110034,7 +110016,7 @@ }, { "cell_type": "code", - "execution_count": 71, + "execution_count": 33, "metadata": {}, "outputs": [ { @@ -110114,7 +110096,7 @@ "15944 50 63.895000 -13.895000" ] }, - "execution_count": 71, + "execution_count": 33, "metadata": {}, "output_type": "execute_result" } @@ -110127,7 +110109,7 @@ }, { "cell_type": "code", - "execution_count": 72, + "execution_count": 34, "metadata": {}, "outputs": [ { @@ -112463,7 +112445,7 @@ }, { "cell_type": "code", - "execution_count": 73, + "execution_count": 35, "metadata": {}, "outputs": [ { @@ -112484,7 +112466,7 @@ "dtype: float64" ] }, - "execution_count": 73, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" } @@ -112500,7 +112482,7 @@ }, { "cell_type": "code", - "execution_count": 74, + "execution_count": 36, "metadata": {}, "outputs": [ { @@ -113446,7 +113428,7 @@ }, { "cell_type": "code", - "execution_count": 75, + "execution_count": 37, "metadata": {}, "outputs": [ { @@ -114402,7 +114384,7 @@ }, { "cell_type": "code", - "execution_count": 76, + "execution_count": 38, "metadata": {}, "outputs": [ { diff --git a/python_env.yaml b/python_env.yaml index 9210229..f5377db 100644 --- a/python_env.yaml +++ b/python_env.yaml @@ -11,7 +11,7 @@ "bandit==1.8.0", "blinker==1.9.0", "cachetools==5.5.0", - "certifi==2024.8.30", + "certifi==2024.12.14", "cffi==1.17.1", "cfgv==3.4.0", "charset-normalizer==3.4.0", @@ -24,7 +24,7 @@ "coverage==7.6.9", "cycler==0.12.1", "databricks-sdk==0.39.0", - "debugpy==1.8.9", + "debugpy==1.8.11", "decli==0.6.2", "decorator==5.1.1", "deprecated==1.2.15", @@ -65,7 +65,7 @@ "markdown==3.7", "markdown-it-py==3.0.0", "markupsafe==3.0.2", - "matplotlib==3.9.3", + "matplotlib==3.10.0", "matplotlib-inline==0.1.7", "mdurl==0.1.2", "mlflow==2.19.0", @@ -108,7 +108,7 @@ "pycparser==2.22", "pydantic==2.10.3", "pydantic-core==2.27.1", - "pydantic-settings==2.6.1", + "pydantic-settings==2.7.0", "pygments==2.18.0", "pynvml==12.0.0", "pyparsing==3.2.0", diff --git a/requirements.txt b/requirements.txt index e86c4d6..4d576c8 100644 --- a/requirements.txt +++ b/requirements.txt @@ -10,7 +10,7 @@ attrs==24.2.0 bandit==1.8.0 blinker==1.9.0 cachetools==5.5.0 -certifi==2024.8.30 +certifi==2024.12.14 cffi==1.17.1 ; implementation_name == 'pypy' cfgv==3.4.0 charset-normalizer==3.4.0 @@ -23,7 +23,7 @@ contourpy==1.3.1 coverage==7.6.9 cycler==0.12.1 databricks-sdk==0.39.0 -debugpy==1.8.9 +debugpy==1.8.11 decli==0.6.2 decorator==5.1.1 deprecated==1.2.15 @@ -64,7 +64,7 @@ mako==1.3.8 markdown==3.7 markdown-it-py==3.0.0 markupsafe==3.0.2 -matplotlib==3.9.3 +matplotlib==3.10.0 matplotlib-inline==0.1.7 mdurl==0.1.2 mlflow==2.19.0 @@ -107,7 +107,7 @@ pyasn1-modules==0.4.1 pycparser==2.22 ; implementation_name == 'pypy' pydantic==2.10.3 pydantic-core==2.27.1 -pydantic-settings==2.6.1 +pydantic-settings==2.7.0 pygments==2.18.0 pynvml==12.0.0 pyparsing==3.2.0 diff --git a/src/bikes/core/models.py b/src/bikes/core/models.py index 07ec83c..22393c1 100644 --- a/src/bikes/core/models.py +++ b/src/bikes/core/models.py @@ -81,9 +81,6 @@ def predict(self, inputs: schemas.Inputs) -> schemas.Outputs: def explain_model(self) -> schemas.FeatureImportances: """Explain the internal model structure. - Raises: - NotImplementedError: method not implemented. - Returns: schemas.FeatureImportances: feature importances. """ @@ -92,9 +89,6 @@ def explain_model(self) -> schemas.FeatureImportances: def explain_samples(self, inputs: