From 42e2c40cbda1348bb8bda51d5445a45d3cd82f56 Mon Sep 17 00:00:00 2001 From: Joe Hendrix Date: Wed, 31 Jan 2024 20:38:07 -0800 Subject: [PATCH] chore: remove Std.Data.List import from Omega (#568) Co-authored-by: Scott Morrison --- Std/Data/List.lean | 1 + Std/Data/List/Basic.lean | 21 ---- Std/Data/List/Init/Basic.lean | 28 +++++ Std/Data/List/Init/Lemmas.lean | 203 +++++++++++++++++++++++++++++- Std/Data/List/Lemmas.lean | 173 ------------------------- Std/Tactic/Omega/IntList.lean | 4 +- Std/Tactic/Omega/LinearCombo.lean | 3 +- Std/Tactic/Omega/MinNatAbs.lean | 3 +- 8 files changed, 238 insertions(+), 198 deletions(-) create mode 100644 Std/Data/List/Init/Basic.lean diff --git a/Std/Data/List.lean b/Std/Data/List.lean index 137c762db9..2c472a904d 100644 --- a/Std/Data/List.lean +++ b/Std/Data/List.lean @@ -1,6 +1,7 @@ import Std.Data.List.Basic import Std.Data.List.Count import Std.Data.List.Init.Attach +import Std.Data.List.Init.Basic import Std.Data.List.Init.Lemmas import Std.Data.List.Lemmas import Std.Data.List.Pairwise diff --git a/Std/Data/List/Basic.lean b/Std/Data/List/Basic.lean index 71540888f8..42c32c7955 100644 --- a/Std/Data/List/Basic.lean +++ b/Std/Data/List/Basic.lean @@ -1438,27 +1438,6 @@ zipRight = zipWithRight prod.mk -/ @[inline] def zipRight : List α → List β → List (Option α × β) := zipWithRight Prod.mk -/-- -Version of `List.zipWith` that continues to the end of both lists, passing `none` to one argument -once the shorter list has run out. --/ --- TODO We should add a tail-recursive version as we do for other `zip` functions above. -def zipWithAll (f : Option α → Option β → γ) : List α → List β → List γ - | [], bs => bs.map fun b => f none (some b) - | a :: as, [] => (a :: as).map fun a => f (some a) none - | a :: as, b :: bs => f a b :: zipWithAll f as bs - -@[simp] theorem zipWithAll_nil_right : - zipWithAll f as [] = as.map fun a => f (some a) none := by - cases as <;> rfl - -@[simp] theorem zipWithAll_nil_left : - zipWithAll f [] bs = bs.map fun b => f none (some b) := by - rw [zipWithAll] - -@[simp] theorem zipWithAll_cons_cons : - zipWithAll f (a :: as) (b :: bs) = f (some a) (some b) :: zipWithAll f as bs := rfl - /-- If all elements of `xs` are `some xᵢ`, `allSome xs` returns the `xᵢ`. Otherwise it returns `none`. diff --git a/Std/Data/List/Init/Basic.lean b/Std/Data/List/Init/Basic.lean new file mode 100644 index 0000000000..7aa74a0a0c --- /dev/null +++ b/Std/Data/List/Init/Basic.lean @@ -0,0 +1,28 @@ +/- +Copyright (c) 2016 Microsoft Corporation. All rights reserved. +Released under Apache 2.0 license as described in the file LICENSE. +Authors: Leonardo de Moura +-/ + +namespace List + +/-- +Version of `List.zipWith` that continues to the end of both lists, passing `none` to one argument +once the shorter list has run out. +-/ +-- TODO We should add a tail-recursive version as we do for other `zip` functions. +def zipWithAll (f : Option α → Option β → γ) : List α → List β → List γ + | [], bs => bs.map fun b => f none (some b) + | a :: as, [] => (a :: as).map fun a => f (some a) none + | a :: as, b :: bs => f a b :: zipWithAll f as bs + +@[simp] theorem zipWithAll_nil_right : + zipWithAll f as [] = as.map fun a => f (some a) none := by + cases as <;> rfl + +@[simp] theorem zipWithAll_nil_left : + zipWithAll f [] bs = bs.map fun b => f none (some b) := by + rw [zipWithAll] + +@[simp] theorem zipWithAll_cons_cons : + zipWithAll f (a :: as) (b :: bs) = f (some a) (some b) :: zipWithAll f