forked from SaschaWillems/Vulkan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
raytracingintersection.cpp
622 lines (531 loc) · 27.3 KB
/
raytracingintersection.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
/*
* Vulkan Example - Hardware accelerated ray tracing intersection shader samples
*
* Copyright (C) 2023 by Sascha Willems - www.saschawillems.de
*
* This sample uses intersection shaders for doing prodcedural ray traced geometry
* Instead of passing actual geometry, this samples only passes bounding boxes and sphere descriptions
* The bounding boxes are used for the ray traversal and the sphere intersections are done
* within the intersection shader
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "VulkanRaytracingSample.h"
class VulkanExample : public VulkanRaytracingSample
{
public:
AccelerationStructure bottomLevelAS;
AccelerationStructure topLevelAS;
std::vector<VkRayTracingShaderGroupCreateInfoKHR> shaderGroups{};
struct ShaderBindingTables {
ShaderBindingTable raygen;
ShaderBindingTable miss;
ShaderBindingTable hit;
} shaderBindingTables;
struct UniformData {
glm::mat4 viewInverse;
glm::mat4 projInverse;
glm::vec4 lightPos;
} uniformData;
vks::Buffer ubo;
VkPipeline pipeline;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
struct Sphere {
glm::vec3 center;
float radius;
glm::vec4 color;
};
struct AABB {
glm::vec3 min;
glm::vec3 max;
};
vks::Buffer spheresBuffer;
vks::Buffer aabbsBuffer;
uint32_t aabbCount{ 0 };
// This sample is derived from an extended base class that saves most of the ray tracing setup boiler plate
VulkanExample() : VulkanRaytracingSample()
{
title = "Ray tracing intersection shaders";
timerSpeed *= 0.25f;
camera.type = Camera::CameraType::lookat;
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f));
camera.setTranslation(glm::vec3(0.0f, 0.0f, -60.0f));
enableExtensions();
}
~VulkanExample()
{
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
deleteStorageImage();
deleteAccelerationStructure(bottomLevelAS);
deleteAccelerationStructure(topLevelAS);
shaderBindingTables.raygen.destroy();
shaderBindingTables.miss.destroy();
shaderBindingTables.hit.destroy();
ubo.destroy();
spheresBuffer.destroy();
aabbsBuffer.destroy();
}
void createBuffers()
{
// We'll be using two buffers to describe the procedural geometry
// A buffer with randpmly generatd sphere descriptions (center, radius, material) that'll be passed to the ray tracing shaders as a shader storage buffer object
std::vector<Sphere> spheres{};
std::default_random_engine rndGenerator(benchmark.active ? 0 : (unsigned)time(nullptr));
std::uniform_real_distribution<float> uniformDist(0.0, 1.0);
std::uniform_real_distribution<float> sizeDist(1.0, 2.0);
for (uint32_t i = 0; i < 1024; i++) {
Sphere sphere{};
//sphere.center =
sphere.radius = sizeDist(rndGenerator);
sphere.color = glm::vec4(uniformDist(rndGenerator), uniformDist(rndGenerator), uniformDist(rndGenerator), 1.0f);
// Get a random point in a sphere
float x,y,z,d{ 0.0f };
do {
x = uniformDist(rndGenerator) * 2.0f - 1.0f;
y = uniformDist(rndGenerator) * 2.0f - 1.0f;
z = uniformDist(rndGenerator) * 2.0f - 1.0f;
d = x * x + y * y + z * z;
} while (d > 1.0);
sphere.center = glm::vec3(x, y, z) * 25.0f;
spheres.push_back(sphere);
}
// A buffer with the (axis aligned) bounding boxes of our sphere, which is used during the ray tracing traversal for hit detection
std::vector<AABB> aabbs{};
for (auto& sphere : spheres) {
aabbs.push_back({ sphere.center - glm::vec3(sphere.radius), sphere.center + glm::vec3(sphere.radius) });
}
aabbCount = static_cast<uint32_t>(aabbs.size());
// Copy the buffer to the device for performance reasons
vks::Buffer stagingBuffer{};
VkBufferUsageFlags usageFlags = VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
// Spheres
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffer, sizeof(Sphere)* spheres.size(), spheres.data()));
VK_CHECK_RESULT(vulkanDevice->createBuffer(usageFlags, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &spheresBuffer, sizeof(Sphere)* spheres.size()));