schemas.Inputs) -> schemas.SHAPValues: """Explain model outputs on input samples. - Raises: - NotImplementedError: method not implemented. - Returns: schemas.SHAPValues: SHAP values. """ @@ -141,7 +135,7 @@ class BaselineSklearnModel(Model): "hum", "windspeed", "casual", - # "registered", # too correlated with target + "registered", # too correlated with target ] _categoricals: list[str] = [ "season", @@ -191,10 +185,10 @@ def explain_model(self) -> schemas.FeatureImportances: model = self.get_internal_model() regressor = model.named_steps["regressor"] transformer = model.named_steps["transformer"] - column_names = transformer.get_feature_names_out() + feature = transformer.get_feature_names_out() feature_importances = schemas.FeatureImportances( data={ - "feature": column_names, + "feature": feature, "importance": regressor.feature_importances_, } ) diff --git a/uv.lock b/uv.lock index 48e20d7..498a3a2 100644 --- a/uv.lock +++ b/uv.lock @@ -202,11 +202,11 @@ wheels = [ [[package]] name = "certifi" -version = "2024.8.30" +version = "2024.12.14" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/b0/ee/9b19140fe824b367c04c5e1b369942dd754c4c5462d5674002f75c4dedc1/certifi-2024.8.30.tar.gz", hash = "sha256:bec941d2aa8195e248a60b31ff9f0558284cf01a52591ceda73ea9afffd69fd9", size = 168507 } +sdist = { url = "https://files.pythonhosted.org/packages/0f/bd/1d41ee578ce09523c81a15426705dd20969f5abf006d1afe8aeff0dd776a/certifi-2024.12.14.tar.gz", hash = "sha256:b650d30f370c2b724812bee08008be0c4163b163ddaec3f2546c1caf65f191db", size = 166010 } wheels = [ - { url = "https://files.pythonhosted.org/packages/12/90/3c9ff0512038035f59d279fddeb79f5f1eccd8859f06d6163c58798b9487/certifi-2024.8.30-py3-none-any.whl", hash = "sha256:922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8", size = 167321 }, + { url = "https://files.pythonhosted.org/packages/a5/32/8f6669fc4798494966bf446c8c4a162e0b5d893dff088afddf76414f70e1/certifi-2024.12.14-py3-none-any.whl", hash = "sha256:1275f7a45be9464efc1173084eaa30f866fe2e47d389406136d332ed4967ec56", size = 164927 }, ] [[package]] @@ -456,19 +456,19 @@ wheels = [ [[package]] name = "debugpy" -version = "1.8.9" +version = "1.8.11" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/88/92/15b454c516c4c53cc8c03967e4be12b65a1ea36db3bb4513a7453f75c8d8/debugpy-1.8.9.zip", hash = "sha256:1339e14c7d980407248f09824d1b25ff5c5616651689f1e0f0e51bdead3ea13e", size = 4921695 } +sdist = { url = "https://files.pythonhosted.org/packages/bc/e7/666f4c9b0e24796af50aadc28d36d21c2e01e831a934535f956e09b3650c/debugpy-1.8.11.tar.gz", hash = "sha256:6ad2688b69235c43b020e04fecccdf6a96c8943ca9c2fb340b8adc103c655e57", size = 1640124 } wheels = [ - { url = "https://files.pythonhosted.org/packages/da/ab/1420baf8404d2b499349a44de5037133e06d489009032ce016fedb66eea1/debugpy-1.8.9-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:957363d9a7a6612a37458d9a15e72d03a635047f946e5fceee74b50d52a9c8e2", size = 2504180 }, - { url = "https://files.pythonhosted.org/packages/58/ec/e0f88c6764314bda7887274e0b980812709b3d6363dcae124a49a9ceaa3c/debugpy-1.8.9-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e565fc54b680292b418bb809f1386f17081d1346dca9a871bf69a8ac4071afe", size = 4224563 }, - { url = "https://files.pythonhosted.org/packages/dd/49/d9ea004ee2e4531d2b528841689ee2ba01c6a4b58840efd15e57dd866a86/debugpy-1.8.9-cp312-cp312-win32.whl", hash = "sha256:3e59842d6c4569c65ceb3751075ff8d7e6a6ada209ceca6308c9bde932bcef11", size = 5163641 }, - { url = "https://files.pythonhosted.org/packages/b1/63/c8b0718024c1187a446316037680e1564bf063c6665c815f17b42c244aba/debugpy-1.8.9-cp312-cp312-win_amd64.whl", hash = "sha256:66eeae42f3137eb428ea3a86d4a55f28da9bd5a4a3d369ba95ecc3a92c1bba53", size = 5203862 }, - { url = "https://files.pythonhosted.org/packages/cc/8d/eb12dcb977a2d166aac6614e60daddd1eef72881a0343717d7deb0d4868c/debugpy-1.8.9-cp313-cp313-macosx_14_0_universal2.whl", hash = "sha256:957ecffff80d47cafa9b6545de9e016ae8c9547c98a538ee96ab5947115fb3dd", size = 2489077 }, - { url = "https://files.pythonhosted.org/packages/87/2b/3b7a00d8d2bb891cfa33240575c2d5fc3fa6e0bc75567f4ece59b9d3d6ea/debugpy-1.8.9-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1efbb3ff61487e2c16b3e033bc8595aea578222c08aaf3c4bf0f93fadbd662ee", size = 4219198 }, - { url = "https://files.pythonhosted.org/packages/5f/a1/f489026a65fabfff8c73bd51b880c130d636e02b1847564141fe3957d94f/debugpy-1.8.9-cp313-cp313-win32.whl", hash = "sha256:7c4d65d03bee875bcb211c76c1d8f10f600c305dbd734beaed4077e902606fee", size = 5163014 }, - { url = "https://files.pythonhosted.org/packages/e6/84/6070908dd163121358eb9d76fcc94f05bc99d2f89a85fe1b86167bc34ec6/debugpy-1.8.9-cp313-cp313-win_amd64.whl", hash = "sha256:e46b420dc1bea64e5bbedd678148be512442bc589b0111bd799367cde051e71a", size = 5203529 }, - { url = "https://files.pythonhosted.org/packages/2d/23/3f5804202da11c950dc0caae4a62d0c9aadabdb2daeb5f7aa09838647b5d/debugpy-1.8.9-py2.py3-none-any.whl", hash = "sha256:cc37a6c9987ad743d9c3a14fa1b1a14b7e4e6041f9dd0c8abf8895fe7a97b899", size = 5166094 }, + { url = "https://files.pythonhosted.org/packages/c6/ae/2cf26f3111e9d94384d9c01e9d6170188b0aeda15b60a4ac6457f7c8a26f/debugpy-1.8.11-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:84e511a7545d11683d32cdb8f809ef63fc17ea2a00455cc62d0a4dbb4ed1c308", size = 2498756 }, + { url = "https://files.pythonhosted.org/packages/b0/16/ec551789d547541a46831a19aa15c147741133da188e7e6acf77510545a7/debugpy-1.8.11-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce291a5aca4985d82875d6779f61375e959208cdf09fcec40001e65fb0a54768", size = 4219136 }, + { url = "https://files.pythonhosted.org/packages/72/6f/b2b3ce673c55f882d27a6eb04a5f0c68bcad6b742ac08a86d8392ae58030/debugpy-1.8.11-cp312-cp312-win32.whl", hash = "sha256:28e45b3f827d3bf2592f3cf7ae63282e859f3259db44ed2b129093ca0ac7940b", size = 5224440 }, + { url = "https://files.pythonhosted.org/packages/77/09/b1f05be802c1caef5b3efc042fc6a7cadd13d8118b072afd04a9b9e91e06/debugpy-1.8.11-cp312-cp312-win_amd64.whl", hash = "sha256:44b1b8e6253bceada11f714acf4309ffb98bfa9ac55e4fce14f9e5d4484287a1", size = 5264578 }, + { url = "https://files.pythonhosted.org/packages/2e/66/931dc2479aa8fbf362dc6dcee707d895a84b0b2d7b64020135f20b8db1ed/debugpy-1.8.11-cp313-cp313-macosx_14_0_universal2.whl", hash = "sha256:8988f7163e4381b0da7696f37eec7aca19deb02e500245df68a7159739bbd0d3", size = 2483651 }, + { url = "https://files.pythonhosted.org/packages/10/07/6c171d0fe6b8d237e35598b742f20ba062511b3a4631938cc78eefbbf847/debugpy-1.8.11-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c1f6a173d1140e557347419767d2b14ac1c9cd847e0b4c5444c7f3144697e4e", size = 4213770 }, + { url = "https://files.pythonhosted.org/packages/89/f1/0711da6ac250d4fe3bf7b3e9b14b4a86e82a98b7825075c07e19bab8da3d/debugpy-1.8.11-cp313-cp313-win32.whl", hash = "sha256:bb3b15e25891f38da3ca0740271e63ab9db61f41d4d8541745cfc1824252cb28", size = 5223911 }, + { url = "https://files.pythonhosted.org/packages/56/98/5e27fa39050749ed460025bcd0034a0a5e78a580a14079b164cc3abdeb98/debugpy-1.8.11-cp313-cp313-win_amd64.whl", hash = "sha256:d8768edcbeb34da9e11bcb8b5c2e0958d25218df7a6e56adf415ef262cd7b6d1", size = 5264166 }, + { url = "https://files.pythonhosted.org/packages/77/0a/d29a5aacf47b4383ed569b8478c02d59ee3a01ad91224d2cff8562410e43/debugpy-1.8.11-py2.py3-none-any.whl", hash = "sha256:0e22f846f4211383e6a416d04b4c13ed174d24cc5d43f5fd52e7821d0ebc8920", size = 5226874 }, ] [[package]] @@ -1050,7 +1050,7 @@ wheels = [ [[package]] name = "matplotlib" -version = "3.9.3" +version = "3.10.0" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "contourpy" }, @@ -1063,26 +1063,26 @@ dependencies = [ { name = "pyparsing" }, { name = "python-dateutil" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/75/9f/562ed484b11ac9f4bb4f9d2d7546954ec106a8c0f06cc755d6f63e519274/matplotlib-3.9.3.tar.gz", hash = "sha256:cd5dbbc8e25cad5f706845c4d100e2c8b34691b412b93717ce38d8ae803bcfa5", size = 36113438 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/74/d5/eb2338d21b2d36511f9417230413fa0c30fc82283b33dc0e3643969f3b50/matplotlib-3.9.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:0a361bd5583bf0bcc08841df3c10269617ee2a36b99ac39d455a767da908bbbc", size = 7883049 }, - { url = "https://files.pythonhosted.org/packages/e5/52/3910833a073e7182ab3ae03810ed418f71c7fdcd65e2862cda1c6a14ffc1/matplotlib-3.9.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:e14485bb1b83eeb3d55b6878f9560240981e7bbc7a8d4e1e8c38b9bd6ec8d2de", size = 7768285 }, - { url = "https://files.pythonhosted.org/packages/92/67/69df4b6636e40e964788b003535561ea3e98e33e46df4d96fa8c34ef99e6/matplotlib-3.9.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a8d279f78844aad213c4935c18f8292a9432d51af2d88bca99072c903948045", size = 8192626 }, - { url = "https://files.pythonhosted.org/packages/40/d6/70a196b0cf62e0a5bc64ccab07816ab4f6c98db0414a55280331a481a5bf/matplotlib-3.9.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b6c12514329ac0d03128cf1dcceb335f4fbf7c11da98bca68dca8dcb983153a9", size = 8305687 }, - { url = "https://files.pythonhosted.org/packages/c3/43/ef6ab78dd2d8eb362c1e5a31f9cec5ece5761e6143a519153d716d85e590/matplotlib-3.9.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:6e9de2b390d253a508dd497e9b5579f3a851f208763ed67fdca5dc0c3ea6849c", size = 9087208 }, - { url = "https://files.pythonhosted.org/packages/30/cb/36844affc69490652b5a99296b9fcee530b96621e23d3143a4839f30fb22/matplotlib-3.9.3-cp312-cp312-win_amd64.whl", hash = "sha256:d796272408f8567ff7eaa00eb2856b3a00524490e47ad505b0b4ca6bb8a7411f", size = 7833105 }, - { url = "https://files.pythonhosted.org/packages/60/04/949640040982822416c471d9ebe4e9e6c69ca9f9bb6ba82ed30808863c02/matplotlib-3.9.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:203d18df84f5288973b2d56de63d4678cc748250026ca9e1ad8f8a0fd8a75d83", size = 7883417 }, - { url = "https://files.pythonhosted.org/packages/9f/90/ebd37143cd3150b6c650ee1580024df3dd649d176e68d346f826b8d24e37/matplotlib-3.9.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:b651b0d3642991259109dc0351fc33ad44c624801367bb8307be9bfc35e427ad", size = 7768720 }, - { url = "https://files.pythonhosted.org/packages/dc/84/6591e6b55d755d16dacdc113205067031867c1f5e3c08b32c01aad831420/matplotlib-3.9.