as bs := rfl diff --git a/Std/Data/List/Init/Lemmas.lean b/Std/Data/List/Init/Lemmas.lean index 6dca88f867..c78b28ee90 100644 --- a/Std/Data/List/Init/Lemmas.lean +++ b/Std/Data/List/Init/Lemmas.lean @@ -4,6 +4,8 @@ Released under Apache 2.0 license as described in the file LICENSE. Authors: Parikshit Khanna, Jeremy Avigad, Leonardo de Moura, Floris van Doorn, Mario Carneiro -/ import Std.Classes.SetNotation +import Std.Data.Nat.Init.Lemmas +import Std.Data.List.Init.Basic import Std.Logic namespace List @@ -13,7 +15,7 @@ open Nat /-! # Bootstrapping theorems for lists -These are theorems used in the definitions of `Std.Data.List.Basic`. +These are theorems used in the definitions of `Std.Data.List.Basic` and tactics. New theorems should be added to `Std.Data.List.Lemmas` if they are not needed by the bootstrap. -/ @@ -59,6 +61,13 @@ theorem length_eq_zero : length l = 0 ↔ l = [] := ⟨fun h => by cases h <;> simp [Membership.mem, *], fun | Or.inl rfl => by constructor | Or.inr h => by constructor; assumption⟩ +theorem mem_cons_self (a : α) (l : List α) : a ∈ a :: l := .head .. + +theorem mem_cons_of_mem (y : α) {a : α} {l : List α} : a ∈ l → a ∈ y :: l := .tail _ + +theorem eq_nil_iff_forall_not_mem {l : List α} : l = [] ↔ ∀ a, a ∉ l := by + cases l <;> simp + /-! ### append -/ @[simp 1100] theorem singleton_append : [x] ++ l = x :: l := rfl @@ -91,6 +100,9 @@ theorem append_right_inj {t₁ t₂ : List α} (s) : s ++ t₁ = s ++ t₂ ↔ t theorem append_left_inj {s₁ s₂ : List α} (t) : s₁ ++ t = s₂ ++ t ↔ s₁ = s₂ := ⟨fun h => append_inj_left' h rfl, congrArg (· ++ _)⟩ +@[simp] theorem append_eq_nil : p ++ q = [] ↔ p = [] ∧ q = [] := by + cases p <;> simp + /-! ### map -/ @[simp] theorem map_nil {f : α → β} : map f [] = [] := rfl @@ -104,6 +116,12 @@ theorem append_left_inj {s₁ s₂ : List α} (t) : s₁ ++ t = s₂ ++ t ↔ s @[simp] theorem map_id' (l : List α) : map (fun a => a) l = l := by induction l <;> simp_all +@[simp] theorem mem_map {f : α → β} : ∀ {l : List α}, b ∈ l.map f ↔ ∃ a, a ∈ l ∧ f a = b + | [] => by simp + | _ :: l => by simp [mem_map (l := l), eq_comm (a := b)] + +theorem mem_map_of_mem (f : α → β) (h : a ∈ l) : f a ∈ map f l := mem_map.2 ⟨_, h, rfl⟩ + @[simp] theorem map_map (g : β → γ) (f : α → β) (l : List α) : map g (map f l) = map (g ∘ f) l := by induction l <;> simp_all @@ -144,6 +162,11 @@ theorem reverseAux_eq (as bs : List α) : reverseAux as bs = reverse as ++ bs := theorem reverse_map (f : α → β) (l : List α) : (l.map f).reverse = l.reverse.map f := by induction l <;> simp [*] +@[simp] theorem reverse_eq_nil_iff {xs : List α} : xs.reverse = [] ↔ xs = [] := by + match xs with + | [] => simp + | x :: xs => simp + /-! ### nth element -/ theorem get_of_mem : ∀ {a} {l : List α}, a ∈ l → ∃ n, get l n = a @@ -157,6 +180,54 @@ theorem get_mem : ∀ (l : List α) n h, get l ⟨n, h⟩ ∈ l theorem mem_iff_get {a} {l : List α} : a ∈ l ↔ ∃ n, get l n = a := ⟨get_of_mem, fun ⟨_, e⟩ => e ▸ get_mem ..⟩ +theorem get?_len_le : ∀ {l : List α} {n}, length l ≤ n → l.get? n = none + | [], _, _ => rfl + | _ :: l, _+1, h => get?_len_le (l := l) <| Nat.le_of_succ_le_succ h + +theorem get?_eq_get : ∀ {l : List α} {n} (h : n < l.length), l.get? n = some (get l ⟨n, h⟩) + | _ :: _, 0, _ => rfl + | _ :: l, _+1, _ => get?_eq_get (l := l) _ + +theorem get?_eq_some : l.get? n = some a ↔ ∃ h, get l ⟨n, h⟩ = a := + ⟨fun e => + have : n < length l := Nat.gt_of_not_le fun hn => by cases get?_len_le hn ▸ e + ⟨this, by rwa [get?