forked from mfem/mfem
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex28p.cpp
371 lines (331 loc) · 12.6 KB
/
ex28p.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
// MFEM Example 28 - Parallel Version
//
// Compile with: make ex28p
//
// Sample runs: ex28p
// ex28p --visit-datafiles
// ex28p --order 4
// ex28p --penalty 1e+5
//
// mpirun -np 4 ex28p
// mpirun -np 4 ex28p --penalty 1e+5
//
// Description: Demonstrates a sliding boundary condition in an elasticity
// problem. A trapezoid, roughly as pictured below, is pushed
// from the right into a rigid notch. Normal displacement is
// restricted, but tangential movement is allowed, so the
// trapezoid compresses into the notch.
//
// /-------+
// normal constrained --->/ | <--- boundary force (2)
// boundary (4) /---------+
// ^
// |
// normal constrained boundary (1)
//
// This example demonstrates the use of the ConstrainedSolver
// framework.
//
// We recommend viewing Example 2 before viewing this example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
// Return a mesh with a single element with vertices (0, 0), (1, 0), (1, 1),
// (offset, 1) to demonstrate boundary conditions on a surface that is not
// axis-aligned.
Mesh * build_trapezoid_mesh(real_t offset)
{
MFEM_VERIFY(offset < 0.9, "offset is too large!");
const int dimension = 2;
const int nvt = 4; // vertices
const int nbe = 4; // num boundary elements
Mesh * mesh = new Mesh(dimension, nvt, 1, nbe);
// vertices
real_t vc[dimension];
vc[0] = 0.0; vc[1] = 0.0;
mesh->AddVertex(vc);
vc[0] = 1.0; vc[1] = 0.0;
mesh->AddVertex(vc);
vc[0] = offset; vc[1] = 1.0;
mesh->AddVertex(vc);
vc[0] = 1.0; vc[1] = 1.0;
mesh->AddVertex(vc);
// element
Array<int> vert(4);
vert[0] = 0; vert[1] = 1; vert[2] = 3; vert[3] = 2;
mesh->AddQuad(vert, 1);
// boundary
Array<int> sv(2);
sv[0] = 0; sv[1] = 1;
mesh->AddBdrSegment(sv, 1);
sv[0] = 1; sv[1] = 3;
mesh->AddBdrSegment(sv, 2);
sv[0] = 2; sv[1] = 3;
mesh->AddBdrSegment(sv, 3);
sv[0] = 0; sv[1] = 2;
mesh->AddBdrSegment(sv, 4);
mesh->FinalizeQuadMesh(1, 0, true);
return mesh;
}
int main(int argc, char *argv[])
{
#ifdef HYPRE_USING_GPU
cout << "\nAs of mfem-4.3 and hypre-2.22.0 (July 2021) this example\n"
<< "is NOT supported with the GPU version of hypre.\n\n";
return MFEM_SKIP_RETURN_VALUE;
#endif
// 1. Initialize MPI and HYPRE.
Mpi::Init(argc, argv);
int num_procs = Mpi::WorldSize();
int myid = Mpi::WorldRank();
Hypre::Init();
// 2. Parse command-line options.
int order = 1;
bool visualization = 1;
bool reorder_space = false;
real_t offset = 0.3;
bool visit = false;
real_t penalty = 0.0;
OptionsParser args(argc, argv);
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree).");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.AddOption(&reorder_space, "-nodes", "--by-nodes", "-vdim", "--by-vdim",
"Use byNODES ordering of vector space instead of byVDIM");
args.AddOption(&offset, "--offset", "--offset",
"How much to offset the trapezoid.");
args.AddOption(&visit, "-visit", "--visit-datafiles", "-no-visit",
"--no-visit-datafiles",
"Save data files for VisIt (visit.llnl.gov) visualization.");
args.AddOption(&penalty, "-p", "--penalty",
"Penalty parameter; 0 means use elimination solver.");
args.Parse();
if (!args.Good())
{
if (myid == 0)
{
args.PrintUsage(cout);
}
return 1;
}
if (myid == 0)
{
args.PrintOptions(cout);
}
// 3. Build a trapezoidal mesh with a single quadrilateral element, where
// 'offset' determines how far off it is from a rectangle.