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:66d7b171fecf96940ce069923a08ba3df33ef542de82c2ff4fe8caa8346fa95a", size = 8192723 }, - { url = "https://files.pythonhosted.org/packages/29/09/146a17d37e32313507f11ac984e65311f2d5805d731eb981d4f70eb928dc/matplotlib-3.9.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6be0ba61f6ff2e6b68e4270fb63b6813c9e7dec3d15fc3a93f47480444fd72f0", size = 8305801 }, - { url = "https://files.pythonhosted.org/packages/85/cb/d2690572c08f19ca7c0f44b1fb4d11c121d63467a57b508cc3656ff80b43/matplotlib-3.9.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:9d6b2e8856dec3a6db1ae51aec85c82223e834b228c1d3228aede87eee2b34f9", size = 9086564 }, - { url = "https://files.pythonhosted.org/packages/28/dd/0a5176027c1cb94fe75f69f76cb274180c8abf740df6fc0e6a1e4cbaec3f/matplotlib-3.9.3-cp313-cp313-win_amd64.whl", hash = "sha256:90a85a004fefed9e583597478420bf904bb1a065b0b0ee5b9d8d31b04b0f3f70", size = 7833257 }, - { url = "https://files.pythonhosted.org/packages/42/d4/e477d50a8e4b437c2afbb5c665cb8e5d79b06abe6fe3c6915d6f7f0c2ef2/matplotlib-3.9.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:3119b2f16de7f7b9212ba76d8fe6a0e9f90b27a1e04683cd89833a991682f639", size = 7911906 }, - { url = "https://files.pythonhosted.org/packages/ae/a1/ba5ab89666c42ace8e31b4ff5a2c76a17e4d6f91aefce476b064c56ff61d/matplotlib-3.9.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:87ad73763d93add1b6c1f9fcd33af662fd62ed70e620c52fcb79f3ac427cf3a6", size = 7801336 }, - { url = "https://files.pythonhosted.org/packages/77/59/4dcdb3a6695af6c698a95aec13016a550ef2f85144d22f61f81d1e064148/matplotlib-3.9.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:026bdf3137ab6022c866efa4813b6bbeddc2ed4c9e7e02f0e323a7bca380dfa0", size = 8218178 }, - { url = "https://files.pythonhosted.org/packages/4f/27/7c72db0d0ee35d9237572565ffa3c0eb25fc46a3f47e0f16412a587bc9d8/matplotlib-3.9.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:760a5e89ebbb172989e8273024a1024b0f084510b9105261b3b00c15e9c9f006", size = 8327768 }, - { url = "https://files.pythonhosted.org/packages/de/ad/213eee624feadba7b77e881c9d2c04c1e036efe69d19031e3fa927fdb5dc/matplotlib-3.9.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:a42b9dc42de2cfe357efa27d9c50c7833fc5ab9b2eb7252ccd5d5f836a84e1e4", size = 9094075 }, - { url = "https://files.pythonhosted.org/packages/19/1b/cb8e99a5fe2e2b14e3b8234cb1649a675be63f74a5224a648ae4ab61f60c/matplotlib-3.9.3-cp313-cp313t-win_amd64.whl", hash = "sha256:e0fcb7da73fbf67b5f4bdaa57d85bb585a4e913d4a10f3e15b32baea56a67f0a", size = 7888937 }, +sdist = { url = "https://files.pythonhosted.org/packages/68/dd/fa2e1a45fce2d09f4aea3cee169760e672c8262325aa5796c49d543dc7e6/matplotlib-3.10.0.tar.gz", hash = "sha256:b886d02a581b96704c9d1ffe55709e49b4d2d52709ccebc4be42db856e511278", size = 36686418 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/44/c7/6b2d8cb7cc251d53c976799cacd3200add56351c175ba89ab9cbd7c1e68a/matplotlib-3.10.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:4659665bc7c9b58f8c00317c3c2a299f7f258eeae5a5d56b4c64226fca2f7c59", size = 8172465 }, + { url = "https://files.pythonhosted.org/packages/42/2a/6d66d0fba41e13e9ca6512a0a51170f43e7e7ed3a8dfa036324100775612/matplotlib-3.10.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d44cb942af1693cced2604c33a9abcef6205601c445f6d0dc531d813af8a2f5a", size = 8043300 }, + { url = "https://files.pythonhosted.org/packages/90/60/2a60342b27b90a16bada939a85e29589902b41073f59668b904b15ea666c/matplotlib-3.10.