forked from noterminusgit/statarb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathssim.py
400 lines (340 loc) · 16.1 KB
/
ssim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
#!/usr/bin/env python
from util import *
from regress import *
from loaddata import *
import gc
from collections import defaultdict
import argparse
halfdays = ['20111125', '20120703', '20121123', '20121224']
day_bucket = {
'not' : defaultdict(int),
'pnl' : defaultdict(int),
'trd' : defaultdict(int),
'long' : defaultdict(int),
'short' : defaultdict(int),
}
month_bucket = {
'not' : defaultdict(int),
'pnl' : defaultdict(int),
'trd' : defaultdict(int),
}
time_bucket = {
'not' : defaultdict(int),
'pnl' : defaultdict(int),
'trd' : defaultdict(int),
}
dayofweek_bucket = {
'not' : defaultdict(int),
'pnl' : defaultdict(int),
'trd' : defaultdict(int),
}
cond_bucket = {
'not' : defaultdict(int),
'pnl' : defaultdict(int),
'trd' : defaultdict(int),
}
upnames = 0
downnames = 0
parser = argparse.ArgumentParser(description='G')
parser.add_argument("--file",action="store",dest="file",default=None)
parser.add_argument("--start",action="store",dest="start",default=None)
parser.add_argument("--end",action="store",dest="end",default=None)
parser.add_argument("--fill",action="store",dest='fill',default='vwap')
parser.add_argument("--slipbps",action="store",dest='slipbps',default=0.0001)
parser.add_argument("--fcast",action="store",dest='fcast',default=None)
parser.add_argument("--cond",action="store",dest='cond',default='mkt_cap')
args = parser.parse_args()
fcasts = args.fcast.split(",")
cols = ['split', 'div', 'close', 'iclose', 'bvwap_b', args.cond, 'indname1', 'srisk_pct', 'gdate', 'rating_mean', 'ticker', 'tradable_volume', 'tradable_med_volume_21_y', 'mdvp_y', 'overnight_log_ret', 'date', 'log_ret', 'bvolume', 'capitalization', 'cum_log_ret', 'dpvolume_med_21', 'volat_21_y', 'close_y']
cols.extend(BARRA_FACTORS)
cache_df = load_cache(dateparser.parse(args.start), dateparser.parse(args.end), cols )
cache_df = push_data(cache_df, 'bvwap_b')
cache_df = push_data(cache_df, 'iclose')
trades_df = None
if args.file is not None:
trades_df = pd.read_csv(args.file, parse_dates=True, usecols=['iclose_ts', 'sid', 'vwap_n', 'traded'] )
else:
for pair in fcasts:
fdir, fcast, weight = pair.split(":")
print fdir, fcast, weight
flist = list()
for ff in sorted(glob.glob( "./" + fdir + "/opt/opt." + fcast + ".*.csv")):
m = re.match(r".*opt\." + fcast + "\.(\d{8})_\d{6}.csv", str(ff))
if m is None: continue
d1 = int(m.group(1))
if d1 < int(args.start) or d1 > int(args.end): continue
print "Loading {}".format(ff)
flist.append(pd.read_csv(ff, parse_dates=True))
fcast_trades_df = pd.concat(flist)
fcast_trades_df['iclose_ts'] = pd.to_datetime(fcast_trades_df['iclose_ts'])
fcast_trades_df = fcast_trades_df.set_index(['iclose_ts', 'sid']).sort()
print fcast
print fcast_trades_df.xs(testid, level=1)[['traded','shares']]
if trades_df is None:
trades_df = fcast_trades_df
# trades_df['traded'] = trades_df['traded'].fillna(0) * float(weight)
trades_df['shares'] = trades_df['shares'].fillna(0) * float(weight)
