forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcriteo_reader.py
102 lines (97 loc) · 4.2 KB
/
criteo_reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import paddle
from paddle.io import IterableDataset
class RecDataset(IterableDataset):
def __init__(self, file_list, config):
super(RecDataset, self).__init__()
self.file_list = file_list
if config:
use_fleet = config.get("runner.use_fleet", False)
self.inference = config.get("runner.inference", False)
else:
use_fleet = False
if use_fleet:
worker_id = paddle.distributed.get_rank()
worker_num = paddle.distributed.get_world_size()
file_num = len(file_list)
if file_num < worker_num:
raise ValueError(
"The number of data files is less than the number of workers"
)
blocksize = int(file_num / worker_num)
self.file_list = file_list[worker_id * blocksize:(worker_id + 1) *
blocksize]
remainder = file_num - (blocksize * worker_num)
if worker_id < remainder:
self.file_list.append(file_list[-(worker_id + 1)])
self.init()
def init(self):
padding = 0
sparse_slots = "click 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26"
self.sparse_slots = sparse_slots.strip().split(" ")
self.dense_slots = ["dense_feature"]
self.dense_slots_shape = [13]
self.slots = self.sparse_slots + self.dense_slots
self.slot2index = {}
self.visit = {}
for i in range(len(self.slots)):
self.slot2index[self.slots[i]] = i
self.visit[self.slots[i]] = False
self.padding = padding
def __iter__(self):
full_lines = []
self.data = []
for file in self.file_list:
with open(file, "r") as rf:
for l in rf:
line = l.strip().split(" ")
output = [(i, []) for i in self.slots]
for i in line:
slot_feasign = i.split(":")
slot = slot_feasign[0]
if slot not in self.slots:
continue
if slot in self.sparse_slots:
feasign = int(slot_feasign[1])
else:
feasign = float(slot_feasign[1])
output[self.slot2index[slot]][1].append(feasign)
self.visit[slot] = True
for i in self.visit:
slot = i
if not self.visit[slot]:
if i in self.dense_slots:
output[self.slot2index[i]][1].extend(
[self.padding] *
self.dense_slots_shape[self.slot2index[i]])
else:
output[self.slot2index[i]][1].extend(
[self.padding])
else:
self.visit[slot] = False
# sparse
output_list = []
for key, value in output[:-1]:
output_list.append(np.array(value).astype('int64'))
# dense
output_list.append(
np.array(output[-1][1]).astype("float32"))
# list
if self.inference:
yield output_list[1:]
else:
yield output_list