-
Notifications
You must be signed in to change notification settings - Fork 0
/
vole_check.c
154 lines (122 loc) · 5.53 KB
/
vole_check.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#include "vole_check.h"
#include <stdbool.h>
#include "hash.h"
#include "universal_hash.h"
#include "vole_params.h"
typedef struct
{
poly_secpar_vec matrix[4];
poly_secpar_vec key_secpar;
poly64_vec key_64;
hasher_gfsecpar_key hasher_key_secpar;
hasher_gf64_key hasher_key_64;
} vole_check_challenge;
static vole_check_challenge load_challenge(const uint8_t* in)
{
vole_check_challenge out;
for (size_t i = 0; i < 4; ++i, in += SECURITY_PARAM / 8)
out.matrix[i] = poly_secpar_load_dup(in);
out.key_secpar = poly_secpar_load_dup(in);
out.key_64 = poly64_load_dup(in + SECURITY_PARAM / 8);
hasher_gfsecpar_init_key(&out.hasher_key_secpar, poly_secpar_exp(out.key_secpar, POLY_VEC_LEN));
hasher_gf64_init_key(&out.hasher_key_64, poly64_exp(out.key_64, POLY_VEC_LEN));
return out;
}
static void vole_check_both(
bool verifier, const vole_block* restrict u, const vole_block* restrict vq,
const uint8_t* restrict delta_bytes,
const uint8_t* restrict challenge, uint8_t* restrict proof, uint8_t* restrict check)
{
vole_check_challenge chal = load_challenge(challenge);
block_secpar u_hash[2] = {block_secpar_set_zero(), block_secpar_set_zero()};
if (verifier)
memcpy(&u_hash[0], proof, VOLE_CHECK_HASH_BYTES);
hash_state hasher;
hash_init(&hasher);
for (int col = -!verifier; col < SECURITY_PARAM; ++col)
{
const uint8_t* to_hash = (const uint8_t*) (col == -1 ? u : vq + VOLE_COL_BLOCKS * col);
size_t hasher_chunk_size = POLY_VEC_LEN * SECURITY_PARAM;
size_t padded_rows =
((QUICKSILVER_ROWS + hasher_chunk_size - 1) / hasher_chunk_size) * hasher_chunk_size;
hasher_gfsecpar_state state_secpar;
hasher_gf64_state state_64;
hasher_gfsecpar_init_state(&state_secpar, padded_rows / hasher_chunk_size);
hasher_gf64_init_state(&state_64, padded_rows / (POLY_VEC_LEN * 64));
size_t i = 0;
// Apply inital padding.
if (padded_rows - QUICKSILVER_ROWS >= SECURITY_PARAM)
{
size_t extra_blocks = (padded_rows - QUICKSILVER_ROWS) / SECURITY_PARAM;
uint8_t first_chunk[POLY_VEC_LEN * sizeof(block_secpar)];
memset(first_chunk, 0, extra_blocks * sizeof(block_secpar));
memcpy(first_chunk + extra_blocks * sizeof(block_secpar), to_hash,
(POLY_VEC_LEN - extra_blocks) * sizeof(block_secpar));
hasher_gfsecpar_update(&chal.hasher_key_secpar, &state_secpar, poly_secpar_load(first_chunk));
for (size_t j = 0; j < hasher_chunk_size; j += POLY_VEC_LEN * 64)
hasher_gf64_update(&chal.hasher_key_64, &state_64, poly64_load(&first_chunk[j / 8]));
i = extra_blocks * SECURITY_PARAM;
}
// TODO: Maybe better to chunk the loop by HASHER_GFSECPAR_KEY_POWS.
for (; i + hasher_chunk_size <= QUICKSILVER_ROWS; i += hasher_chunk_size)
{
hasher_gfsecpar_update(&chal.hasher_key_secpar, &state_secpar, poly_secpar_load(to_hash + i / 8));
for (size_t j = 0; j < hasher_chunk_size; j += POLY_VEC_LEN * 64)
hasher_gf64_update(&chal.hasher_key_64, &state_64, poly64_load(to_hash + (i + j) / 8));
}
assert(i == QUICKSILVER_ROWS - (QUICKSILVER_ROWS % SECURITY_PARAM));
i = QUICKSILVER_ROWS - (QUICKSILVER_ROWS % SECURITY_PARAM); // Let the compiler know it's constant.
// Apply final padding.
if (QUICKSILVER_ROWS % SECURITY_PARAM)
{
uint8_t last_chunk[POLY_VEC_LEN * sizeof(block_secpar)];
memcpy(last_chunk, to_hash + i / 8, (QUICKSILVER_ROWS - i) / 8);
memset(last_chunk + (QUICKSILVER_ROWS - i) / 8, 0, sizeof(last_chunk) - (QUICKSILVER_ROWS - i) / 8);
hasher_gfsecpar_update(&chal.hasher_key_secpar, &state_secpar, poly_secpar_load(last_chunk));
for (size_t j = 0; j < hasher_chunk_size; j += POLY_VEC_LEN * 64)
hasher_gf64_update(&chal.hasher_key_64, &state_64, poly64_load(&last_chunk[j / 8]));
}
poly_secpar_vec poly_hashes[2];
poly_hashes[0] =
gfsecpar_combine_hashes(chal.key_secpar, hasher_gfsecpar_final(&state_secpar));
poly_hashes[1] =
poly_secpar_from_64(gf64_combine_hashes(chal.key_64, hasher_gf64_final(&state_64)));
poly_secpar_vec mapped_hashes[2];
for (size_t j = 0; j < 2; ++j)
mapped_hashes[j] =
poly_2secpar_reduce_secpar(poly_2secpar_add(
poly_secpar_mul(chal.matrix[2 * j + 0], poly_hashes[0]),
poly_secpar_mul(chal.matrix[2 * j + 1], poly_hashes[1])));
block_secpar hash_output_storage[2];
block_secpar* hash_output = col == -1 ? u_hash : hash_output_storage;
for (size_t j = 0; j < 2; ++j)
poly_secpar_store1(&hash_output[j], mapped_hashes[j]);
// Apply the mask so that this check will hide u.
block_secpar mask[2] = { block_secpar_set_zero(), block_secpar_set_zero() };
memcpy(mask, to_hash + QUICKSILVER_ROWS / 8, VOLE_CHECK_HASH_BYTES);
for (size_t j = 0; j < 2; ++j)
hash_output[j] = block_secpar_xor(hash_output[j], mask[j]);
if (verifier)
for (size_t j = 0; j < 2; ++j)
hash_output[j] = block_secpar_xor(hash_output[j],
block_secpar_and(u_hash[j], block_secpar_set_all_8(delta_bytes[col])));
if (col >= 0)
hash_update(&hasher, &hash_output[0], VOLE_CHECK_HASH_BYTES);
}
if (!verifier)
memcpy(proof, &u_hash[0], VOLE_CHECK_HASH_BYTES);
hash_update_byte(&hasher, 1);
hash_final(&hasher, check, VOLE_CHECK_CHECK_BYTES);
}
void vole_check_sender(
const vole_block* restrict u, const vole_block* restrict v,
const uint8_t* restrict challenge, uint8_t* restrict proof, uint8_t* restrict check)
{
vole_check_both(false, u, v, NULL, challenge, proof, check);
}
void vole_check_receiver(
const vole_block* restrict q, const uint8_t* restrict delta_bytes,
const uint8_t* restrict challenge, const uint8_t* restrict proof, uint8_t* restrict check)
{
vole_check_both(true, NULL, q, delta_bytes, challenge, (uint8_t*) proof, check);
}