# print trades_df['shares'].xs(testid, level=1).head(50)
else:
trades_df = pd.merge(trades_df, fcast_trades_df, how='outer', left_index=True, right_index=True, suffixes=['', '_dead'])
# trades_df['traded'] = trades_df['traded'].fillna(0) + trades_df['traded_dead'].fillna(0) * float(weight)
trades_df['shares'] = trades_df['shares'].fillna(method='ffill').fillna(0) + trades_df['shares_dead'].fillna(method='ffill').fillna(0) * float(weight)
# print trades_df['traded'].xs(testid, level=1).head()
trades_df = remove_dup_cols(trades_df)
trades_df = pd.merge(trades_df.reset_index(), cache_df.reset_index(), how='left', left_on=['iclose_ts', 'sid'], right_on=['iclose_ts', 'sid'], suffixes=['', '_dead'])
trades_df = remove_dup_cols(trades_df)
trades_df.set_index(['iclose_ts', 'sid'], inplace=True)
cache_df = None
trades_df['forecast_abs'] = np.abs(trades_df['forecast'])
trades_df['cash'] = 0
#trades_df['shares'] = 0
trades_df['pnl'] = 0
trades_df['cum_pnl'] = 0
trades_df['day_pnl'] = 0
lastgroup_df = None
lastday = None
last_ts = None
pnl_last_tot = 0
pnl_last_day_tot = 0
fillslip_tot = 0
traded_tot = 0
totslip = 0
totturnover = 0
cnt = 0
long_names = 0
short_names = 0
if args.fill == "vwap":
print "Filling at vwap..."
trades_df['fillprice'] = trades_df['bvwap_b_n']
print "Bad count: {}".format( len(trades_df) - len(trades_df[ trades_df['fillprice'] > 0 ]) )
trades_df.ix[ (trades_df['fillprice'] <= 0) | (trades_df['fillprice'].isnull()), 'fillprice' ] = trades_df['iclose']
else:
print "Filling at mid..."
trades_df['fillprice'] = trades_df['iclose']
trades_df['pdiff'] = trades_df['fillprice'] - trades_df['iclose']
trades_df['pdiff_pct'] = trades_df['pdiff'] / trades_df['iclose']
trades_df['unfilled'] = trades_df['target'] - trades_df['traded']
trades_df['slip2close'] = (trades_df['close'] - trades_df['fillprice']) / trades_df['fillprice']
####
max_dollars = 4e6
max_adv = 0.02
participation = 0.015
trades_df['max_notional'] = (trades_df['tradable_med_volume_21_y'] * trades_df['close_y'] * max_adv).clip(0, max_dollars)
trades_df['min_notional'] = (-1 * trades_df['tradable_med_volume_21_y'] * trades_df['close_y'] * max_adv).clip(-max_dollars, 0)
trades_df['bvolume_d'] = trades_df['bvolume'].groupby(level='sid').diff()
trades_df.loc[ trades_df['bvolume_d'] < 0, 'bvolume_d'] = trades_df['bvolume']
trades_df = push_data(trades_df, 'bvolume_d')
trades_df['max_trade_shares'] = trades_df[ 'bvolume_d_n' ] * participation
trades_df['min_trade_shares'] = -1 * trades_df['max_trade_shares']
###
trades_df = create_z_score(trades_df, 'srisk_pct')
trades_df = create_z_score(trades_df, 'rating_mean')
trades_df.replace([np.inf, -np.inf], np.nan, inplace=True)
#print trades_df
gc.collect()
for ts, group_df in trades_df.groupby(level='iclose_ts'):
# print "Looking at {}".format(ts)
dayname = ts.strftime("%Y%m%d")
monthname = ts.strftime("%Y%m")
weekdayname = ts.weekday()
timename = ts.strftime("%H%M")
if dayname in halfdays and int(timename) > 1245:
continue
if lastgroup_df is not None:
group_df = pd.merge(group_df.reset_index(), lastgroup_df.reset_index(), how='left', left_on=['sid'], right_on=['sid'], suffixes=['', '_last'])