_eq_get this, Option.some.injEq] at e⟩, + fun ⟨h, e⟩ => e ▸ get?_eq_get _⟩ + +@[simp] theorem get?_eq_none : l.get? n = none ↔ length l ≤ n := + ⟨fun e => Nat.ge_of_not_lt (fun h' => by cases e ▸ get?_eq_some.2 ⟨h', rfl⟩), get?_len_le⟩ + +@[simp] theorem get?_map (f : α → β) : ∀ l n, (map f l).get? n = (l.get? n).map f + | [], _ => rfl + | _ :: _, 0 => rfl + | _ :: l, n+1 => get?_map f l n + +@[simp] theorem get?_concat_length : ∀ (l : List α) (a : α), (l ++ [a]).get? l.length = some a + | [], a => rfl + | b :: l, a => by rw [cons_append, length_cons]; simp only [get?, get?_concat_length] + +theorem getLast_eq_get : ∀ (l : List α) (h : l ≠ []), + getLast l h = l.get ⟨l.length - 1, by + match l with + | [] => contradiction + | a :: l => exact Nat.le_refl _⟩ + | [a], h => rfl + | a :: b :: l, h => by + simp [getLast, get, Nat.succ_sub_succ, getLast_eq_get] + +@[simp] theorem getLast?_nil : @getLast? α [] = none := rfl + +theorem getLast?_eq_getLast : ∀ l h, @getLast? α l = some (getLast l h) + | [], h => nomatch h rfl + | _::_, _ => rfl + +theorem getLast?_eq_get? : ∀ (l : List α), getLast? l = l.get? (l.length - 1) + | [] => rfl + | a::l => by rw [getLast?_eq_getLast (a::l) fun., getLast_eq_get, get?_eq_get] + +@[simp] theorem getLast?_concat (l : List α) : getLast? (l ++ [a]) = some a := by + simp [getLast?_eq_get?, Nat.succ_sub_succ] + /-! ### take and drop -/ @[simp] theorem take_append_drop : ∀ (n : Nat) (l : List α), take n l ++ drop n l = l @@ -200,6 +271,14 @@ theorem take_concat_get (l : List α) (i : Nat) (h : i < l.length) : theorem reverse_concat (l : List α) (a : α) : (l.concat a).reverse = a :: l.reverse := by rw [concat_eq_append, reverse_append]; rfl +/-! ### takeWhile and dropWhile -/ + +@[simp] theorem dropWhile_nil : ([] : List α).dropWhile p = [] := rfl + +theorem dropWhile_cons : + (x :: xs : List α).dropWhile p = if p x then xs.dropWhile p else x :: xs := by + split <;> simp_all [dropWhile] + /-! ### foldlM and foldrM -/ @[simp] theorem foldlM_reverse [Monad m] (l : List α) (f : β → α → m β) (b) : @@ -315,6 +394,31 @@ theorem mapM'_eq_mapM [Monad m] [LawfulMonad m] (f : α → m β) (l : List α) theorem find?_cons : (a::as).find? p = match p a with | true => some a | false => as.find? p := rfl +/-! ### filter -/ + +@[simp] theorem filter_nil (p : α → Bool) : filter p [] = [] := rfl + +@[simp] theorem filter_cons_of_pos {p : α → Bool} {a : α} (l) (pa : p a) : + filter p (a :: l) = a :: filter p l := by rw [filter, pa] + +@[simp] theorem filter_cons_of_neg {p : α → Bool} {a : α} (l) (pa : ¬ p a) : + filter p (a :: l) = filter p l := by rw [filter, eq_false_of_ne_true pa] + +theorem filter_cons : + (x :: xs : List α).filter p = if p x then x :: (xs.filter p) else xs.filter p := by + split <;> simp [*] + +theorem mem_filter : x ∈ filter p as ↔ x ∈ as ∧ p x := by + induction as with + | nil => simp [filter] + | cons a as ih => + by_cases h : p a <;> simp [*, or_and_right] + · exact or_congr_left (and_iff_left_of_imp fun | rfl => h).symm + · exact (or_iff_right fun ⟨rfl, h'⟩ => h h').symm + +theorem filter_eq_nil {l} : filter p l = [] ↔ ∀ a ∈ l, ¬p a := by + simp only [eq_nil_iff_forall_not_mem, mem_filter, not_and] + /-! ### findSome? -/ @[simp] theorem findSome?