-
Notifications
You must be signed in to change notification settings - Fork 0
/
mvpa_source_2_memorization.py
286 lines (197 loc) · 8.22 KB
/
mvpa_source_2_memorization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Jul 19 11:01:47 2019
@author: fm897
"""
import numpy as np
import matplotlib.pyplot as plt
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
import mne
from mne.minimum_norm import apply_inverse_epochs, read_inverse_operator
from mne.decoding import (cross_val_multiscore, LinearModel, SlidingEstimator,
get_coef)
print(__doc__)
#from joblib import Parallel, delayed
import csv
with open('/autofs/space/taito_005/users/fahimeh/doc/txt/list_1.txt') as csv_file:
csv_reader = csv.reader(csv_file, delimiter=' ')
subjects = [row[0] for row in csv_reader]
tmin = -.4
tmax = 2.0
event_id = {'1': 1002, '2': 1005, '3': 1008, '4': 1011, '5': 1014, '6': 1017} # just use two
#event_id = {'1': 3002, '2': 3005, '3': 3008, '4': 3011, '5': 3014, '6': 3017} # just use two
data_path = '/autofs/space/voima_001/users/awmrc/'
subjects_dir = '/autofs/space/voima_001/users/awmrc/subjects_mri/'
#def compute_scores(X_split):
# scores = list()
# for idx in range(X_split.shape[1]):
# X_vert = X_split[:, idx, :]
# scores.append(cross_val_multiscore(clf, X_vert, y, cv=5, n_jobs=1))
# print('Score for vert %d of %d = %f' % (idx, X_split.shape[1], scores[-1].mean()))
# print('scores %d' % (scores))
#
# return scores
from sklearn import decomposition
def compute_ml(X,y):
clf = make_pipeline(StandardScaler(), # z-score normalization
# SelectKBest(f_classif, k=300), # select features for speed
SVC(gamma='auto_deprecated'))
pca = decomposition.PCA(n_components=100)
scores = list()
vr=list()
for idx in range(X.shape[1]):
X_vert = X[:, idx, :]
pca.fit(X_vert)
X_vert = pca.transform(X_vert)
v = pca.explained_variance_ratio_
vr.append(np.sum(v[:100]))
scores.append(cross_val_multiscore(clf, X_vert, y, cv=10, n_jobs=1))
print('Score for vert %d of %d = %f' % (idx, X.shape[1],
scores[-1].mean()))
# n_jobs = 5
# parallel = Parallel(n_jobs=n_jobs)
# delayed_scores = delayed(compute_scores)
# scores = parallel(delayed_scores(X_split) for X_split in
# np.array_split(X, n_jobs, axis=1))
scores_mean = np.array(scores).mean(axis=1)
variance_explained =np.array(vr).mean()
return scores_mean, variance_explained
subj_score = list()
snr = 3.0
for subj in subjects[3:4]:
raws = list()
events = list()
if subj == 'awmrc_001':
runs=['2','3','4','5']
else:
runs=['1','2','3','4']
for run in runs:
raw_fname = data_path + subj + '/megdata/' + subj + '_aw_' + run + \
'_0.5_140fil_raw.fif'
eventn = data_path + subj + '/megdata/' + subj + '_aw_' + run + \
'_decim_recode_sss_mergestim-eve.fif'
raws.append(mne.io.read_raw_fif(raw_fname, preload=True))
events.append(mne.read_events(eventn))
first_samps = list()
last_samps = list()
for index in range(len(raws)):
print(index)
raws[index].info['projs'] = []
raws[index].pick_types(meg=True, eog=True, stim=True, eeg=False)
first_samps.append(raws[index].first_samp)
last_samps.append(raws[index].last_samp)
raw = mne.concatenate_raws(raws, preload=True)
raw.filter(0.5, 12., fir_design='firwin')
event = mne.concatenate_events(events,first_samps,last_samps)
epochs = mne.Epochs(raw, event, event_id, tmin, tmax, proj=True,
baseline=(-0.4, -.2), preload=True,
reject=dict(grad=4000e-13, mag=4e-12),
decim=1) # decimate to save memory and increase speed
epochs.pick_types(meg=True) # remove stim and EOG
fname_inv = data_path + subj + '/megdata/' + subj + \
'_aw_0.5_140_calc-inverse_loose_ico4_weight_new_erm_megreg_0_new_MNE_proj-inv.fif'
inverse_operator = read_inverse_operator(fname_inv)