group_df['iclose_ts'] = ts
group_df.set_index(['iclose_ts', 'sid'], inplace=True)
if dayname != lastday:
group_df['cash_last'] += group_df['shares_last'] * group_df['div'].fillna(0)
group_df['shares_last'] *= group_df['split'].fillna(1)
else:
group_df['shares_last'] = 0
group_df['cash_last'] = 0
group_df['shares1'] = group_df['shares']
group_df['shares_traded'] = group_df['shares'] - group_df['shares_last'].fillna(0)
group_df['shares_traded'] = group_df[['shares_traded', 'max_trade_shares']].min(axis=1)
group_df['shares_traded'] = group_df[['shares_traded', 'min_trade_shares']].max(axis=1)
group_df['shares'] = group_df['shares_last'] + group_df['shares_traded']
group_df['traded2'] = group_df['shares_traded'] * group_df['fillprice']
# print group_df.xs(testid, level=1)[['traded', 'traded2', 'shares1', 'shares', 'shares_last', 'fillprice']]
group_df['traded'] = group_df['traded2']
group_df['cash'] = -1.0 * group_df['traded2'] + group_df['cash_last'].fillna(0)
fillslip_tot += (group_df['pdiff_pct'] * group_df['traded']).sum()
traded_tot += np.abs(group_df['traded']).sum()
# print "Slip2 {} {}".format(fillslip_tot, traded_tot)
markPrice = 'iclose_n'
# if ts.strftime("%H%M") == "1530" or (dayname in halfdays and timename == "1230"):
if ts.strftime("%H%M") == "1545" or (dayname in halfdays and timename == "1245"):
markPrice = 'close'
group_df['slip'] = np.abs(group_df['traded']).fillna(0) * float(args.slipbps)
totslip += group_df['slip'].sum()
group_df['cash'] = group_df['cash'] - group_df['slip']
group_df['pnl'] = trades_df.ix[ group_df.index, 'cum_pnl'] = group_df['shares'] * group_df[markPrice] + group_df['cash']
notional = np.abs(group_df['shares'] * group_df[markPrice]).dropna().sum()
group_df['lsnot'] = group_df['shares'] * group_df[markPrice]
pnl_tot = group_df['pnl'].dropna().sum()
# if lastgroup_df is not None:
# group_df['pnl_diff'] = (group_df['pnl'] - group_df['pnl_last'])
# print group_df['pnl_diff'].order().dropna().head()
# print group_df['pnl_diff'].order().dropna().tail()
pnl_incr = pnl_tot - pnl_last_tot
traded = np.abs(group_df['traded']).fillna(0).sum()
day_bucket['trd'][dayname] += traded
month_bucket['trd'][monthname] += traded
dayofweek_bucket['trd'][weekdayname] += traded
time_bucket['trd'][timename] += traded
# try:
# print group_df.xs(testid, level=1)[['target', 'traded', 'cash', 'shares', 'close', 'iclose', 'shares_last', 'cash_last']]
# except KeyError:
# pass
# print group_df['shares'].describe()
# print group_df[markPrice].describe()
if markPrice == 'close' and notional > 0:
delta = pnl_tot - pnl_last_day_tot
ret = delta/notional
daytraded = day_bucket['trd'][dayname]
notional2 = np.sum(np.abs((group_df['close'] * group_df['position'] / group_df['iclose'])))
print "{}: {} {} {} {:.4f} {:.2f} {}".format(ts, notional, pnl_tot, delta, ret, daytraded/notional, notional2 )
day_bucket['pnl'][dayname] = delta
month_bucket['pnl'][monthname] += delta
dayofweek_bucket['pnl'][weekdayname] += delta
day_bucket['not'][dayname] = notional
day_bucket['long'][dayname] = group_df[ group_df['lsnot'] > 0 ]['lsnot'].dropna().sum()