vulkanDevice->copyBuffer(&stagingBuffer, &spheresBuffer, queue);
stagingBuffer.destroy();
// AABBs
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffer, sizeof(AABB)* aabbs.size(), aabbs.data()));
VK_CHECK_RESULT(vulkanDevice->createBuffer(usageFlags, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &aabbsBuffer, sizeof(AABB)* aabbs.size()));
vulkanDevice->copyBuffer(&stagingBuffer, &aabbsBuffer, queue);
stagingBuffer.destroy();
}
/*
Create the bottom level acceleration structure only containing axis aligned bounding boxes for our procedural geometry
*/
void createBottomLevelAccelerationStructure()
{
// Build
VkAccelerationStructureGeometryKHR accelerationStructureGeometry = vks::initializers::accelerationStructureGeometryKHR();
accelerationStructureGeometry.flags = VK_GEOMETRY_OPAQUE_BIT_KHR;
// Instead of providing actual geometry (e.g. triangles), we only provide the axis aligned bounding boxes (AABBs) of the spheres
// The data for the actual spheres is passed elsewhere as a shader storage buffer object
accelerationStructureGeometry.geometryType = VK_GEOMETRY_TYPE_AABBS_KHR;
accelerationStructureGeometry.geometry.aabbs.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_AABBS_DATA_KHR;
accelerationStructureGeometry.geometry.aabbs.data.deviceAddress = getBufferDeviceAddress(aabbsBuffer.buffer);
accelerationStructureGeometry.geometry.aabbs.stride = sizeof(AABB);
// Get size info
VkAccelerationStructureBuildGeometryInfoKHR accelerationStructureBuildGeometryInfo = vks::initializers::accelerationStructureBuildGeometryInfoKHR();
accelerationStructureBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR;
accelerationStructureBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
accelerationStructureBuildGeometryInfo.geometryCount = 1;
accelerationStructureBuildGeometryInfo.pGeometries = &accelerationStructureGeometry;
VkAccelerationStructureBuildSizesInfoKHR accelerationStructureBuildSizesInfo = vks::initializers::accelerationStructureBuildSizesInfoKHR();
vkGetAccelerationStructureBuildSizesKHR(
device,
VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR,
&accelerationStructureBuildGeometryInfo,
&aabbCount,
&accelerationStructureBuildSizesInfo);
createAccelerationStructure(bottomLevelAS, VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR, accelerationStructureBuildSizesInfo);
// Create a small scratch buffer used during build of the bottom level acceleration structure
ScratchBuffer scratchBuffer = createScratchBuffer(accelerationStructureBuildSizesInfo.buildScratchSize);
VkAccelerationStructureBuildGeometryInfoKHR accelerationBuildGeometryInfo = vks::initializers::accelerationStructureBuildGeometryInfoKHR();
accelerationBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR;
accelerationBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
accelerationBuildGeometryInfo.mode = VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR;
accelerationBuildGeometryInfo.dstAccelerationStructure = bottomLevelAS.handle;
accelerationBuildGeometryInfo.geometryCount = 1;
accelerationBuildGeometryInfo.pGeometries = &accelerationStructureGeometry;
accelerationBuildGeometryInfo.scratchData.deviceAddress = scratchBuffer.deviceAddress;
VkAccelerationStructureBuildRangeInfoKHR accelerationStructureBuildRangeInfo{};
accelerationStructureBuildRangeInfo.primitiveCount = aabbCount;
std::vector<VkAccelerationStructureBuildRangeInfoKHR*> accelerationBuildStructureRangeInfos = { &accelerationStructureBuildRangeInfo };
// Build the acceleration structure on the device via a one-time command buffer submission
// Some implementations may support acceleration structure building on the host (VkPhysicalDeviceAccelerationStructureFeaturesKHR->accelerationStructureHostCommands), but we prefer device builds
VkCommandBuffer commandBuffer = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
vkCmdBuildAccelerationStructuresKHR(
commandBuffer,
1,
&accelerationBuildGeometryInfo,
accelerationBuildStructureRangeInfos.data());
vulkanDevice->flushCommandBuffer(commandBuffer, queue);
deleteScratchBuffer(scratchBuffer);
