Skip to content

Latest commit

 

History

History
68 lines (58 loc) · 3.71 KB

README.md

File metadata and controls

68 lines (58 loc) · 3.71 KB

adv_singlecell_2022

Material for the "Advanced topics in single-cell analysis" course (2022 edition)

For more information and to apply, please visit: https://www.sib.swiss/training/course/20220426_ADVSC

Teachers:

  • Emma Dann
  • Pierre-Luc Germain
  • Giovanni Palla
  • Panagiotis Papasaikas
  • Mark Robinson
  • Sebastien Smallwood
  • Charlotte Soneson
  • Michael Stadler
  • Kevin A Yamauchi

Program

Tuesday, April 26
9:00 - 9:30 Welcome and setup of working environment
9:30 - 10:00 Combining the best of two worlds: Python + R (M. Stadler, slides)
10:00 - 10:15 Break
10:15 - 11:15 Combining the best of two worlds: Python + R (M. Stadler)
11:15 - 12:00 Differential analysis (M. Robinson, P-L. Germain)
12:00 - 13:30 Lunch
13:30 - 15:00 Differential analysis (M. Robinson, P-L. Germain)
15:00 - 15:15 Break
15:15 - 16:30 RNA velocity (C. Soneson, slides)
16:30 - 16:45 Break
16:45 - 17:45 RNA velocity (C. Soneson)
Wednesday, April 27
9:00 - 10:00 Generating single-cell data (S. Smallwood, slides)
10:00 - 10:15 Break
10:15 - 11:15 Multi-omics (E. Dann, slides: google doc)
11:15 - 11:30 Break
11:30 - 12:30 Multi-omics (E. Dann)
12:30 - 14:00 Lunch
14:00 - 15:30 Multi-omics (E. Dann)
15:30 - 15:45 Break
15:45 - 17:30 Multi-omics (E. Dann)
Thursday, April 28
9:00 - 10:30 Spatial transcriptomics (G. Palla, K. Yamauchi, slides)
10:30 - 10:45 Break
10:45 - 12:00 Spatial transcriptomics (G. Palla, K. Yamauchi)
12:00 - 13:30 Lunch
13:30 - 15:30 Spatial transcriptomics (G. Palla, K. Yamauchi)
15:30 - 15:45 Break
15:45 - 17:30 Spatial transcriptomics (G. Palla, K. Yamauchi)
Friday, April 29
9:00 - 9:30 Interactive visualization with iSEE (C. Soneson, slides)
9:30 - 10:00 Deep generative networks (P. Papasaikas, slides)
10:00 - 10:15 Break
10:15 - 12:00 Deep generative networks (P. Papasaikas)
12:00 - 13:30 Lunch
13:30 - 15:30 Deep generative networks (P. Papasaikas)
15:30 - 15:45 Break
15:45 - 16:45 Deep generative networks (P. Papasaikas)
16:45 - 17:00 Wrap-up