forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 1
/
net.py
81 lines (71 loc) · 3.12 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import math
class WideDeepLayer(nn.Layer):
def __init__(self, sparse_feature_number, sparse_feature_dim,
dense_feature_dim, num_field, layer_sizes):
super(WideDeepLayer, self).__init__()
self.sparse_feature_number = sparse_feature_number
self.sparse_feature_dim = sparse_feature_dim
self.dense_feature_dim = dense_feature_dim
self.num_field = num_field
self.layer_sizes = layer_sizes
self.wide_part = paddle.nn.Linear(
in_features=self.dense_feature_dim,
out_features=1,
weight_attr=paddle.ParamAttr(
initializer=paddle.nn.initializer.TruncatedNormal(
mean=0.0, std=1.0 / math.sqrt(self.dense_feature_dim))))
self.embedding = paddle.nn.Embedding(
self.sparse_feature_number,
self.sparse_feature_dim,
sparse=True,
weight_attr=paddle.ParamAttr(
name="SparseFeatFactors",
initializer=paddle.nn.initializer.Uniform()))
sizes = [sparse_feature_dim * num_field + dense_feature_dim
] + self.layer_sizes + [1]
acts = ["relu" for _ in range(len(self.layer_sizes))] + [None]
self._mlp_layers = []
for i in range(len(layer_sizes) + 1):
linear = paddle.nn.Linear(
in_features=sizes[i],
out_features=sizes[i + 1],
weight_attr=paddle.ParamAttr(
initializer=paddle.nn.initializer.Normal(
std=1.0 / math.sqrt(sizes[i]))))
self.add_sublayer('linear_%d' % i, linear)
self._mlp_layers.append(linear)
if acts[i] == 'relu':
act = paddle.nn.ReLU()
self.add_sublayer('act_%d' % i, act)
self._mlp_layers.append(act)
def forward(self, sparse_inputs, dense_inputs):
# wide part
wide_output = self.wide_part(dense_inputs)
# deep part
sparse_embs = []
for s_input in sparse_inputs:
emb = self.embedding(s_input)
emb = paddle.reshape(emb, shape=[-1, self.sparse_feature_dim])
sparse_embs.append(emb)
deep_output = paddle.concat(x=sparse_embs + [dense_inputs], axis=1)
for n_layer in self._mlp_layers:
deep_output = n_layer(deep_output)
prediction = paddle.add(x=wide_output, y=deep_output)
pred = F.sigmoid(prediction)
return pred