}
/*
The top level acceleration structure contains the scene's object instances
*/
void createTopLevelAccelerationStructure()
{
VkTransformMatrixKHR transformMatrix = {
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f };
VkAccelerationStructureInstanceKHR instance{};
instance.transform = transformMatrix;
instance.instanceCustomIndex = 0;
instance.mask = 0xFF;
instance.instanceShaderBindingTableRecordOffset = 0;
instance.flags = VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR;
instance.accelerationStructureReference = bottomLevelAS.deviceAddress;
// Buffer for instance data
vks::Buffer instancesBuffer;
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&instancesBuffer,
sizeof(VkAccelerationStructureInstanceKHR),
&instance));
VkDeviceOrHostAddressConstKHR instanceDataDeviceAddress{};
instanceDataDeviceAddress.deviceAddress = getBufferDeviceAddress(instancesBuffer.buffer);
VkAccelerationStructureGeometryKHR accelerationStructureGeometry = vks::initializers::accelerationStructureGeometryKHR();
accelerationStructureGeometry.geometryType = VK_GEOMETRY_TYPE_INSTANCES_KHR;
accelerationStructureGeometry.flags = VK_GEOMETRY_OPAQUE_BIT_KHR;
accelerationStructureGeometry.geometry.instances.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_INSTANCES_DATA_KHR;
accelerationStructureGeometry.geometry.instances.arrayOfPointers = VK_FALSE;
accelerationStructureGeometry.geometry.instances.data = instanceDataDeviceAddress;
// Get size info
VkAccelerationStructureBuildGeometryInfoKHR accelerationStructureBuildGeometryInfo = vks::initializers::accelerationStructureBuildGeometryInfoKHR();
accelerationStructureBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR;
accelerationStructureBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
accelerationStructureBuildGeometryInfo.geometryCount = 1;
accelerationStructureBuildGeometryInfo.pGeometries = &accelerationStructureGeometry;
uint32_t primitive_count = 1;
VkAccelerationStructureBuildSizesInfoKHR accelerationStructureBuildSizesInfo = vks::initializers::accelerationStructureBuildSizesInfoKHR();
vkGetAccelerationStructureBuildSizesKHR(
device,
VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR,
&accelerationStructureBuildGeometryInfo,
&primitive_count,
&accelerationStructureBuildSizesInfo);
createAccelerationStructure(topLevelAS, VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR, accelerationStructureBuildSizesInfo);
// Create a small scratch buffer used during build of the top level acceleration structure
ScratchBuffer scratchBuffer = createScratchBuffer(accelerationStructureBuildSizesInfo.buildScratchSize);
VkAccelerationStructureBuildGeometryInfoKHR accelerationBuildGeometryInfo = vks::initializers::accelerationStructureBuildGeometryInfoKHR();
accelerationBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR;
accelerationBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR;
accelerationBuildGeometryInfo.mode = VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR;
accelerationBuildGeometryInfo.dstAccelerationStructure = topLevelAS.handle;
accelerationBuildGeometryInfo.geometryCount = 1;
accelerationBuildGeometryInfo.pGeometries = &accelerationStructureGeometry;
accelerationBuildGeometryInfo.scratchData.deviceAddress = scratchBuffer.deviceAddress;
VkAccelerationStructureBuildRangeInfoKHR accelerationStructureBuildRangeInfo{};
accelerationStructureBuildRangeInfo.primitiveCount = 1;
accelerationStructureBuildRangeInfo.primitiveOffset = 0;
accelerationStructureBuildRangeInfo.firstVertex = 0;
accelerationStructureBuildRangeInfo.transformOffset = 0;
std::vector<VkAccelerationStructureBuildRangeInfoKHR*> accelerationBuildStructureRangeInfos = { &accelerationStructureBuildRangeInfo };
// Build the acceleration structure on the device via a one-time command buffer submission
// Some implementations may support acceleration structure building on the host (VkPhysicalDeviceAccelerationStructureFeaturesKHR->accelerationStructureHostCommands), but we prefer device builds
VkCommandBuffer commandBuffer = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
