forked from mfem/mfem
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex20.cpp
303 lines (277 loc) · 8.98 KB
/
ex20.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
// MFEM Example 20
//
// Compile with: make ex20
//
// Sample runs: ex20
// ex20 -p 1 -o 1 -n 120 -dt 0.1
// ex20 -p 1 -o 2 -n 60 -dt 0.2
// ex20 -p 1 -o 3 -n 40 -dt 0.3
// ex20 -p 1 -o 4 -n 30 -dt 0.4
//
// Description: This example demonstrates the use of the variable order,
// symplectic ODE integration algorithm. Symplectic integration
// algorithms are designed to conserve energy when integrating, in
// time, systems of ODEs which are derived from Hamiltonian
// systems.
//
// Hamiltonian systems define the energy of a system as a function
// of time (t), a set of generalized coordinates (q), and their
// corresponding generalized momenta (p).
//
// H(q,p,t) = T(p) + V(q,t)
//
// Hamilton's equations then specify how q and p evolve in time:
//
// dq/dt = dH/dp
// dp/dt = -dH/dq
//
// To use the symplectic integration classes we need to define an
// mfem::Operator P which evaluates the action of dH/dp, and an
// mfem::TimeDependentOperator F which computes -dH/dq.
//
// This example offers five simple 1D Hamiltonians:
// 0) Simple Harmonic Oscillator (mass on a spring)
// H = ( p^2 / m + q^2 / k ) / 2
// 1) Pendulum
// H = ( p^2 / m - k ( 1 - cos(q) ) ) / 2
// 2) Gaussian Potential Well
// H = ( p^2 / m ) / 2 - k exp(-q^2 / 2)
// 3) Quartic Potential
// H = ( p^2 / m + k ( 1 + q^2 ) q^2 ) / 2
// 4) Negative Quartic Potential
// H = ( p^2 / m + k ( 1 - q^2 /8 ) q^2 ) / 2
//
// In all cases these Hamiltonians are shifted by constant values
// so that the energy will remain positive. The mean and standard
// deviation of the computed energies at each time step are
// displayed upon completion.
//
// We then use GLVis to visualize the results in a non-standard way
// by defining the axes to be q, p, and t rather than x, y, and z.
// In this space we build a ribbon-like mesh with nodes at (0,0,t)
// and (q,p,t). Finally we plot the energy as a function of time
// as a scalar field on this ribbon-like mesh.
//
// For a more traditional plot of the results, including q, p, and
// H, can be obtained by selecting the "-gp" option. This creates
// a data file and input deck for the GnuPlot application (not
// included with MFEM). To visualize these results on most Linux
// systems type the command "gnuplot gnuplot_ex20.inp". The data
// file, named "ex20.dat", should be simple enough to display with
// other plotting programs as well.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
// Constants used in the Hamiltonian
static int prob_ = 0;
static real_t m_ = 1.0;
static real_t k_ = 1.0;
// Hamiltonian functional, see below for implementation
real_t hamiltonian(real_t q, real_t p, real_t t);
class GradT : public Operator
{
public:
GradT() : Operator(1) {}
void Mult(const Vector &x, Vector &y) const override { y.Set(1.0/m_, x); }
};
class NegGradV : public TimeDependentOperator
{
public:
NegGradV() : TimeDependentOperator(1) {}
void Mult(const Vector &x, Vector &y) const override;
};
int main(int argc, char *argv[])
{
// 1. Parse command-line options.
