This repository has been archived by the owner on Aug 28, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 275
/
BatchProviderBase.lua
108 lines (94 loc) · 3.79 KB
/
BatchProviderBase.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
--[[----------------------------------------------------------------------------
Copyright (c) 2016-present, Facebook, Inc. All rights reserved.
This source code is licensed under the BSD-style license found in the
LICENSE file in the root directory of this source tree. An additional grant
of patent rights can be found in the PATENTS file in the same directory.
------------------------------------------------------------------------------]]
local BatchProviderBase = torch.class('fbcoco.BatchProviderBase')
function BatchProviderBase:getImages(img_ids, do_flip)
local num_images = img_ids:size(1)
local imgs = {}
local im_sizes = {}
local im_scales = {}
for i=1,num_images do
local im = self.dataset:getImage(img_ids[i])
im = self.image_transformer(im)
local flip = do_flip[i] == 1
if flip then im = image.hflip(im) end
local im_size = im[1]:size()
local im_size_min = math.min(im_size[1],im_size[2])
local im_size_max = math.max(im_size[1],im_size[2])
local im_scale = self.scale/im_size_min
local aspect_jitter = 1 + (torch.uniform(-1,1)-0.5)*self.aspect_jitter
local scale_jitter = 1 + (torch.uniform(-1,1)-0.5)*self.scale_jitter
local im_scale = im_scale * scale_jitter
im_scale = {im_scale * math.sqrt(aspect_jitter), im_scale / math.sqrt(aspect_jitter)}
local im_s = {im_size[1]*im_scale[1],im_size[2]*im_scale[1]}
for dim = 1,2 do
if im_s[dim] > self.max_size then
local rat = im_s[dim] / self.max_size
im_s = {im_s[1] / rat, im_s[2] / rat}
im_scale = {im_scale[1] / rat, im_scale[2] / rat}
end
end
table.insert(imgs,image.scale(im,im_s[2],im_s[1]))
table.insert(im_sizes,im_s)
table.insert(im_scales,im_scale)
end
-- create single tensor with all images, padding with zero for different sizes
im_sizes = torch.IntTensor(im_sizes)
local max_shape = im_sizes:max(1)[1]
local images = torch.FloatTensor(num_images,3,max_shape[1],max_shape[2]):zero()
for i,v in ipairs(imgs) do
images[{i, {}, {1,v:size(2)}, {1,v:size(3)}}]:copy(v)
end
return images, im_scales, im_sizes
end
function BatchProviderBase.takeSubset(rec, t, i, is_bg)
local idx = torch.type(t) == 'table' and torch.LongTensor(t) or t:long()
local n = idx:numel()
if n == 0 then return end
if idx:dim() == 2 then idx = idx:select(2,1) end
local window = {
indexes = torch.IntTensor(n),
rois = torch.FloatTensor(n,4),
labels = torch.IntTensor(n):fill(1),
gtboxes = torch.FloatTensor(n,4):zero(),
size = function() return n end,
}
window.indexes:fill(i)
window.rois:copy(rec.boxes:index(1,idx))
if not is_bg then
window.labels:add(rec.label:index(1,idx))
local corresp = rec.correspondance:index(1,idx)
window.gtboxes:copy(rec.boxes:index(1, corresp))
end
return window
end
function BatchProviderBase.selectBBoxesOne(bboxes, num_max, im_scale, im_size, flip)
local rois = {}
local labels = {}
local gtboxes = {}
local n = bboxes:size()
local im_scale = torch.FloatTensor(im_scale):repeatTensor(2)
local function preprocess_bbox(dd, flip)
dd = dd:clone():add(-1):cmul(im_scale):add(1)
if flip then
local tt = dd[1]
dd[1] = im_size[2]-dd[3] +1
dd[3] = im_size[2]-tt +1
end
return dd:view(1,4)
end
for i=1,math.min(num_max, n) do
local position = torch.random(n)
table.insert(rois, preprocess_bbox(bboxes.rois[position],flip))
table.insert(gtboxes, preprocess_bbox(bboxes.gtboxes[position], flip))
table.insert(labels, bboxes.labels[position])
end
return {
gtboxes = torch.FloatTensor():cat(gtboxes,1),
rois = torch.FloatTensor():cat(rois,1),
labels = torch.IntTensor(labels),
}
end