vkCmdBuildAccelerationStructuresKHR(
commandBuffer,
1,
&accelerationBuildGeometryInfo,
accelerationBuildStructureRangeInfos.data());
vulkanDevice->flushCommandBuffer(commandBuffer, queue);
deleteScratchBuffer(scratchBuffer);
instancesBuffer.destroy();
}
/*
Create the Shader Binding Tables that binds the programs and top-level acceleration structure
SBT Layout used in this sample:
/-----------\
| raygen |
|-----------|
| miss |
|-----------|
| hit + int |
\-----------/
*/
void createShaderBindingTables() {
const uint32_t handleSize = rayTracingPipelineProperties.shaderGroupHandleSize;
const uint32_t handleSizeAligned = vks::tools::alignedSize(rayTracingPipelineProperties.shaderGroupHandleSize, rayTracingPipelineProperties.shaderGroupHandleAlignment);
const uint32_t groupCount = static_cast<uint32_t>(shaderGroups.size());
const uint32_t sbtSize = groupCount * handleSizeAligned;
std::vector<uint8_t> shaderHandleStorage(sbtSize);
VK_CHECK_RESULT(vkGetRayTracingShaderGroupHandlesKHR(device, pipeline, 0, groupCount, sbtSize, shaderHandleStorage.data()));
createShaderBindingTable(shaderBindingTables.raygen, 1);
createShaderBindingTable(shaderBindingTables.miss, 1);
createShaderBindingTable(shaderBindingTables.hit, 1);
// Copy handles
memcpy(shaderBindingTables.raygen.mapped, shaderHandleStorage.data(), handleSize);
memcpy(shaderBindingTables.miss.mapped, shaderHandleStorage.data() + handleSizeAligned, handleSize);
memcpy(shaderBindingTables.hit.mapped, shaderHandleStorage.data() + handleSizeAligned * 2, handleSize);
}
/*
Create the descriptor sets used for the ray tracing dispatch
*/
void createDescriptorSets()
{
std::vector<VkDescriptorPoolSize> poolSizes = {
{ VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, 1 },
{ VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1 },
{ VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1 },
{ VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 2 }
};
VkDescriptorPoolCreateInfo descriptorPoolCreateInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 1);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCreateInfo, nullptr, &descriptorPool));
VkDescriptorSetAllocateInfo descriptorSetAllocateInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &descriptorSetAllocateInfo, &descriptorSet));
VkWriteDescriptorSetAccelerationStructureKHR descriptorAccelerationStructureInfo = vks::initializers::writeDescriptorSetAccelerationStructureKHR();
descriptorAccelerationStructureInfo.accelerationStructureCount = 1;
descriptorAccelerationStructureInfo.pAccelerationStructures = &topLevelAS.handle;
VkWriteDescriptorSet accelerationStructureWrite{};
accelerationStructureWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
// The specialized acceleration structure descriptor has to be chained
accelerationStructureWrite.pNext = &descriptorAccelerationStructureInfo;
accelerationStructureWrite.dstSet = descriptorSet;
accelerationStructureWrite.dstBinding = 0;
accelerationStructureWrite.descriptorCount = 1;
accelerationStructureWrite.descriptorType = VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR;
// We pass the sphere descriptions as shader storage buffer, so the ray tracing shaders can source properties from it
VkDescriptorImageInfo storageImageDescriptor{ VK_NULL_HANDLE, storageImage.view, VK_IMAGE_LAYOUT_GENERAL };
VkDescriptorBufferInfo spheresBufferDescriptor{ spheresBuffer.buffer, 0, VK_WHOLE_SIZE };
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
// Binding 0: Top level acceleration structure
accelerationStructureWrite,
// Binding 1: Ray tracing result image
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, &storageImageDescriptor),
// Binding 2: Uniform data
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &ubo.descriptor),
// Binding 3: Spheres buffer
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 3, &spheresBufferDescriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, VK_NULL_HANDLE);
}
/*
Create our ray tracing pipeline
*/
void createRayTracingPipeline()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0: Acceleration structure
