-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenMatrix.cpp
253 lines (217 loc) · 6.74 KB
/
genMatrix.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
/* Generates three different kinds of input matrices
and provides corresponding verifiers
Hilbert Matrix
Bidiagonal
Random
*/
/* Hilbert Matrix H(i,j)
H(i,j) = 1/(i+j+1), 0 < i,j < n
It's easy to check if the multiplication is correct;
entry (i,j) of H * H is
Sum(k) { 1.0/(i+k+1)*(k+j+1) }
*/
#include <stdlib.h>
#include <stdio.h> // For: perror
#include <assert.h>
#include <iostream>
#include "types.h"
#include <float.h> // For: DBL_EPSILON
#include <math.h> // For: fabs
using namespace std;
#define MAX_ERRORS 20
#define A(i,j) (a[(i)*n+(j)])
#define B(i,j) (b[(i)*n+(j)])
#define C(i,j) (c[(i)*n+(j)])
void
reference_dgemm(unsigned int n, _DOUBLE_ Alpha, _DOUBLE_ *a, _DOUBLE_ *b, _DOUBLE_ *c);
void absolute_value (_DOUBLE_ *p, int n)
{
for (int i = 0; i < n; ++i)
p[i] = fabs (p[i]);
}
void genMatrix( _DOUBLE_ *a, unsigned int m, unsigned int n)
{
unsigned int i, j;
for ( i=0; i<m; i++ ) {
for ( j=0; j<n; j++ ) {
A( i,j ) = 1.0 / (_DOUBLE_) (i+j+1);
}
}
}
void genMatrix_bt( _DOUBLE_ *a, _DOUBLE_ *b, unsigned int n)
{
unsigned int i;
for ( i=0; i<n; i++ ){
A( i, i ) = 1.0;
B( i, i ) = 1.0;
}
for ( i= 1; i<n; i++ ){
A( i, i-1 ) = 1.0;
B( i-1, i ) = 1.0;
}
}
void genMatrix_rand( _DOUBLE_ *a, _DOUBLE_ *b, unsigned int n)
{
long int Rmax = RAND_MAX;
long int Rmax_2 = Rmax >> 1;
long int RM = Rmax_2 + 1;
for ( unsigned int i=0; i<n; i++ ) {
for ( unsigned int j=0; j<n; j++ ) {
long int r = random(); // Uniformly distributed ints over [0,RAND_MAX]
// Typical value of RAND_MAX: 2^31 - 1
long int R = r - RM; // Uniformly distributed over [-1, 1]
A( i, j ) = (double) R / (double) RM; // Uniformly distributed over [-1, 1]
long int r2 = random(); // Uniformly distributed ints over [0,RAND_MAX]
long int R2 = r2 - RM; // Uniformly distributed over [-1, 1]
B( i, j ) = (double) R2 / (double) RM; // Uniformly distributed over [-1, 1]
}
}
}
#define fabs(x) ( (x)<0 ? -(x) : (x) )
// Verify against exact answer
void verify( _DOUBLE_ *c, unsigned int m, unsigned int n, _DOUBLE_ epsilon, const char *mesg)
{
_DOUBLE_ error = 0.0;
int ierror = 0;
// Assumes m=n
_DOUBLE_ *fij = new _DOUBLE_[2*m];
assert(fij);
for (unsigned int i = 0; i < 2*m; i++){
fij[i] = 1/(_DOUBLE_) (i+1);
}
for ( unsigned int i=0; i<m; i++ ) {
for ( unsigned int j=0; j<n; j++ ) {
_DOUBLE_ C_exact = 0;
for (int k=n-1;k>=0; k--){
C_exact += fij[i+k]*fij[j+k];
}
_DOUBLE_ delta = fabs( C( i,j ) - C_exact);
if ( delta > epsilon ) {
ierror++;
error += delta;
if (ierror == 1)
cout << "Error report for " << mesg << ":" << endl;
if (ierror <= MAX_ERRORS)
cout << "C[" << i << ", " << j << "] is " << C(i,j) << ", should be: " << C_exact << endl;
}
}
}
/* Normalize the error */
error /= (_DOUBLE_) (n*n);
if ( ierror ){
cout << " *** A total of " << ierror << " differences, error = " << error;
}
else{
cout << endl << mesg << ": ";
cout << "answers matched to within " << epsilon;
}
cout << endl << endl;