_nil : ([] : List α).findSome? f = none := rfl @@ -361,6 +465,32 @@ theorem lookup_cons [BEq α] {k : α} : zipWith f (a :: as) (b :: bs) = f a b :: zipWith f as bs := by rfl +theorem zipWith_get? {f : α → β → γ} : + (List.zipWith f as bs).get? i = match as.get? i, bs.get? i with + | some a, some b => some (f a b) | _, _ => none := by + induction as generalizing bs i with + | nil => cases bs with + | nil => simp + | cons b bs => simp + | cons a as aih => cases bs with + | nil => simp + | cons b bs => cases i <;> simp_all + +/-! ### zipWithAll -/ + +theorem zipWithAll_get? {f : Option α → Option β → γ} : + (zipWithAll f as bs).get? i = match as.get? i, bs.get? i with + | none, none => .none | a?, b? => some (f a? b?) := by + induction as generalizing bs i with + | nil => induction bs generalizing i with + | nil => simp + | cons b bs bih => cases i <;> simp_all + | cons a as aih => cases bs with + | nil => + specialize @aih [] + cases i <;> simp_all + | cons b bs => cases i <;> simp_all + /-! ### zip -/ @[simp] theorem zip_nil_left : zip ([] : List α) (l : List β) = [] := by @@ -433,3 +563,74 @@ attribute [simp] mapA forA filterAuxM firstM anyM allM findM? findSomeM? -- had attribute `@[simp]`. -- We don't currently provide simp lemmas, -- as this is an internal implementation and they don't seem to be needed. + +/-! ### minimum? -/ + +@[simp] theorem minimum?_nil [Min α] : ([] : List α).minimum? = none := rfl + +-- We don't put `@[simp]` on `minimum?_cons`, +-- because the definition in terms of `foldl` is not useful for proofs. +theorem minimum?_cons [Min α] {xs : List α} : (x :: xs).minimum? = foldl min x xs := rfl + +@[simp] theorem minimum?_eq_none_iff {xs : List α} [Min α] : xs.minimum? = none ↔ xs = [] := by + cases xs <;> simp [minimum?] + +theorem minimum?_mem [Min α] (min_eq_or : ∀ a b : α, min a b = a ∨ min a b = b) : + {xs : List α} → xs.minimum? = some a → a ∈ xs := by + intro xs + match xs with + | nil => simp + | x :: xs => + simp only [minimum?_cons, Option.some.injEq, List.mem_cons] + intro eq + induction xs generalizing x with + | nil => + simp at eq + simp [eq] + | cons y xs ind => + simp at eq + have p := ind _ eq + cases p with + | inl p => + cases min_eq_or x y with | _ q => simp [p, q] + | inr p => simp [p, mem_cons] + +theorem le_minimum?_iff [Min α] [LE α] + (le_min_iff : ∀ a b c : α, a ≤ min b c ↔ a ≤ b ∧ a ≤ c) : + {xs : List α} → xs.minimum? = some a → ∀ x, x ≤ a ↔ ∀ b ∈ xs, x ≤ b + | nil => by simp + | cons x xs => by + rw [minimum?] + intro eq y + simp only [Option.some.injEq] at eq + induction xs generalizing x with + | nil => + simp at eq + simp [eq] + | cons z xs ih => + simp at eq + simp [ih _ eq, le_min_iff, and_assoc] + +-- This could be refactored by designing appropriate typeclasses to replace `le_refl`, `min_eq_or`, +-- and `le_min_iff`. +theorem minimum?_eq_some_iff [Min α] [LE α] [anti : Antisymm ((· : α) ≤ ·)] + (le_refl : ∀ a : α, a ≤ a) + (min_eq_or : ∀ a b : α, min a b = a ∨ min a b = b) + (le_min_iff : ∀ a b c : α, a ≤ min b c ↔ a ≤ b ∧ a ≤ c) {xs : List α} : + xs.minimum? = some a ↔ a ∈ xs ∧ ∀ b ∈ xs, a ≤ b := by + refine ⟨fun h => ⟨minimum?_mem min_eq_or h, (le_minimum?_iff le_min_iff h _).1 (le_refl _)⟩, ?_⟩ + intro ⟨h₁, h₂⟩ + cases xs with + | nil => simp at h₁ + | cons x xs => + exact congrArg some <| anti.1 + ((le_minimum?_iff le_min_iff (xs := x::xs) rfl _).1 (le_refl _) _ h₁) + (h₂ _ (minimum?_mem min_eq_or (xs := x::xs) rfl)) + +-- A specialization of `minimum?_eq_some_iff` to Nat. +theorem minimum?_eq_some_iff' {xs : List Nat} : + xs.minimum? = some a ↔ (a ∈ xs ∧ ∀ b ∈ xs, a ≤ b) := + minimum?