day_bucket['short'][dayname] = np.abs(group_df[ group_df['lsnot'] < 0 ]['lsnot'].dropna().sum())
month_bucket['not'][monthname] += notional
dayofweek_bucket['not'][weekdayname] += notional
trades_df.ix[ group_df.index, 'day_pnl'] = group_df['pnl'] - group_df['pnl_last']
pnl_last_day_tot = pnl_tot
totturnover += daytraded/notional
short_names += len(group_df[ group_df['traded'] < 0 ])
long_names += len(group_df[ group_df['traded'] > 0 ])
cnt += 1
time_bucket['pnl'][timename] += pnl_incr
time_bucket['not'][timename] = notional
upnames += len(group_df[ group_df['pnl'] > 0 ])
downnames += len(group_df[ group_df['pnl'] < 0 ])
lastgroup_df = group_df.reset_index()[[ 'shares', 'cash', 'pnl', 'sid', 'target']]
lastday = dayname
pnl_last_tot = pnl_tot
last_ts = ts
period = "{}.{}".format(args.start, args.end)
print
print
print "Fill Slip: {}".format(fillslip_tot/traded_tot)
oppslip = (trades_df['unfilled'] * trades_df['slip2close']).sum()
print "Opp slip: {}".format(oppslip)
print "Totslip: {}".format(totslip)
print "Avg turnover: {}".format(totturnover/cnt)
print "Longs: {}".format(long_names/cnt)
print "Shorts: {}".format(short_names/cnt)
print
print "Conditional breakdown"
lastslice = trades_df.xs(last_ts, level='iclose_ts')
condname = args.cond
for ind in INDUSTRIES:
decile = lastslice[ lastslice['indname1'] == ind ]
print "{}: {}".format(ind, decile['cum_pnl'].sum())
lastslice['decile'] = lastslice[condname].rank()/float(len(lastslice)) * 10
lastslice['decile'] = lastslice['decile'].fillna(-1)
lastslice['decile'] = lastslice['decile'].astype(int)
for ii in range (-1,10):
decile = lastslice[ lastslice['decile'] == ii ]
print "{}: {} {}".format(ii, decile[condname].mean(), decile['cum_pnl'].sum())
firstslice = trades_df.xs( min(trades_df.index)[0], level='iclose_ts')
pnlbystock = lastslice['cum_pnl'].fillna(0)
plt.figure()
pnlbystock.hist(bins=1800)
plt.savefig("stocks.png")
maxpnlid = pnlbystock.idxmax()
minpnlid = pnlbystock.idxmin()
print "Max pnl stock pnl distribution: {} {}".format(maxpnlid, pnlbystock.ix[ maxpnlid ])
print "Min pnl stock pnl distribution: {} {}".format(minpnlid, pnlbystock.ix[ minpnlid ])
plt.figure()
maxstock_df = trades_df.xs(maxpnlid, level=1)
maxstock_df['day_pnl'].hist(bins=100)
plt.savefig("maxstock.png")
#maxpnlid = maxstock_df['day_pnl'].idxmax()
#print maxstock_df.xs(maxpnlid)
print
# timeslice = trades_df.xs( "2011-11-25 10:00:00", level='iclose_ts' )
# plt.figure()
# timeslice['day_pnl'].hist()
# plt.savefig("badtimes.png")
print "Factor Pnl"
firstslice = create_z_score(firstslice, 'srisk_pct')
firstslice = create_z_score(firstslice, 'rating_mean')
merge = pd.merge(firstslice.reset_index(), lastslice.reset_index(), left_on=['sid'], right_on=['sid'], suffixes=['_first', '_last'])
print merge.columns
#merge['srisk_pct_z_first'] = merge['srisk_pct_z']
lastnotional = np.abs(lastslice['position']).sum()
for factor in BARRA_FACTORS + PROP_FACTORS:
# pnl = (merge['position_last'] * merge[factor + '_first']).sum()
exposure = (merge['cum_pnl_last'] * merge[factor + '_first']).sum() / lastnotional
pnl = (trades_df['day_pnl'] * trades_df[factor]).sum()