Mesh *mesh = build_trapezoid_mesh(offset);
int dim = mesh->Dimension();
// 4. Refine the serial mesh on all processors to increase the resolution. In
// this example we do 'ref_levels' of uniform refinement. We choose
// 'ref_levels' to be the largest number that gives a final mesh with no
// more than 1,000 elements.
{
int ref_levels =
(int)floor(log(1000./mesh->GetNE())/log(2.)/dim);
for (int l = 0; l < ref_levels; l++)
{
mesh->UniformRefinement();
}
}
// 5. Define a parallel mesh by a partitioning of the serial mesh. Refine
// this mesh further in parallel to increase the resolution. Once the
// parallel mesh is defined, the serial mesh can be deleted.
ParMesh *pmesh = new ParMesh(MPI_COMM_WORLD, *mesh);
delete mesh;
{
int par_ref_levels = 1;
for (int l = 0; l < par_ref_levels; l++)
{
pmesh->UniformRefinement();
}
}
// 6. Define a parallel finite element space on the parallel mesh. Here we
// use vector finite elements, i.e. dim copies of a scalar finite element
// space. We use the ordering by vector dimension (the last argument of
// the FiniteElementSpace constructor) which is expected in the systems
// version of BoomerAMG preconditioner. For NURBS meshes, we use the
// (degree elevated) NURBS space associated with the mesh nodes.
FiniteElementCollection *fec;
ParFiniteElementSpace *fespace;
const bool use_nodal_fespace = pmesh->NURBSext;
if (use_nodal_fespace)
{
fec = NULL;
fespace = (ParFiniteElementSpace *)pmesh->GetNodes()->FESpace();
}
else
{
fec = new H1_FECollection(order, dim);
if (reorder_space)
{
fespace = new ParFiniteElementSpace(pmesh, fec, dim, Ordering::byNODES);
}
else
{
fespace = new ParFiniteElementSpace(pmesh, fec, dim, Ordering::byVDIM);
}
}
HYPRE_BigInt size = fespace->GlobalTrueVSize();
if (myid == 0)
{
cout << "Number of finite element unknowns: " << size << endl
<< "Assembling matrix and r.h.s... " << flush;
}
// 7. Determine the list of true (i.e. parallel conforming) essential
// boundary dofs. In this example, there are no essential boundary
// conditions in the usual sense, but we leave the machinery here for
// users to modify if they wish.
Array<int> ess_tdof_list, ess_bdr(pmesh->bdr_attributes.Max());
ess_bdr = 0;
fespace->GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
// 8. Set up the parallel linear form b(.) which corresponds to the
// right-hand side of the FEM linear system. In this case, b_i equals the
// boundary integral of f*phi_i where f represents a "pull down" force on
// the Neumann part of the boundary and phi_i are the basis functions in
// the finite element fespace. The force is defined by the object f, which
// is a vector of Coefficient objects. The fact that f is non-zero on
// boundary attribute 2 is indicated by the use of piece-wise constants
// coefficient for its last component.
VectorArrayCoefficient f(dim);
for (int i = 0; i < dim-1; i++)
{
f.Set(i, new ConstantCoefficient(0.0));
}
// 9. Put a leftward force on the right side of the trapezoid
{
Vector push_force(pmesh->bdr_attributes.Max());
push_force = 0.0;
push_force(1) = -5.0e-2; // index 1 attribute 2
f.Set(0, new PWConstCoefficient(push_force));
}
ParLinearForm *b = new ParLinearForm(fespace);
b->AddBoundaryIntegrator(new VectorBoundaryLFIntegrator(f));
b->Assemble();
// 10. Define the solution vector x as a parallel finite element grid
// function corresponding to fespace. Initialize x with initial guess of
// zero, which satisfies the boundary conditions.
ParGridFunction x(fespace);
x = 0.0;
// 11. Set up the parallel bilinear form a(.,.) on the finite element space
// corresponding to the linear elasticity integrator with piece-wise
// constants coefficient lambda and mu. We use constant coefficients,
// but see ex2 for how to set up piecewise constant coefficients based
// on attribute.
