-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_pretrain.py
executable file
·257 lines (224 loc) · 9.27 KB
/
main_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# Copyright 2023 solo-learn development team.
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to use,
# copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
# Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all copies
# or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
# INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
# PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
# FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
import inspect
import os
import hydra
import torch
from omegaconf import DictConfig, OmegaConf
from pytorch_lightning import Trainer, seed_everything
from pytorch_lightning.callbacks import LearningRateMonitor
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.strategies.ddp import DDPStrategy
from solo.args.pretrain import parse_cfg
from solo.data.classification_dataloader import prepare_data as prepare_data_classification
from solo.data.pretrain_dataloader import (
FullTransformPipeline,
NCropAugmentation,
build_transform_pipeline,
prepare_dataloader,
prepare_datasets,
)
from solo.methods import METHODS
from solo.utils.auto_resumer import AutoResumer
from solo.utils.checkpointer import Checkpointer
from solo.utils.misc import make_contiguous, omegaconf_select
try:
from solo.data.dali_dataloader import PretrainDALIDataModule, build_transform_pipeline_dali
except ImportError:
_dali_avaliable = False
else:
_dali_avaliable = True
try:
from solo.utils.auto_umap import AutoUMAP
except ImportError:
_umap_available = False
else:
_umap_available = True
@hydra.main(version_base="1.2")
def main(cfg: DictConfig):
# hydra doesn't allow us to add new keys for "safety"
# set_struct(..., False) disables this behavior and allows us to add more parameters
# without making the user specify every single thing about the model
OmegaConf.set_struct(cfg, False)
cfg = parse_cfg(cfg)
seed_everything(cfg.seed)
assert cfg.method in METHODS, f"Choose from {METHODS.keys()}"
if cfg.data.num_large_crops != 2:
assert cfg.method in ["wmse", "mae"]
model = METHODS[cfg.method](cfg)
make_contiguous(model)
# can provide up to ~20% speed up
if not cfg.performance.disable_channel_last:
model = model.to(memory_format=torch.channels_last)
# validation dataloader for when it is available
if cfg.data.dataset == "custom" and (cfg.data.no_labels or cfg.data.val_path is None):
val_loader = None
elif cfg.data.dataset in ["imagenet100", "imagenet"] and cfg.data.val_path is None:
val_loader = None
else:
if cfg.data.format == "dali":
val_data_format = "image_folder"
else:
val_data_format = cfg.data.format
_, val_loader = prepare_data_classification(
cfg.data.dataset,
train_data_path=cfg.data.train_path,
val_data_path=cfg.data.val_path,
data_format=val_data_format,
batch_size=cfg.optimizer.batch_size,
num_workers=cfg.data.num_workers,
)
# pretrain dataloader
if cfg.data.format == "dali":
assert (
_dali_avaliable
), "Dali is not currently avaiable, please install it first with pip3 install .[dali]."