# exposure = (trades_df['position'] * trades_df[factor]).groupby(level='iclose_ts')
print "{}: exposure: {:.2f}, pnl: {}".format(factor, exposure, pnl)
print
print "Forecast-trade corr:"
print trades_df[['forecast', 'traded', 'target']].corr()
plt.figure()
plt.scatter(trades_df['forecast'], trades_df['traded'])
plt.savefig("forecast_trade_corr." + period + ".png")
print
longs = pd.DataFrame([ [d,v] for d, v in sorted(day_bucket['long'].items()) ], columns=['date', 'long'])
longs.set_index(keys=['date'], inplace=True)
shorts = pd.DataFrame([ [d,v] for d, v in sorted(day_bucket['short'].items()) ], columns=['date', 'short'])
shorts.set_index(keys=['date'], inplace=True)
longshorts = pd.merge(longs, shorts, how='inner', left_index=True, right_index=True)
plt.figure()
longshorts[ ['long', 'short'] ].plot()
plt.savefig("longshorts." + period + ".png")
nots = pd.DataFrame([ [d,v] for d, v in sorted(day_bucket['not'].items()) ], columns=['date', 'notional'])
nots.set_index(keys=['date'], inplace=True)
plt.figure()
nots['notional'].plot()
plt.savefig("notional." + period + ".png")
trds = pd.DataFrame([ [d,v] for d, v in sorted(day_bucket['trd'].items()) ], columns=['date', 'traded'])
trds.set_index(keys=['date'], inplace=True)
plt.figure()
trds['traded'].plot()
plt.savefig("traded." + period + ".png")
pnl_df = pd.DataFrame([ [d,v] for d, v in sorted(day_bucket['pnl'].items()) ], columns=['date', 'pnl'])
pnl_df.set_index(['date'], inplace=True)
rets = pd.merge(pnl_df, nots, left_index=True, right_index=True)
rets = pd.merge(rets, trds, left_index=True, right_index=True)
print "Total Pnl: ${:.0f}K".format(rets['pnl'].sum()/1000.0)
rets['day_rets'] = rets['pnl'] / rets['notional'].shift(1)
rets['day_rets'].replace([np.inf, -np.inf], np.nan, inplace=True)
rets['day_rets'].fillna(0, inplace=True)
rets['cum_ret'] = (1 + rets['day_rets']).dropna().cumprod()
plt.figure()
rets['cum_ret'].plot()
plt.draw()
plt.savefig("rets." + period + ".png")
mean = rets['day_rets'].mean() * 252
std = rets['day_rets'].std() * math.sqrt(252)
sharpe = mean/std
print "Day mean: {:.4f} std: {:.4f} sharpe: {:.4f} avg Notional: ${:.0f}K".format(mean, std, sharpe, rets['notional'].mean()/1000.0)
print
print "Month breakdown Bps"
for month in sorted(month_bucket['not'].keys()):
notional = month_bucket['not'][month]
traded = month_bucket['trd'][month]
if notional > 0:
print "Month {}: {:.4f} {:.4f}".format(month, 10000 * month_bucket['pnl'][month]/notional, traded/notional)
print
print "Time breakdown Bps"
for time in sorted(time_bucket['not'].keys()):
notional = time_bucket['not'][time]
traded = time_bucket['trd'][time]
if notional > 0:
print "Time {}: {:.4f} {:.4f}".format(time, 10000 * time_bucket['pnl'][time]/notional, traded/notional)
print
print "Dayofweek breakdown Bps"
for dayofweek in sorted(dayofweek_bucket['not'].keys()):
notional = dayofweek_bucket['not'][dayofweek]
traded = dayofweek_bucket['trd'][dayofweek]
if notional > 0:
print "Dayofweek {}: {:.4f} {:.4f}".format(dayofweek, 10000 * dayofweek_bucket['pnl'][dayofweek]/notional, traded/notional)
print
print "Up %: {:.4f}".format(float(upnames)/(upnames+downnames))