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a994f29e968ca002b50982b27168addfd65f0105610b6be7fa515ca4b5307c95", size = 8448936 }, + { url = "https://files.pythonhosted.org/packages/a7/b2/d872fc3d753516870d520595ddd8ce4dd44fa797a240999f125f58521ad7/matplotlib-3.10.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9b0558bae37f154fffda54d779a592bc97ca8b4701f1c710055b609a3bac44c8", size = 8594151 }, + { url = "https://files.pythonhosted.org/packages/f4/bd/b2f60cf7f57d014ab33e4f74602a2b5bdc657976db8196bbc022185f6f9c/matplotlib-3.10.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:503feb23bd8c8acc75541548a1d709c059b7184cde26314896e10a9f14df5f12", size = 9400347 }, + { url = "https://files.pythonhosted.org/packages/9f/6e/264673e64001b99d747aff5a288eca82826c024437a3694e19aed1decf46/matplotlib-3.10.0-cp312-cp312-win_amd64.whl", hash = "sha256:c40ba2eb08b3f5de88152c2333c58cee7edcead0a2a0d60fcafa116b17117adc", size = 8039144 }, + { url = "https://files.pythonhosted.org/packages/72/11/1b2a094d95dcb6e6edd4a0b238177c439006c6b7a9fe8d31801237bf512f/matplotlib-3.10.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:96f2886f5c1e466f21cc41b70c5a0cd47bfa0015eb2d5793c88ebce658600e25", size = 8173073 }, + { url = "https://files.pythonhosted.org/packages/0d/c4/87b6ad2723070511a411ea719f9c70fde64605423b184face4e94986de9d/matplotlib-3.10.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:12eaf48463b472c3c0f8dbacdbf906e573013df81a0ab82f0616ea4b11281908", size = 8043892 }, + { url = "https://files.pythonhosted.org/packages/57/69/cb0812a136550b21361335e9ffb7d459bf6d13e03cb7b015555d5143d2d6/matplotlib-3.10.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2fbbabc82fde51391c4da5006f965e36d86d95f6ee83fb594b279564a4c5d0d2", size = 8450532 }, + { url = "https://files.pythonhosted.org/packages/ea/3a/bab9deb4fb199c05e9100f94d7f1c702f78d3241e6a71b784d2b88d7bebd/matplotlib-3.10.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad2e15300530c1a94c63cfa546e3b7864bd18ea2901317bae8bbf06a5ade6dcf", size = 8593905 }, + { url = "https://files.pythonhosted.org/packages/8b/66/742fd242f989adc1847ddf5f445815f73ad7c46aa3440690cc889cfa423c/matplotlib-3.10.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:3547d153d70233a8496859097ef0312212e2689cdf8d7ed764441c77604095ae", size = 9399609 }, + { url = "https://files.pythonhosted.org/packages/fa/d6/54cee7142cef7d910a324a7aedf335c0c147b03658b54d49ec48166f10a6/matplotlib-3.10.0-cp313-cp313-win_amd64.whl", hash = "sha256:c55b20591ced744aa04e8c3e4b7543ea4d650b6c3c4b208c08a05b4010e8b442", size = 8039076 }, + { url = "https://files.pythonhosted.org/packages/43/14/815d072dc36e88753433bfd0385113405efb947e6895ff7b4d2e8614a33b/matplotlib-3.10.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:9ade1003376731a971e398cc4ef38bb83ee8caf0aee46ac6daa4b0506db1fd06", size = 8211000 }, + { url = "https://files.pythonhosted.org/packages/9a/76/34e75f364194ec352678adcb540964be6f35ec7d3d8c75ebcb17e6839359/matplotlib-3.10.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:95b710fea129c76d30be72c3b38f330269363fbc6e570a5dd43580487380b5ff", size = 8087707 }, + { url = "https://files.pythonhosted.org/packages/c3/2b/b6bc0dff6a72d333bc7df94a66e6ce662d224e43daa8ad8ae4eaa9a77f55/matplotlib-3.10.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5cdbaf909887373c3e094b0318d7ff230b2ad9dcb64da7ade654182872ab2593", size = 8477384 }, + { url = "https://files.pythonhosted.org/packages/c2/2d/b5949fb2b76e9b47ab05e25a5f5f887c70de20d8b0cbc704a4e2ee71c786/matplotlib-3.10.