pipelines = []
for aug_cfg in cfg.augmentations:
pipelines.append(
NCropAugmentation(
build_transform_pipeline_dali(
cfg.data.dataset, aug_cfg, dali_device=cfg.dali.device
),
aug_cfg.num_crops,
)
)
transform = FullTransformPipeline(pipelines)
dali_datamodule = PretrainDALIDataModule(
dataset=cfg.data.dataset,
train_data_path=cfg.data.train_path,
transforms=transform,
num_large_crops=cfg.data.num_large_crops,
num_small_crops=cfg.data.num_small_crops,
num_workers=cfg.data.num_workers,
batch_size=cfg.optimizer.batch_size,
no_labels=cfg.data.no_labels,
data_fraction=cfg.data.fraction,
dali_device=cfg.dali.device,
encode_indexes_into_labels=cfg.dali.encode_indexes_into_labels,
)
dali_datamodule.val_dataloader = lambda: val_loader
else:
pipelines = []
for aug_cfg in cfg.augmentations:
pipelines.append(
NCropAugmentation(
build_transform_pipeline(cfg.data.dataset, aug_cfg), aug_cfg.num_crops
)
)
transform = FullTransformPipeline(pipelines)
if cfg.debug_augmentations:
print("Transforms:")
print(transform)
train_dataset = prepare_datasets(
cfg.data.dataset,
transform,
train_data_path=cfg.data.train_path,
data_format=cfg.data.format,
no_labels=cfg.data.no_labels,
data_fraction=cfg.data.fraction,
)
train_loader = prepare_dataloader(
train_dataset, batch_size=cfg.optimizer.batch_size, num_workers=cfg.data.num_workers
)
# 1.7 will deprecate resume_from_checkpoint, but for the moment
# the argument is the same, but we need to pass it as ckpt_path to trainer.fit
ckpt_path, wandb_run_id = None, None
if cfg.auto_resume.enabled and cfg.resume_from_checkpoint is None:
auto_resumer = AutoResumer(
checkpoint_dir=os.path.join(cfg.checkpoint.dir, cfg.method),
max_hours=cfg.auto_resume.max_hours,
)
resume_from_checkpoint, wandb_run_id = auto_resumer.find_checkpoint(cfg)
if resume_from_checkpoint is not None:
print(
"Resuming from previous checkpoint that matches specifications:",
f"'{resume_from_checkpoint}'",
)
ckpt_path = resume_from_checkpoint
elif cfg.resume_from_checkpoint is not None:
ckpt_path = cfg.resume_from_checkpoint
del cfg.resume_from_checkpoint
callbacks = []
if cfg.checkpoint.enabled:
# save checkpoint on last epoch only
ckpt = Checkpointer(
cfg,
logdir=os.path.join(cfg.checkpoint.dir, cfg.method),
frequency=cfg.checkpoint.frequency,
keep_prev=cfg.checkpoint.keep_prev,
)
callbacks.append(ckpt)
if omegaconf_select(cfg, "auto_umap.enabled", False):
assert (
_umap_available
), "UMAP is not currently avaiable, please install it first with [umap]."
auto_umap = AutoUMAP(
cfg.name,
logdir=os.path.join(cfg.auto_umap.dir, cfg.method),
frequency=cfg.auto_umap.frequency,
)
callbacks.append(auto_umap)
# wandb logging
if cfg.wandb.enabled:
wandb_logger = WandbLogger(
name=cfg.name,
project=cfg.wandb.project,
entity=cfg.wandb.entity,
offline=cfg.wandb.offline,
resume="allow" if wandb_run_id else None,
id=wandb_run_id,
)
wandb_logger.watch(model, log="gradients", log_freq=100)
wandb_logger.log_hyperparams(OmegaConf.to_container(cfg))
# lr logging
lr_monitor = LearningRateMonitor(logging_interval="step")
callbacks.append(lr_monitor)
trainer_kwargs = OmegaConf.to_container(cfg)
# we only want to pass in valid Trainer args, the rest may be user specific
valid_kwargs = inspect.signature(Trainer.__init__).parameters
trainer_kwargs = {name: trainer_kwargs[name] for name in valid_kwargs if name in trainer_kwargs}
trainer_kwargs.update(
{
"logger": wandb_logger if cfg.wandb.enabled else None,
"callbacks": callbacks,
"enable_checkpointing": False,
"strategy": DDPStrategy(find_unused_parameters=False)
if cfg.strategy == "ddp"
else cfg.strategy,
}
)
trainer = Trainer(**trainer_kwargs)
# fix for incompatibility with nvidia-dali and pytorch lightning
# with dali 1.15 (this will be fixed on 1.16)
# https://github.com/Lightning-AI/lightning/issues/12956
try:
from pytorch_lightning.loops import FitLoop
class WorkaroundFitLoop(FitLoop):
@property
def prefetch_batches(self) -> int:
return 1
trainer.fit_loop = WorkaroundFitLoop(
trainer.fit_loop.min_epochs, trainer.fit_loop.max_epochs
)
except:
pass
if cfg.data.format == "dali":
trainer.fit(model, ckpt_path=ckpt_path, datamodule=dali_datamodule)
else:
trainer.fit(model, train_loader, val_loader, ckpt_path=ckpt_path)
if __name__ == "__main__":
main()