delete [] fij;
}
// Verify against exact answer
void verify_rand( _DOUBLE_ *a, _DOUBLE_ *b, _DOUBLE_ *c, unsigned int n)
{
int ierror = 0;
/* Do not explicitly check that A and B were unmodified on square_dgemm exit
* If they were, the following will most likely detect it:
* C := C - A * B, computed with reference_dgemm */
reference_dgemm(n, -1., a, b, c);
/* A := |A|, B := |B|, C := |C| */
absolute_value (a, n * n);
absolute_value (b, n * n);
absolute_value (c, n * n);
/* C := |C| - 3 * e_mach * n * |A| * |B|, computed with reference_dgemm */
reference_dgemm (n, -3.*DBL_EPSILON*n, a, b, c);
/* If any element in C is positive, then something went wrong in square_dgemm */
for (unsigned int i = 0; i < n * n; ++i){
if (c[i] > 0){
ierror++;
if (ierror <= MAX_ERRORS)
cout << "*** Error in matrix multiply exceeds componentwise error bounds @ i=" << i << ": " << c[i] << endl;
}
}
absolute_value (a, n * n);
absolute_value (b, n * n);
absolute_value (c, n * n);
if ( ierror ){
cout << " *** A total of " << ierror << " differences" << endl;
}
else{
cout << "*** Answers verified" << endl;
}
cout << endl << endl;
}
#define ASSERT(i,j,z) if (C((i),(j)) != (z)){ \
if (ierror == 1)\
cout << "Error report for " << mesg << ":" << endl;\
if (ierror <= MAX_ERRORS)\
cout << "C[" << i << ", " << j << "] is " << C((i),(j)) << ", should be: " << z << endl;\
ierror++;}
void verify_bt( _DOUBLE_ *c, unsigned int n, const char *mesg)
{
_DOUBLE_ error = 0.0;
int ierror = 0;
ASSERT(0,0,1.0);
for ( unsigned int i=1; i<n; i++ ) {
ASSERT(i,i,2.0);
ASSERT(i,i-1,1.0);
ASSERT(i-1,i,1.0);
}
if ( ierror ){
cout << " *** A total of " << ierror << " differences, error = " << error;
}
else{
cout << endl << mesg << ": ";
cout << "answers matched" << endl;
}
cout << endl << endl;
}
#define C_h(i,j) (c_h[i*n+j])
#define C_d(i,j) (c_d[i*n+j])
// Verify host result against device result
void verify_bt( _DOUBLE_ *c_d, _DOUBLE_ *c_h, unsigned int n, const char *mesg)
{
verify_bt( c_d, n, mesg);
}
// Verify host result against device result
void verify( _DOUBLE_ *c_d, _DOUBLE_ *c_h, unsigned int m, unsigned int n, _DOUBLE_ epsilon, const char *mesg)
{
_DOUBLE_ error = 0.0;
int ierror = 0;
unsigned int mn = m * n;
for ( unsigned int ij=0; ij<mn; ij++ ) {
_DOUBLE_ diff = fabs(c_h[ij] - c_d[ij]);
if ( diff > epsilon ) {
ierror++;
error += diff;
if (ierror == 1)
cout << "Error report for " << mesg << ":" << endl;
if (ierror <= 10){
int i = ij / n;
int j = ij % n;
cout << "C_d[" << i << ", " << j << "] == " << C_d(i,j);
cout << ", C_h[" << i << ", " << j << "] == " << C_h(i,j) << endl;
}
}
}
/* Normalize the error */
error /= (_DOUBLE_) (n*n);
if ( ierror )
cout << " *** A total of " << ierror << " differences, error = " << error;
else{
cout << endl << mesg << ": ";
cout << "answers matched to within " << epsilon;
}
cout << endl << endl;
}
void printMatrix( _DOUBLE_ *a, unsigned int m, unsigned int n)
{
unsigned int i, j;
cout.precision(4);
cout.width(8);
for ( i=0; i<m; i++ ) {
for ( j=0; j<n; j++ )
cout << A(i,j) << " ";
cout << endl;
}
}