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, 0),
// Binding 1: Storage image
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_SHADER_STAGE_RAYGEN_BIT_KHR, 1),
// Binding 2: Uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_MISS_BIT_KHR | VK_SHADER_STAGE_INTERSECTION_BIT_KHR, 2),
// Binding 3: Spheres buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_INTERSECTION_BIT_KHR, 3),
};
VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCI, nullptr, &pipelineLayout));
/*
Setup ray tracing shader groups
*/
std::vector<VkPipelineShaderStageCreateInfo> shaderStages;
// Ray generation group
{
shaderStages.push_back(loadShader(getShadersPath() + "raytracingintersection/raygen.rgen.spv", VK_SHADER_STAGE_RAYGEN_BIT_KHR));
VkRayTracingShaderGroupCreateInfoKHR shaderGroup{};
shaderGroup.sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR;
shaderGroup.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR;
shaderGroup.generalShader = static_cast<uint32_t>(shaderStages.size()) - 1;
shaderGroup.closestHitShader = VK_SHADER_UNUSED_KHR;
shaderGroup.anyHitShader = VK_SHADER_UNUSED_KHR;
shaderGroup.intersectionShader = VK_SHADER_UNUSED_KHR;
shaderGroups.push_back(shaderGroup);
}
// Miss group
{
shaderStages.push_back(loadShader(getShadersPath() + "raytracingintersection/miss.rmiss.spv", VK_SHADER_STAGE_MISS_BIT_KHR));
VkRayTracingShaderGroupCreateInfoKHR shaderGroup{};
shaderGroup.sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR;
shaderGroup.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR;
shaderGroup.generalShader = static_cast<uint32_t>(shaderStages.size()) - 1;
shaderGroup.closestHitShader = VK_SHADER_UNUSED_KHR;
shaderGroup.anyHitShader = VK_SHADER_UNUSED_KHR;
shaderGroup.intersectionShader = VK_SHADER_UNUSED_KHR;
shaderGroups.push_back(shaderGroup);
}
// Closest hit group (procedural)
{
shaderStages.push_back(loadShader(getShadersPath() + "raytracingintersection/closesthit.rchit.spv", VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR));
VkRayTracingShaderGroupCreateInfoKHR shaderGroup{};
shaderGroup.sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR;
shaderGroup.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR;
shaderGroup.generalShader = VK_SHADER_UNUSED_KHR;
shaderGroup.closestHitShader = static_cast<uint32_t>(shaderStages.size()) - 1;
shaderGroup.anyHitShader = VK_SHADER_UNUSED_KHR;
// This group als uses an intersection shader for proedural geometry (see interseciton.rint for details)
shaderStages.push_back(loadShader(getShadersPath() + "raytracingintersection/intersection.rint.spv", VK_SHADER_STAGE_INTERSECTION_BIT_KHR));
shaderGroup.intersectionShader = static_cast<uint32_t>(shaderStages.size()) - 1;
shaderGroups.push_back(shaderGroup);
}
VkRayTracingPipelineCreateInfoKHR rayTracingPipelineCI = vks::initializers::rayTracingPipelineCreateInfoKHR();
rayTracingPipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
rayTracingPipelineCI.pStages = shaderStages.data();
rayTracingPipelineCI.groupCount = static_cast<uint32_t>(shaderGroups.size());
rayTracingPipelineCI.pGroups = shaderGroups.data();
rayTracingPipelineCI.maxPipelineRayRecursionDepth = 2;
rayTracingPipelineCI.layout = pipelineLayout;
VK_CHECK_RESULT(vkCreateRayTracingPipelinesKHR(device, VK_NULL_HANDLE, VK_NULL_HANDLE, 1, &rayTracingPipelineCI, nullptr, &pipeline));
}
/*
Create the uniform buffer used to pass matrices to the ray tracing ray generation shader
*/
void createUniformBuffer()
{
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&ubo,
sizeof(uniformData),
&uniformData));
VK_CHECK_RESULT(ubo.map());
updateUniformBuffers();
}
/*
If the window has been resized, we need to recreate the storage image and it's descriptor
*/
void handleResize()
{
// Recreate image
createStorageImage(swapChain.colorFormat, { width, height, 1 });
// Update descriptor
VkDescriptorImageInfo storageImageDescriptor{ VK_NULL_HANDLE, storageImage.view, VK_IMAGE_LAYOUT_GENERAL };
VkWriteDescriptorSet resultImageWrite = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, &storageImageDescriptor);