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d907fddb39f923d011875452ff1eca29a9e7f21722b873e90db32e5d8ddff12e", size = 8610334 }, + { url = "https://files.pythonhosted.org/packages/d6/9a/6e3c799d5134d9af44b01c787e1360bee38cf51850506ea2e743a787700b/matplotlib-3.10.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:3b427392354d10975c1d0f4ee18aa5844640b512d5311ef32efd4dd7db106ede", size = 9406777 }, + { url = "https://files.pythonhosted.org/packages/0e/dd/e6ae97151e5ed648ab2ea48885bc33d39202b640eec7a2910e2c843f7ac0/matplotlib-3.10.0-cp313-cp313t-win_amd64.whl", hash = "sha256:5fd41b0ec7ee45cd960a8e71aea7c946a28a0b8a4dcee47d2856b2af051f334c", size = 8109742 }, ] [[package]] @@ -1718,15 +1718,15 @@ wheels = [ [[package]] name = "pydantic-settings" -version = "2.6.1" +version = "2.7.0" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "pydantic" }, { name = "python-dotenv" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/b5/d4/9dfbe238f45ad8b168f5c96ee49a3df0598ce18a0795a983b419949ce65b/pydantic_settings-2.6.1.tar.gz", hash = "sha256:e0f92546d8a9923cb8941689abf85d6601a8c19a23e97a34b2964a2e3f813ca0", size = 75646 } +sdist = { url = "https://files.pythonhosted.org/packages/86/41/19b62b99e7530cfa1d6ccd16199afd9289a12929bef1a03aa4382b22e683/pydantic_settings-2.7.0.tar.gz", hash = "sha256:ac4bfd4a36831a48dbf8b2d9325425b549a0a6f18cea118436d728eb4f1c4d66", size = 79743 } wheels = [ - { url = "https://files.pythonhosted.org/packages/5e/f9/ff95fd7d760af42f647ea87f9b8a383d891cdb5e5dbd4613edaeb094252a/pydantic_settings-2.6.1-py3-none-any.whl", hash = "sha256:7fb0637c786a558d3103436278a7c4f1cfd29ba8973238a50c5bb9a55387da87", size = 28595 }, + { url = "https://files.pythonhosted.org/packages/f9/00/57b4540deb5c3a39ba689bb519a4e03124b24ab8589e618be4aac2c769bd/pydantic_settings-2.7.0-py3-none-any.whl", hash = "sha256:e00c05d5fa6cbbb227c84bd7487c5c1065084119b750df7c8c1a554aed236eb5", size = 29549 }, ] [[package]] From 475262615756faafb3686004b7e205f8e52832a3 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?M=C3=A9d=C3=A9ric=20Hurier=20=28Fmind=29?= Date: Sat, 14 Dec 2024 15:51:33 +0100 Subject: [PATCH 10/10] =?UTF-8?q?bump:=20version=202.0.0=20=E2=86=92=203.0?= =?UTF-8?q?.0?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- CHANGELOG.md | 20 ++++++++++++++++++++ pyproject.toml | 2 +- 2 files changed, 21 insertions(+), 1 deletion(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 5e7309f..0ce2a27 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,3 +1,23 @@ +## v3.0.0 (2024-12-14) + +### Feat + +- **mlflow**: bump to 2.19.0 +- **manager**: switch from poetry to uv (#22) +- **manager**: switch from poetry to uv + +### Fix + +- **tasks**: merge conflict +- **tasks**: fix mlflow.serve task attribute +- **github-actions**: run check on all PR + +### Refactor + +- **release**: prepare before release +- **actions**: split check tasks into subtask for easier debugging (#29) +- **code**: improve abstractions (#28) + ## v2.0.0 (2024-07-28) ### Feat diff --git a/pyproject.toml b/pyproject.toml index 58f66e0..2ed67ee 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -5,7 +5,7 @@ [project] name = "bikes" -version = "2.0.0" +version = "3.0.0" description = "Predict the number of bikes available." authors = [{ name = "Médéric HURIER", email = "github@fmind.dev" }] readme = "README.md"