forked from anilsathyan7/Portrait-Segmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbgsub.py
76 lines (59 loc) · 2.39 KB
/
bgsub.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import numpy as np
import cv2
from scipy import ndimage
'''
A script for foreground segmenation using background subtraction.
The algorithms assumes a static background scenary.The foreground
object should be introduced into the scene only after window pop-up.
'''
# Create a video capturer
cap = cv2.VideoCapture(0)
# Read first 100 frames and find mean image
_, first_frame = cap.read()
mean_bgd = cv2.cvtColor(first_frame, cv2.COLOR_BGR2GRAY)
for i in range(0,99):
_, first_frame = cap.read()
frames=cv2.cvtColor(first_frame, cv2.COLOR_BGR2GRAY)
frames=np.int32(frames)
mean_bgd=mean_bgd+frames
mean_bgd=np.uint8(mean_bgd/100)
# Apply gaussian blur to remove noise
mean_bgd = cv2.GaussianBlur(mean_bgd, (5, 5), 0)
print("Inference started...")
# Create a plain background image
plain_bgd = np.zeros(shape=(mean_bgd.shape[0],mean_bgd.shape[1],3),dtype=np.uint8)
plain_bgd[:] = (0, 0, 0)
while True:
# Read frames from webcam and convert it to grayscale
_, frame = cap.read()
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray_frame = cv2.GaussianBlur(gray_frame, (5, 5), 0)
# Find differece between current frame and mean image
difference = cv2.absdiff(mean_bgd, gray_frame)
_, fgMask = cv2.threshold(difference, 25, 255, cv2.THRESH_BINARY)
# Fill up the gaps using morphological operations
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(53,53))
fgMask= cv2.morphologyEx(fgMask, cv2.MORPH_CLOSE, kernel)
fgMask=ndimage.binary_fill_holes(fgMask).astype(np.uint8)
# Find the largest contour and remove smaller blobs
_, contours,hierarchy = cv2.findContours(fgMask, cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
areas = [cv2.contourArea(c) for c in contours]
finmsk=np.zeros_like(fgMask)
if areas:
max_index = np.argmax(areas)
cnt=contours[max_index]
cv2.fillPoly(finmsk, pts =[cnt], color=(255,255,255))
# Apply gaussian blur on mask
finmsk=cv2.GaussianBlur(finmsk, (25, 25), 0)
finmsk=finmsk[...,np.newaxis]/255
# Alpha blend frame with background, using the mask
result=np.uint8(finmsk*frame + (1.0 -finmsk)*plain_bgd)
# Display output frame
cv2.imshow("Output", result)
# Exit on keyboard interrupt
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# When everything done, release the capture
print("Keyboard interrupt...")
cap.release()
cv2.destroyAllWindows()