vkUpdateDescriptorSets(device, 1, &resultImageWrite, 0, VK_NULL_HANDLE);
resized = false;
}
/*
Command buffer generation
*/
void buildCommandBuffers()
{
if (resized)
{
handleResize();
}
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkImageSubresourceRange subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
/*
Dispatch the ray tracing commands
*/
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipeline);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipelineLayout, 0, 1, &descriptorSet, 0, 0);
VkStridedDeviceAddressRegionKHR emptySbtEntry = {};
vkCmdTraceRaysKHR(
drawCmdBuffers[i],
&shaderBindingTables.raygen.stridedDeviceAddressRegion,
&shaderBindingTables.miss.stridedDeviceAddressRegion,
&shaderBindingTables.hit.stridedDeviceAddressRegion,
&emptySbtEntry,
width,
height,
1);
/*
Copy ray tracing output to swap chain image
*/
// Prepare current swap chain image as transfer destination
vks::tools::setImageLayout(
drawCmdBuffers[i],
swapChain.images[i],
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
subresourceRange);
// Prepare ray tracing output image as transfer source
vks::tools::setImageLayout(
drawCmdBuffers[i],
storageImage.image,
VK_IMAGE_LAYOUT_GENERAL,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
subresourceRange);
VkImageCopy copyRegion{};
copyRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
copyRegion.srcOffset = { 0, 0, 0 };
copyRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
copyRegion.dstOffset = { 0, 0, 0 };
copyRegion.extent = { width, height, 1 };
vkCmdCopyImage(drawCmdBuffers[i], storageImage.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, swapChain.images[i], VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©Region);
// Transition swap chain image back for presentation
vks::tools::setImageLayout(
drawCmdBuffers[i],
swapChain.images[i],
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
subresourceRange);
// Transition ray tracing output image back to general layout
vks::tools::setImageLayout(
drawCmdBuffers[i],
storageImage.image,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_IMAGE_LAYOUT_GENERAL,
subresourceRange);
drawUI(drawCmdBuffers[i], frameBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void updateUniformBuffers()
{
uniformData.projInverse = glm::inverse(camera.matrices.perspective);
uniformData.viewInverse = glm::inverse(camera.matrices.view);
uniformData.lightPos = glm::vec4(cos(glm::radians(timer * 360.0f)) * 60.0f, 0.0f, 25.0f + sin(glm::radians(timer * 360.0f)) * 60.0f, 0.0f);
memcpy(ubo.mapped, &uniformData, sizeof(uniformData));
}
void getEnabledFeatures()
{
// Enable features required for ray tracing using feature chaining via pNext
enabledBufferDeviceAddresFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES;
enabledBufferDeviceAddresFeatures.bufferDeviceAddress = VK_TRUE;
enabledRayTracingPipelineFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_FEATURES_KHR;
enabledRayTracingPipelineFeatures.rayTracingPipeline = VK_TRUE;
enabledRayTracingPipelineFeatures.pNext = &enabledBufferDeviceAddresFeatures;
enabledAccelerationStructureFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_FEATURES_KHR;
enabledAccelerationStructureFeatures.accelerationStructure = VK_TRUE;
enabledAccelerationStructureFeatures.pNext = &enabledRayTracingPipelineFeatures;
deviceCreatepNextChain = &enabledAccelerationStructureFeatures;
}
void prepare()
{
VulkanRaytracingSample::prepare();
createBuffers();
// Create the acceleration structures used to render the ray traced scene
createBottomLevelAccelerationStructure();
createTopLevelAccelerationStructure();
createStorageImage(swapChain.colorFormat, { width, height, 1 });
createUniformBuffer();
createRayTracingPipeline();
createShaderBindingTables();
createDescriptorSets();
buildCommandBuffers();
prepared = true;
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
virtual void render()
{
if (!prepared)
return;
draw();
if (!paused || camera.updated)
updateUniformBuffers();
}
};
VULKAN_EXAMPLE_MAIN()