-
Notifications
You must be signed in to change notification settings - Fork 48
/
utils.py
276 lines (239 loc) · 8.94 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import math
import time
import datetime
import os
import subprocess
import functools
from collections import defaultdict, deque
import numpy as np
from PIL import Image
import torch
from torch.utils.data import DataLoader, Subset
from torchvision.datasets.folder import is_image_file, default_loader
### Optimizer building
def parse_params(s):
"""
Parse parameters into a dictionary, used for optimizer and scheduler parsing.
Example:
"SGD,lr=0.01" -> {"name": "SGD", "lr": 0.01}
"""
s = s.replace(' ', '').split(',')
params = {}
params['name'] = s[0]
for x in s[1:]:
x = x.split('=')
params[x[0]]=float(x[1])
return params
def build_optimizer(name, model_params, **optim_params):
""" Build optimizer from a dictionary of parameters """
torch_optimizers = sorted(name for name in torch.optim.__dict__
if name[0].isupper() and not name.startswith("__")
and callable(torch.optim.__dict__[name]))
if hasattr(torch.optim, name):
return getattr(torch.optim, name)(model_params, **optim_params)
raise ValueError(f'Unknown optimizer "{name}", choose among {str(torch_optimizers)}')
def adjust_learning_rate(optimizer, step, steps, warmup_steps, blr, min_lr=1e-6):
"""Decay the learning rate with half-cycle cosine after warmup"""
if step < warmup_steps:
lr = blr * step / warmup_steps
else:
lr = min_lr + (blr - min_lr) * 0.5 * (1. + math.cos(math.pi * (step - warmup_steps) / (steps - warmup_steps)))
for param_group in optimizer.param_groups:
if "lr_scale" in param_group:
param_group["lr"] = lr * param_group["lr_scale"]
else:
param_group["lr"] = lr
return lr
### Data loading
@functools.lru_cache()
def get_image_paths(path):
paths = []
for path, _, files in os.walk(path):
for filename in files:
paths.append(os.path.join(path, filename))
return sorted([fn for fn in paths if is_image_file(fn)])
class ImageFolder:
"""An image folder dataset intended for self-supervised learning."""
def __init__(self, path, transform=None, loader=default_loader):
self.samples = get_image_paths(path)
self.loader = loader
self.transform = transform
def __getitem__(self, idx: int):
assert 0 <= idx < len(self)
img = self.loader(self.samples[idx])
if self.transform:
return self.transform(img)
return img
def __len__(self):
return len(self.samples)
def collate_fn(batch):
""" Collate function for data loader. Allows to have img of different size"""
return batch
def get_dataloader(data_dir, transform, batch_size=128, num_imgs=None, shuffle=False, num_workers=4, collate_fn=collate_fn):
""" Get dataloader for the images in the data_dir. The data_dir must be of the form: input/0/... """
dataset = ImageFolder(data_dir, transform=transform)
if num_imgs is not None:
dataset = Subset(dataset, np.random.choice(len(dataset), num_imgs, replace=False))
return DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, pin_memory=True, drop_last=False, collate_fn=collate_fn)
def pil_imgs_from_folder(folder):
""" Get all images in the folder as PIL images """
images = []
filenames = []
for filename in os.listdir(folder):
try:
img = Image.open(os.path.join(folder,filename))
if img is not None:
filenames.append(filename)
images.append(img)
except:
print("Error opening image: ", filename)
return images, filenames
### Metric logging
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.6f} ({global_avg:.6f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value)
class MetricLogger(object):
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(
"{}: {}".format(name, str(meter))
)
return self.delimiter.join(loss_str)
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, header=None):
i = 0
if not header:
header = ''
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt='{avg:.6f}')
data_time = SmoothedValue(fmt='{avg:.6f}')
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
if torch.cuda.is_available():
log_msg = self.delimiter.join([
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}',
'max mem: {memory:.0f}'
])
else:
log_msg = self.delimiter.join([
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}'
])
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
yield obj
iter_time.update(time.time() - end)
if i % print_freq == 0 or i == len(iterable) - 1:
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB))
else:
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time)))
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('{} Total time: {} ({:.6f} s / it)'.format(header, total_time_str, total_time / (len(iterable)+1)))
### Misc
def bool_inst(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise ValueError('Boolean value expected in args')
def get_sha():
cwd = os.path.dirname(os.path.abspath(__file__))
def _run(command):
return subprocess.check_output(command, cwd=cwd).decode('ascii').strip()
sha = 'N/A'
diff = "clean"
branch = 'N/A'
try:
sha = _run(['git', 'rev-parse', 'HEAD'])
subprocess.check_output(['git', 'diff'], cwd=cwd)
diff = _run(['git', 'diff-index', 'HEAD'])
diff = "has uncommited changes" if diff else "clean"
branch = _run(['git', 'rev-parse', '--abbrev-ref', 'HEAD'])
except Exception:
pass
message = f"sha: {sha}, status: {diff}, branch: {branch}"
return message