forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathamazon_reader.py
86 lines (80 loc) · 3.15 KB
/
amazon_reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import random
from paddle.io import IterableDataset
class RecDataset(IterableDataset):
def __init__(self, file_list, config):
super(RecDataset, self).__init__()
self.file_list = file_list
self.config = config
self.init()
def init(self):
from operator import mul
padding = 0
sparse_slots = "label userid history cate position target target_cate target_position"
self.sparse_slots = sparse_slots.strip('\n').strip().split(" ")
self.slots = self.sparse_slots
self.slot2index = {}
self.visit = {}
self.batch_size = self.config.get("runner.train_batch_size")
for i in range(len(self.slots)):
self.slot2index[self.slots[i]] = i
self.visit[self.slots[i]] = False
self.padding = padding
def __iter__(self):
full_lines = []
self.data = []
data_set = []
max_len = 0
for file in self.file_list:
with open(file, "r") as rf:
for l in rf:
data_set.append(l)
line = l.strip().split(" ")
len_hist = 0
for i in line:
if i.split(':')[0] == 'history':
len_hist = len_hist + 1
max_len = max(max_len, len_hist)
for l in data_set:
line = l.strip().split(" ")
output = [(i, []) for i in self.slots]
for i in line:
slot_feasign = i.split(":")
slot = slot_feasign[0]
if slot not in self.slots:
continue
feasign = int(slot_feasign[1])
output[self.slot2index[slot]][1].append(feasign)
self.visit[slot] = True
for i in self.visit:
slot = i
if not self.visit[slot]:
output[self.slot2index[i]][1].extend([self.padding])
else:
self.visit[slot] = False
# sparse
output_list = []
#for key, value in output[:-1]:
for i in range(len(output)):
if i == 2 or i == 3 or i == 4:
output_list.append(
np.array(output[i][1] + [0] * (max_len - len(output[i][
1]))).astype('int64'))
else:
output_list.append(np.array(output[i][1]).astype('int64'))
# dense
yield output_list