int order = 1;
int nsteps = 100;
real_t dt = 0.1;
bool visualization = true;
bool gnuplot = false;
OptionsParser args(argc, argv);
args.AddOption(&order, "-o", "--order",
"Time integration order.");
args.AddOption(&prob_, "-p", "--problem-type",
"Problem Type:\n"
"\t 0 - Simple Harmonic Oscillator\n"
"\t 1 - Pendulum\n"
"\t 2 - Gaussian Potential Well\n"
"\t 3 - Quartic Potential\n"
"\t 4 - Negative Quartic Potential");
args.AddOption(&nsteps, "-n", "--number-of-steps",
"Number of time steps.");
args.AddOption(&dt, "-dt", "--time-step",
"Time step size.");
args.AddOption(&m_, "-m", "--mass",
"Mass.");
args.AddOption(&k_, "-k", "--spring-const",
"Spring constant.");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.AddOption(&gnuplot, "-gp", "--gnuplot", "-no-gp", "--no-gnuplot",
"Enable or disable GnuPlot visualization.");
args.Parse();
if (!args.Good())
{
args.PrintUsage(cout);
return 1;
}
args.PrintOptions(cout);
// 2. Create and Initialize the Symplectic Integration Solver
SIAVSolver siaSolver(order);
GradT P;
NegGradV F;
siaSolver.Init(P,F);
// 3. Set the initial conditions
real_t t = 0.0;
Vector q(1), p(1);
Vector e(nsteps+1);
q(0) = 0.0;
p(0) = 1.0;
// 4. Prepare GnuPlot output file if needed
ofstream ofs;
if (gnuplot)
{
ofs.open("ex20.dat");
ofs << t << "\t" << q(0) << "\t" << p(0) << endl;
}
// 5. Create a Mesh for visualization in phase space
int nverts = (visualization) ? 2*(nsteps+1) : 0;
int nelems = (visualization) ? nsteps : 0;
Mesh mesh(2, nverts, nelems, 0, 3);
int v[4];
Vector x0(3); x0 = 0.0;
Vector x1(3); x1 = 0.0;
// 6. Perform time-stepping
real_t e_mean = 0.0;
for (int i = 0; i < nsteps; i++)
{
// 6a. Record initial state
if (i == 0)
{
e[0] = hamiltonian(q(0),p(0),t);
e_mean += e[0];
if (visualization)
{
x1[0] = q(0);
x1[1] = p(0);
x1[2] = 0.0;
mesh.AddVertex(x0);
mesh.AddVertex(x1);
}
}
// 6b. Advance the state of the system
siaSolver.Step(q,p,t,dt);
e[i+1] = hamiltonian(q(0),p(0),t);
e_mean += e[i+1];
// 6c. Record the state of the system
if (gnuplot)
{
ofs << t << "\t" << q(0) << "\t" << p(0) << "\t" << e[i+1] << endl;
}
// 6d. Add results to GLVis visualization
if (visualization)
{
x0[2] = t;
x1[0] = q(0);
x1[1] = p(0);
x1[2] = t;
mesh.AddVertex(x0);
mesh.AddVertex(x1);
v[0] = 2*i;
v[1] = 2*(i+1);
v[2] = 2*(i+1)+1;
v[3] = 2*i+1;
mesh.AddQuad(v);
}
}
// 7. Compute and display mean and standard deviation of the energy
e_mean /= (nsteps + 1);
real_t e_var = 0.0;
for (int i=0; i<=nsteps; i++)
{
e_var += pow(e[i] - e_mean, 2);
}
e_var /= (nsteps + 1);
real_t e_sd = sqrt(e_var);
cout << endl << "Mean and standard deviation of the energy" << endl;
cout << e_mean << "\t" << e_sd << endl;
// 8. Finalize the GnuPlot output
if (gnuplot)
{
ofs.close();
ofs.open("gnuplot_ex20.inp");
ofs << "plot 'ex20.dat' using 1:2 w l t 'q', "
<< "'ex20.dat' using 1:3 w l t 'p', "
<< "'ex20.dat' using 1:4 w l t 'H'" << endl;
ofs.close();
}
// 9. Finalize the GLVis output
if (visualization)
{
mesh.FinalizeQuadMesh(1);
H1_FECollection fec(order = 1, 2);
FiniteElementSpace fespace(&mesh, &fec);
GridFunction energy(&fespace);
energy = 0.0;
for (int i = 0; i <= nsteps; i++)
{
energy[2*i+0] = e[i];
energy[2*i+1] = e[i];
}
char vishost[] = "localhost";
int visport = 19916;
socketstream sock(vishost, visport);
sock.precision(8);
sock << "solution\n" << mesh << energy
<< "window_title 'Energy in Phase Space'\n"
<< "keys\n maac\n" << "axis_labels 'q' 'p' 't'\n"<< flush;
}
}
real_t hamiltonian(real_t q, real_t p, real_t t)
{
real_t h = 1.0 - 0.5 / m_ + 0.5 * p * p / m_;
switch (prob_)
{
case 1:
h += k_ * (1.0 - cos(q));
break;
case 2:
h += k_ * (1.0 - exp(-0.5 * q * q));
break;
case 3:
h += 0.5 * k_ * (1.0 + q * q) * q * q;
break;
case 4:
h += 0.5 * k_ * (1.0 - 0.125 * q * q) * q * q;
break;
default:
h += 0.5 * k_ * q * q;
break;
}
return h;
}
void NegGradV::Mult(const Vector &x, Vector &y) const
{
switch (prob_)
{
case 1:
y(0) = - k_* sin(x(0));
break;
case 2:
y(0) = - k_ * x(0) * exp(-0.5 * x(0) * x(0));
break;
case 3:
y(0) = - k_ * (1.0 + 2.0 * x(0) * x(0)) * x(0);
break;
case 4:
y(0) = - k_ * (1.0 - 0.25 * x(0) * x(0)) * x(0);
break;
default:
y(0) = - k_ * x(0);
break;
};
}