_eq_some_iff + (le_refl := Nat.le_refl) + (min_eq_or := fun _ _ => Nat.min_def .. ▸ by split <;> simp) + (le_min_iff := fun _ _ _ => Nat.le_min) diff --git a/Std/Data/List/Lemmas.lean b/Std/Data/List/Lemmas.lean index 89df05e23c..55298fa0d3 100644 --- a/Std/Data/List/Lemmas.lean +++ b/Std/Data/List/Lemmas.lean @@ -58,10 +58,6 @@ theorem length_eq_one {l : List α} : length l = 1 ↔ ∃ a, l = [a] := theorem mem_nil_iff (a : α) : a ∈ ([] : List α) ↔ False := by simp -theorem mem_cons_self (a : α) (l : List α) : a ∈ a :: l := .head .. - -theorem mem_cons_of_mem (y : α) {a : α} {l : List α} : a ∈ l → a ∈ y :: l := .tail _ - @[simp] theorem mem_toArray {a : α} {l : List α} : a ∈ l.toArray ↔ a ∈ l := by simp [Array.mem_def] @@ -133,9 +129,6 @@ theorem drop_eq_get_cons : ∀ {n} {l : List α} (h), drop n l = get l ⟨n, h theorem append_eq_append : List.append l₁ l₂ = l₁ ++ l₂ := rfl -@[simp] theorem append_eq_nil : p ++ q = [] ↔ p = [] ∧ q = [] := by - cases p <;> simp - theorem append_ne_nil_of_ne_nil_left (s t : List α) : s ≠ [] → s ++ t ≠ [] := by simp_all theorem append_ne_nil_of_ne_nil_right (s t : List α) : t ≠ [] → s ++ t ≠ [] := by simp_all @@ -182,12 +175,6 @@ theorem mem_iff_append {a : α} {l : List α} : a ∈ l ↔ ∃ s t : List α, l theorem map_singleton (f : α → β) (a : α) : map f [a] = [f a] := rfl -@[simp] theorem mem_map {f : α → β} : ∀ {l : List α}, b ∈ l.map f ↔ ∃ a, a ∈ l ∧ f a = b - | [] => by simp - | _ :: l => by simp [mem_map (l := l), eq_comm (a := b)] - -theorem mem_map_of_mem (f : α → β) (h : a ∈ l) : f a ∈ map f l := mem_map.2 ⟨_, h, rfl⟩ - theorem exists_of_mem_map (h : b ∈ map f l) : ∃ a, a ∈ l ∧ f a = b := mem_map.1 h theorem forall_mem_map_iff {f : α → β} {l : List α} {P : β → Prop} : @@ -225,17 +212,6 @@ theorem zipWith_foldl_eq_zip_foldl {f : α → β → γ} (i : δ): (zipWith f l₁ l₂).foldl g i = (zip l₁ l₂).foldl (fun r p => g r (f p.1 p.2)) i := by induction l₁ generalizing i l₂ <;> cases l₂ <;> simp_all -theorem zipWith_get? {f : α → β → γ} : - (List.zipWith f as bs).get? i = match as.get? i, bs.get? i with - | some a, some b => some (f a b) | _, _ => none := by - induction as generalizing bs i with - | nil => cases bs with - | nil => simp - | cons b bs => simp - | cons a as aih => cases bs with - | nil => simp - | cons b bs => cases i <;> simp_all - @[simp] theorem zipWith_eq_nil_iff {f : α → β → γ} {l l'} : zipWith f l l' = [] ↔ l = [] ∨ l' = [] := by cases l <;> cases l' <;> simp @@ -286,21 +262,6 @@ theorem zipWith_append (f : α → β → γ) (l la : List α) (l' lb : List β) simp only [length_cons, Nat.succ.injEq] at h simp [ih _ h] -/-! ### zipWithAll -/ - -theorem zipWithAll_get? {f : Option α → Option β → γ} : - (zipWithAll f as bs).get? i = match as.get? i, bs.get? i with - | none, none => .none | a?, b? => some (f a? b?) := by - induction as generalizing bs i with - | nil => induction bs generalizing i with - | nil => simp - | cons b bs bih => cases i <;> simp_all - | cons a as aih => cases bs with - | nil => - specialize @aih [] - cases i <;> simp_all - | cons b bs => cases i <;> simp_all - /-! ### zip -/ @[simp] theorem length_zip (l₁ : List α) (l₂ : List β) : @@ -455,9 +416,6 @@ fun s => Subset.trans s <| subset_append_right _ _ theorem subset_nil {l : List α} : l ⊆ [] ↔ l = [] := ⟨fun h => match l with | [] => rfl | _::_ => nomatch h (.head ..), fun | rfl => Subset.refl _⟩ -theorem eq_nil_iff_forall_not_mem {l : List α} : l = [] ↔ ∀ a, a ∉ l := - subset_nil.symm.trans <| by simp [subset_def] - theorem map_subset {l₁ l₂ : List α} (f : α → β) (H : l₁ ⊆ l₂) : map f l₁ ⊆ map f l₂ := fun x => by simp only [mem_map]; exact .imp fun a => .imp_left (@H _) @@ -692,16 +650,11 @@ theorem getLast_singleton (a h) : @getLast α [a] h = a := rfl theorem getLast!