Vector lambda(pmesh->attributes.Max());
lambda = 1.0;
PWConstCoefficient lambda_func(lambda);
Vector mu(pmesh->attributes.Max());
mu = 1.0;
PWConstCoefficient mu_func(mu);
ParBilinearForm *a = new ParBilinearForm(fespace);
a->AddDomainIntegrator(new ElasticityIntegrator(lambda_func, mu_func));
// 12. Assemble the parallel bilinear form and the corresponding linear
// system, applying any necessary transformations such as: parallel
// assembly, eliminating boundary conditions, applying conforming
// constraints for non-conforming AMR, etc.
a->Assemble();
HypreParMatrix A;
Vector B, X;
a->FormLinearSystem(ess_tdof_list, x, *b, A, X, B);
if (myid == 0)
{
cout << "done." << endl;
cout << "Size of linear system: " << A.GetGlobalNumRows() << endl;
}
// 13. Set up constraint matrix to constrain normal displacement (but
// allow tangential displacement) on specified boundaries.
Array<int> constraint_atts(2);
constraint_atts[0] = 1; // attribute 1 bottom
constraint_atts[1] = 4; // attribute 4 left side
Array<int> constraint_rowstarts;
SparseMatrix* local_constraints =
ParBuildNormalConstraints(*fespace, constraint_atts,
constraint_rowstarts);
// 14. Define and apply a parallel PCG solver for the constrained system
// where the normal boundary constraints have been separately eliminated
// from the system.
ConstrainedSolver * solver;
if (penalty == 0.0)
{
solver = new EliminationCGSolver(A, *local_constraints,
constraint_rowstarts, dim,
reorder_space);
}
else
{
solver = new PenaltyPCGSolver(A, *local_constraints, penalty,
dim, reorder_space);
}
solver->SetRelTol(1e-8);
solver->SetMaxIter(500);
solver->SetPrintLevel(1);
solver->Mult(B, X);
// 15. Recover the parallel grid function corresponding to X. This is the
// local finite element solution on each processor.
a->RecoverFEMSolution(X, *b, x);
// 16. For non-NURBS meshes, make the mesh curved based on the finite element
// space. This means that we define the mesh elements through a fespace
// based transformation of the reference element. This allows us to save
// the displaced mesh as a curved mesh when using high-order finite
// element displacement field. We assume that the initial mesh (read from
// the file) is not higher order curved mesh compared to the chosen FE
// space.
if (!use_nodal_fespace)
{
pmesh->SetNodalFESpace(fespace);
}
GridFunction *nodes = pmesh->GetNodes();
*nodes += x;
// 17. Save the refined mesh and the solution in VisIt format.
if (visit)
{
VisItDataCollection visit_dc(MPI_COMM_WORLD, "ex28p", pmesh);
visit_dc.SetLevelsOfDetail(4);
visit_dc.RegisterField("displacement", &x);
visit_dc.Save();
}
// 18. Save in parallel the displaced mesh and the inverted solution (which
// gives the backward displacements to the original grid). This output
// can be viewed later using GLVis: "glvis -np <np> -m mesh -g sol".
{
x *= -1; // sign convention for GLVis displacements
ostringstream mesh_name, sol_name;
mesh_name << "mesh." << setfill('0') << setw(6) << myid;
sol_name << "sol." << setfill('0') << setw(6) << myid;
ofstream mesh_ofs(mesh_name.str().c_str());
mesh_ofs.precision(8);
pmesh->Print(mesh_ofs);
ofstream sol_ofs(sol_name.str().c_str());
sol_ofs.precision(8);
x.Save(sol_ofs);
}
// 19. Send the above data by socket to a GLVis server. Use the "n" and "b"
// keys in GLVis to visualize the displacements.
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock(vishost, visport);
sol_sock << "parallel " << num_procs << " " << myid << "\n";
sol_sock.precision(8);
sol_sock << "solution\n" << *pmesh << x << flush;
}
// 20. Free the used memory.
delete local_constraints;
delete solver;
delete a;
delete b;
if (fec)
{
delete fespace;
delete fec;
}
delete pmesh;
// HYPRE_Finalize();
return 0;
}