stcs = apply_inverse_epochs(epochs, inverse_operator,
lambda2=1.0 / snr ** 2, verbose=False,
method="dSPM", pick_ori="normal")
"left hemisphere"
Xl = np.array([stc.lh_data for stc in stcs]) # only keep left hemisphere
y = epochs.events[:, 2]
Xr = np.array([stc.rh_data for stc in stcs]) # only keep right hemisphere
save_file = data_path + subj + '/megdata/memorization_' + subj + \
'_aw_source_timeseries_12Hz'
np.savez(save_file, Xl = Xl, Xr = Xr, y = y)
# select time after 0.5
ind_time = np.where(epochs.times>0.5)[0]
scores_meanl, varl = compute_ml(Xl[:,:,ind_time],y)
scores_meanr, varr = compute_ml(Xr[:,:,ind_time],y)
stc = stcs[0] # for convenience, lookup parameters from first stc
#
vertices = [stc.lh_vertno, stc.rh_vertno]
tt = np.concatenate((scores_meanl,scores_meanr),axis=0)
tt = tt.reshape(len(tt),1)
a=np.repeat(tt,len(stc.times),axis=1)
stc_feat = mne.SourceEstimate(a, vertices=vertices,
tmin=stc.tmin, tstep=stc.tstep, subject=subj)
fname = data_path + subj + '/megdata/memorization_' + subj + '_0.5to2s_'+ \
'pca100_aw_decoding_scores'
stc_feat.save(fname)
# brain = stc_feat.plot(subject = subj, views=['lat'], transparent=True,
# initial_time=stc_feat.times[0], time_unit='s',
# subjects_dir=subjects_dir, hemi = 'split', background = 'white',
# clim=dict(kind='value', lims=(0.17, 0.19, 0.21)), size = (1200,600))
#
#
# filen = data_path + subj + '/megdata/alltimes_figure_' + subj + '_aw_decoding_scores.png'
# brain.save_image(filen)
#data_path = '/autofs/space/voima_001/users/awmrc/'
#fname_fwd = data_path + 'awmrc_006/megdata/awmrc_006_aw_1-fwd.fif'
##fname_evoked = data_path + '/MEG/sample/sample_audvis-ave.fif'
#run='1'
#subj='awmrc_006'
#
#raw_fname = data_path + subj + '/megdata/' + subj + '_aw_' + run + '_0.5_140fil_raw.fif'
#
#eventn = data_path + subj + '/megdata/' + subj + '_aw_' + run + '_decim_recode_sss-eve.fif'
#
#fname_cov = data_path + 'awmrc_006/megdata/awmrc_006_erm_1_0.5-140fil-cov.fif'
#
#tmin, tmax = 0, 2.4
#event_id = {'1': 1002, '2': 1005, '3': 1008, '4': 1011, '5': 1014, '6': 1017} # just use two
#
##event_id = {'1': 1002, '2': 1005}
## Setup for reading the raw data
#raw = mne.io.read_raw_fif(raw_fname, preload=True)
#raw.filter(None, 10., fir_design='firwin')
#events = mne.read_events(eventn)
#
## Set up pick list: MEG - bad channels (modify to your needs)
##raw.info['bads'] += ['MEG 2443'] # mark bads
#picks = mne.pick_types(raw.info, meg=True, eeg=False, stim=True, eog=True)
#
## Read epochs
#epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,
# picks=picks, baseline=(None, 0), preload=True,
# reject=dict(grad=4000e-13),
# decim=5) # decimate to save memory and increase speed
#
#noise_cov = mne.read_cov(fname_cov)
#inverse_operator = read_inverse_operator(fname_inv)
#
#stcs = apply_inverse_epochs(epochs, inverse_operator,
# lambda2=1.0 / snr ** 2, verbose=False,
# method="dSPM", pick_ori="normal")
#
#X = np.array([stc.lh_data for stc in stcs]) # only keep left hemisphere
#y = epochs.events[:, 2]
#
## prepare a series of classifier applied at each time sample
#
##scaler = StandardScaler()
##kbest = SelectKBest(f_classif, k=500)
##logistic = LinearModel(LogisticRegression(solver='lbfgs'))
##
##X_scaled = scaler.fit_transform(X, y)
##X_best = kbest.fit_transform(X_scaled, y)
##logistic.fit(X_best, y)
##
##patterns = get_coef(logistic, 'patterns_', inverse_transform=True)
##
##sdfdfdf
#
"""
"""
# time_decod.fit(X, y)
#sdfdfdfd
## Run cross-validated decoding analyses:
#
## Retrieve patterns after inversing the z-score normalization step:
##patterns = get_coef(time_decod, 'patterns_', inverse_transform=True)
#
#
#,multi_class='ovr')