_cons [Inhabited α] : @getLast! α _ (a::l) = getLastD l a := by simp [getLast!, getLast_eq_getLastD] -@[simp] theorem getLast?_nil : @getLast? α [] = none := rfl theorem getLast?_cons : @getLast? α (a::l) = getLastD l a := by simp [getLast?, getLast_eq_getLastD] @[simp] theorem getLast?_singleton (a : α) : getLast? [a] = a := rfl -theorem getLast?_eq_getLast : ∀ l h, @getLast? α l = some (getLast l h) - | [], h => nomatch h rfl - | _::_, _ => rfl - theorem getLast_mem : ∀ {l : List α} (h : l ≠ []), getLast l h ∈ l | [], h => absurd rfl h | [_], _ => .head .. @@ -740,10 +693,6 @@ are often used for theorems about `Array.pop`. -/ @[simp] theorem get_cons_cons_one : (a₁ :: a₂ :: as).get (1 : Fin (as.length + 2)) = a₂ := rfl -theorem get?_eq_get : ∀ {l : List α} {n} (h : n < l.length), l.get? n = some (get l ⟨n, h⟩) - | _ :: _, 0, _ => rfl - | _ :: l, _+1, _ => get?_eq_get (l := l) _ - theorem get!_cons_succ [Inhabited α] (l : List α) (a : α) (n : Nat) : (a::l).get! (n+1) = get! l n := rfl @@ -751,23 +700,10 @@ theorem get!_cons_zero [Inhabited α] (l : List α) (a : α) : (a::l).get! 0 = a theorem get!_nil [Inhabited α] (n : Nat) : [].get! n = (default : α) := rfl -theorem get?_len_le : ∀ {l : List α} {n}, length l ≤ n → l.get? n = none - | [], _, _ => rfl - | _ :: l, _+1, h => get?_len_le (l := l) <| Nat.le_of_succ_le_succ h - theorem get!_len_le [Inhabited α] : ∀ {l : List α} {n}, length l ≤ n → l.get! n = (default : α) | [], _, _ => rfl | _ :: l, _+1, h => get!_len_le (l := l) <| Nat.le_of_succ_le_succ h -theorem get?_eq_some : l.get? n = some a ↔ ∃ h, get l ⟨n, h⟩ = a := - ⟨fun e => - have : n < length l := Nat.lt_of_not_le fun hn => by cases get?_len_le hn ▸ e - ⟨this, by rwa [get?_eq_get this, Option.some.injEq] at e⟩, - fun ⟨h, e⟩ => e ▸ get?_eq_get _⟩ - -@[simp] theorem get?_eq_none : l.get? n = none ↔ length l ≤ n := - ⟨fun e => Nat.le_of_not_lt (fun h' => by cases e ▸ get?_eq_some.2 ⟨h', rfl⟩), get?_len_le⟩ - theorem get?_of_mem {a} {l : List α} (h : a ∈ l) : ∃ n, l.get? n = some a := let ⟨⟨n, _⟩, e⟩ := get_of_mem h; ⟨n, e ▸ get?_eq_get _⟩ @@ -807,11 +743,6 @@ theorem get?_inj rw [mem_iff_get?] exact ⟨_, h₂⟩; exact ⟨_ , h₂.symm⟩ -@[simp] theorem get?_map (f : α → β) : ∀ l n, (map f l).get? n = (l.get? n).map f - | [], _ => rfl - | _ :: _, 0 => rfl - | _ :: l, n+1 => get?_map f l n - @[simp] theorem get_map (f : α → β) {l n} : get (map f l) n = f (get l ⟨n, length_map l f ▸ n.2⟩) := Option.some.inj <| by rw [← get?_eq_get, get?_map, get?_eq_get]; rfl @@ -864,23 +795,6 @@ theorem get?_append {l₁ l₂ : List α} {n : Nat} (hn : n < l₁.length) : length_append .. ▸ Nat.le_add_right .. rw [get?_eq_get hn, get?_eq_get hn', get_append] -theorem getLast_eq_get : ∀ (l : List α) (h : l ≠ []), - getLast l h = l.get ⟨l.length - 1, Nat.sub_lt (length_pos.2 h) Nat.one_pos⟩ - | [a], h => by - rw [getLast_singleton, get_singleton] - | a :: b :: l, h => by rw [getLast_cons', getLast_eq_get (b :: l)]; {rfl}; exact cons_ne_nil b l - -theorem getLast?_eq_get? : ∀ (l : List α), getLast? l = l.get? (l.length - 1) - | [] => rfl - | a::l => by rw [getLast?_eq_getLast (a::l) fun., getLast_eq_get, get?_eq_get] - -@[simp] theorem get?_concat_length : ∀ (l : List α) (a : α), (l ++ [a]).get? l.length = some a - | [], a => rfl - | b :: l, a => by rw [cons_append, length_cons]; simp only [get?, get?_concat_length] - -@[simp] theorem getLast?_concat (l : List α) : getLast? (l ++ [a]) = some a := by - simp [getLast?_eq_get?] - @[simp] theorem getLastD_concat (a b l) : @getLastD α (l ++ [b]) a = b := by rw [getLastD_eq_getLast?, getLast?_concat]; rfl @@ -1184,9 +1098,6 @@ theorem all_eq_not_any_not (l : List α) (p : α → Bool) : l.all p = !l.any (! @[simp] theorem mem_reverse {x : α} {as : List α} : x ∈ reverse as ↔ x ∈ as := by simp [reverse] -@[simp] theorem reverse_eq_nil_iff {xs : List α} : xs.reverse = [] ↔ xs = [] := by - induction xs <;> simp - /-! ### insert -/ section insert @@ -1406,18 +1317,6 @@ end erase /-! ### filter and partition -/ -@[simp] theorem filter_nil (p : α → Bool) : filter p [] = [] := rfl - -@[simp] theorem filter_cons_of_pos {p : α → Bool} {a : α} (l) (pa : p a) : - filter p (a :: l) = a :: filter p l := by rw [filter, pa] - -@[simp] theorem filter_cons_of_neg {p : α → Bool} {a : α} (l) (pa : ¬ p a) : - filter p (a :: l) = filter p l := by rw [filter, eq_false_of_ne_true pa] - -theorem filter_cons : - (x :: xs : List α).filter p = if p x then x :: (xs.filter p) else xs.filter p := by - split <;> simp [*] - @[simp] theorem filter_append {p : α → Bool} : ∀ (l₁ l₂ : List α), filter p (l₁ ++ l₂) = filter p l₁ ++ filter p l₂ | [], l₂ => rfl @@ -1427,14 +1326,6 @@ theorem filter_cons : | [] => .slnil | a :: l => by rw [filter]; split <;> simp [Sublist.cons, Sublist.cons₂, filter_sublist l] -theorem mem_filter : x ∈ filter p as ↔ x ∈ as ∧ p x := by - induction as with - | nil => simp [filter] - | cons a as ih => - by_cases h : p a <;> simp [*, or_and_right] - · exact or_congr_left (and_iff_left_of_imp fun | rfl => h).symm - · exact (or_iff_right fun ⟨rfl, h'⟩ => h h').symm - @[simp] theorem partition_eq_filter_filter (p : α → Bool) (l : List α) : partition p l = (filter p l, filter (not ∘ p) l) := by simp [partition, aux] where aux : ∀ l {as bs}, partition.loop p l (as, bs) = @@ -1543,9 +1434,6 @@ theorem map_filter (f : β → α) (l : List β) : filter p (map f l) = map f (f | [] => rfl | a :: l => by by_cases hp : p a <;> by_cases hq : q a <;> simp [hp, hq, filter_filter _ l] -theorem filter_eq_nil {l} : filter p l = [] ↔ ∀ a ∈ l, ¬p a := by - simp only [eq_nil_iff_forall_not_mem, mem_filter, not_and] - theorem filter_eq_self {l} : filter p l = l ↔ ∀ a ∈ l, p a := by induction l with simp | cons a l ih => @@ -2191,12 +2079,6 @@ theorem disjoint_take_drop : ∀ {l : List α}, l.Nodup → m ≤ n → Disjoint | [] => rfl | x :: xs => by simp [takeWhile, dropWhile]; cases p x <;> simp [takeWhile_append_dropWhile p xs] -@[simp] theorem dropWhile_nil : ([] : List α).dropWhile p = [] := rfl - -theorem dropWhile_cons : - (x :: xs : List α).dropWhile p = if p x then xs.dropWhile p else x :: xs := by - split <;> simp_all [dropWhile] - theorem dropWhile_append {xs ys : List α} : (xs ++ ys).dropWhile p = if (xs.dropWhile p).isEmpty then ys.dropWhile p else xs.dropWhile p ++ ys := by @@ -2404,61 +2286,6 @@ theorem reverse_range' : ∀ s n : Nat, reverse (range' s n) = map (s + n - 1 - @[simp] theorem enum_length : (enum l).length = l.length := enumFrom_length -/-! ### minimum? -/ - -@[simp] theorem minimum?_nil [Min α] : ([] : List α).minimum? = none := rfl - --- We don't put `@[simp]` on `minimum?_cons`, --- because the definition in terms of `foldl` is not useful for proofs. -theorem minimum?_cons [Min α] {xs : List α} : (x :: xs).minimum? = foldl min x xs := rfl - -@[simp] theorem minimum?_eq_none_iff {xs : List α} [Min α] : xs.minimum? = none ↔ xs = [] := by - cases xs <;> simp [minimum?] - -theorem minimum?_mem [Min α] (min_eq_or : ∀ a b : α, min a b = a ∨ min a b = b) : - {xs : List α} → xs.minimum? = some a → a ∈ xs - | nil => by simp - | cons x xs => by - rw [minimum?]; rintro ⟨⟩ - induction xs generalizing x with simp at * - | cons y xs ih => - rcases ih (min x y) with h | h <;> simp [h] - simp [← or_assoc, min_eq_or x y] - -theorem le_minimum?_iff [Min α] [LE α] - (le_min_iff : ∀ a b c : α, a ≤ min b c ↔ a ≤ b ∧ a ≤ c) : - {xs : List α} → xs.minimum? = some a → ∀ x, x ≤ a ↔ ∀ b ∈ xs, x ≤ b - | nil => by simp - | cons x xs => by - rw [minimum?]; rintro ⟨⟩ y - induction xs generalizing x with - | nil => simp - | cons y xs ih => simp [ih, le_min_iff, and_assoc] - --- This could be refactored by designing appropriate typeclasses to replace `le_refl`, `min_eq_or`, --- and `le_min_iff`. -theorem minimum?_eq_some_iff [Min α] [LE α] [anti : Antisymm ((· : α) ≤ ·)] - (le_refl : ∀ a : α, a ≤ a) - (min_eq_or : ∀ a b : α, min a b = a ∨ min a b = b) - (le_min_iff : ∀ a b c : α, a ≤ min b c ↔ a ≤ b ∧ a ≤ c) {xs : List α} : - xs.minimum? = some a ↔ a ∈ xs ∧ ∀ b ∈ xs, a ≤ b := by - refine ⟨fun h => ⟨minimum?_mem min_eq_or h, (le_minimum?_iff le_min_iff h _).1 (le_refl _)⟩, ?_⟩ - intro ⟨h₁, h₂⟩ - cases xs with - | nil => simp at h₁ - | cons x xs => - exact congrArg some <| anti.1 - ((le_minimum?_iff le_min_iff (xs := x::xs) rfl _).1 (le_refl _) _ h₁) - (h₂ _ (minimum?_mem min_eq_or (xs := x::xs) rfl)) - --- A specialization of `minimum?_eq_some_iff` to Nat. -theorem minimum?_eq_some_iff' {xs : List Nat} : - xs.minimum? = some a ↔ (a ∈ xs ∧ ∀ b ∈ xs, a ≤ b) := - minimum?_eq_some_iff - (le_refl := Nat.le_refl) - (min_eq_or := fun _ _ => Nat.min_def .. ▸ by split <;> simp) - (le_min_iff := fun _ _ _ => Nat.le_min) - /-! ### maximum? -/ @[simp] theorem maximum?_nil [Max α] : ([] : List α).maximum? = none := rfl diff --git a/Std/Tactic/Omega/IntList.lean b/Std/Tactic/Omega/IntList.lean index c96044c62b..f50d5e5712 100644 --- a/Std/Tactic/Omega/IntList.lean +++ b/Std/Tactic/Omega/IntList.lean @@ -3,10 +3,12 @@ Copyright (c) 2023 Lean FRO, LLC. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ -import Std.Data.List.Lemmas +import Std.Data.List.Init.Lemmas import Std.Data.Nat.Gcd import Std.Data.Int.DivMod +import Std.Data.Option.Lemmas import Std.Tactic.Replace +import Std.Tactic.Simpa /-- A type synonym for `List Int`, used by `omega` for dense representation of coefficients. diff --git a/Std/Tactic/Omega/LinearCombo.lean b/Std/Tactic/Omega/LinearCombo.lean index 9f71deb9af..13d2a21955 100644 --- a/Std/Tactic/Omega/LinearCombo.lean +++ b/Std/Tactic/Omega/LinearCombo.lean @@ -6,6 +6,7 @@ Authors: Scott Morrison -- replace `IntList` with `IntDict` here to use sparse representations import Std.Tactic.Omega.Coeffs.IntList +import Std.Tactic.Ext /-! # Linear combinations @@ -23,7 +24,7 @@ structure LinearCombo where /-- Constant term. -/ const : Int := 0 /-- Coefficients of the atoms. -/ - coeffs : Coeffs := {} + coeffs : Coeffs := [] deriving DecidableEq, Repr namespace LinearCombo diff --git a/Std/Tactic/Omega/MinNatAbs.lean b/Std/Tactic/Omega/MinNatAbs.lean index f04003e638..8b50ca63b5 100644 --- a/Std/Tactic/Omega/MinNatAbs.lean +++ b/Std/Tactic/Omega/MinNatAbs.lean @@ -3,8 +3,9 @@ Copyright (c) 2023 Lean FRO, LLC. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ -import Std.Data.List.Lemmas +import Std.Data.List.Init.Lemmas import Std.Data.Int.Order +import Std.Data.Option.Lemmas import Std.Tactic.LeftRight /-!