forked from SaschaWillems/Vulkan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomputecloth.cpp
722 lines (610 loc) · 32.7 KB
/
computecloth.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
/*
* Vulkan Example - Compute shader cloth simulation
*
* A compute shader updates a shader storage buffer that contains particles held together by springs and also does basic
* collision detection against a sphere. This storage buffer is then used as the vertex input for the graphics part of the sample
*
* Copyright (C) 2016-2023 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
#include "VulkanglTFModel.h"
class VulkanExample : public VulkanExampleBase
{
public:
uint32_t readSet{ 0 };
uint32_t indexCount{ 0 };
bool simulateWind{ false };
// This will be set to true, if the device has a dedicated queue from a compute only queue family
// With such a queue graphics and compute workloads can run in parallel, but this also requires additional barriers (often called "async compute")
// These barriers will release and acquire the resources used in graphics and compute between the different queue families
bool dedicatedComputeQueue{ false };
vks::Texture2D textureCloth;
vkglTF::Model modelSphere;
// The cloth is made from a grid of particles
struct Particle {
glm::vec4 pos;
glm::vec4 vel;
glm::vec4 uv;
glm::vec4 normal;
};
// Cloth definition parameters
struct Cloth {
glm::uvec2 gridsize{ 60, 60 };
glm::vec2 size{ 5.0f, 5.0f };
} cloth;
// We put the resource "types" into structs to make this sample easier to understand
// We use two buffers for our cloth simulation: One with the input cloth data and one for outputting updated values
// The compute pipeline will update the output buffer, and the graphics pipeline will it as a vertex buffer
struct StorageBuffers {
vks::Buffer input;
vks::Buffer output;
} storageBuffers;
// Resources for the graphics part of the example
struct Graphics {
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
VkDescriptorSet descriptorSet{ VK_NULL_HANDLE };
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
struct Pipelines {
VkPipeline cloth{ VK_NULL_HANDLE };
VkPipeline sphere{ VK_NULL_HANDLE };
} pipelines;
// The vertices will be stored in the shader storage buffers, so we only need an index buffer in this structure
vks::Buffer indices;
struct UniformData {
glm::mat4 projection;
glm::mat4 view;
glm::vec4 lightPos{ -2.0f, 4.0f, -2.0f, 1.0f };
} uniformData;
vks::Buffer uniformBuffer;
} graphics;
// Resources for the compute part of the example
struct Compute {
struct Semaphores {
VkSemaphore ready{ VK_NULL_HANDLE };
VkSemaphore complete{ VK_NULL_HANDLE };
} semaphores;
VkQueue queue{ VK_NULL_HANDLE };
VkCommandPool commandPool{ VK_NULL_HANDLE };
std::array<VkCommandBuffer, 2> commandBuffers{};
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
std::array<VkDescriptorSet, 2> descriptorSets{ VK_NULL_HANDLE };
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
VkPipeline pipeline{ VK_NULL_HANDLE };
struct UniformData {
float deltaT{ 0.0f };
// These arguments define the spring setup for the cloth piece
// Changing these changes how the cloth reacts
float particleMass{ 0.1f };
float springStiffness{ 2000.0f };
float damping{ 0.25f };
float restDistH{ 0 };
float restDistV{ 0 };
float restDistD{ 0 };
float sphereRadius{ 1.0f };
glm::vec4 spherePos{ 0.0f, 0.0f, 0.0f, 0.0f };
glm::vec4 gravity{ 0.0f, 9.8f, 0.0f, 0.0f };
glm::ivec2 particleCount{ 0 };
} uniformData;
vks::Buffer uniformBuffer;
} compute;
VulkanExample() : VulkanExampleBase()
{
title = "Compute shader cloth simulation";
camera.type = Camera::CameraType::lookat;
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
camera.setRotation(glm::vec3(-30.0f, -45.0f, 0.0f));
camera.setTranslation(glm::vec3(0.0f, 0.0f, -5.0f));
}
~VulkanExample()
{
if (device) {
// Graphics
graphics.indices.destroy();
graphics.uniformBuffer.destroy();
vkDestroyPipeline(device, graphics.pipelines.cloth, nullptr);
vkDestroyPipeline(device, graphics.pipelines.sphere, nullptr);
vkDestroyPipelineLayout(device, graphics.pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, graphics.descriptorSetLayout, nullptr);
textureCloth.destroy();
// Compute
compute.uniformBuffer.destroy();
vkDestroyPipelineLayout(device, compute.pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, compute.descriptorSetLayout, nullptr);
vkDestroyPipeline(device, compute.pipeline, nullptr);
vkDestroySemaphore(device, compute.semaphores.ready, nullptr);
vkDestroySemaphore(device, compute.semaphores.complete, nullptr);
vkDestroyCommandPool(device, compute.commandPool, nullptr);
// SSBOs
storageBuffers.input.destroy();
storageBuffers.output.destroy();
}
}
// Enable physical device features required for this example
virtual void getEnabledFeatures()
{
if (deviceFeatures.samplerAnisotropy) {
enabledFeatures.samplerAnisotropy = VK_TRUE;
}
};
void loadAssets()
{
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY;
modelSphere.loadFromFile(getAssetPath() + "models/sphere.gltf", vulkanDevice, queue, glTFLoadingFlags);
textureCloth.loadFromFile(getAssetPath() + "textures/vulkan_cloth_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
}
void addGraphicsToComputeBarriers(VkCommandBuffer commandBuffer, VkAccessFlags srcAccessMask, VkAccessFlags dstAccessMask, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask)
{
if (dedicatedComputeQueue) {
VkBufferMemoryBarrier bufferBarrier = vks::initializers::bufferMemoryBarrier();
bufferBarrier.srcAccessMask = srcAccessMask;
bufferBarrier.dstAccessMask = dstAccessMask;
bufferBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
bufferBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
bufferBarrier.size = VK_WHOLE_SIZE;
std::vector<VkBufferMemoryBarrier> bufferBarriers;
bufferBarrier.buffer = storageBuffers.input.buffer;
bufferBarriers.push_back(bufferBarrier);
bufferBarrier.buffer = storageBuffers.output.buffer;
bufferBarriers.push_back(bufferBarrier);
vkCmdPipelineBarrier(commandBuffer,
srcStageMask,
dstStageMask,
VK_FLAGS_NONE,
0, nullptr,
static_cast<uint32_t>(bufferBarriers.size()), bufferBarriers.data(),
0, nullptr);
}
}
void addComputeToComputeBarriers(VkCommandBuffer commandBuffer)
{
VkBufferMemoryBarrier bufferBarrier = vks::initializers::bufferMemoryBarrier();
bufferBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
bufferBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
bufferBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
bufferBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
bufferBarrier.size = VK_WHOLE_SIZE;
std::vector<VkBufferMemoryBarrier> bufferBarriers;
bufferBarrier.buffer = storageBuffers.input.buffer;
bufferBarriers.push_back(bufferBarrier);
bufferBarrier.buffer = storageBuffers.output.buffer;
bufferBarriers.push_back(bufferBarrier);
vkCmdPipelineBarrier(
commandBuffer,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_FLAGS_NONE,
0, nullptr,
static_cast<uint32_t>(bufferBarriers.size()), bufferBarriers.data(),
0, nullptr);
}
void addComputeToGraphicsBarriers(VkCommandBuffer commandBuffer, VkAccessFlags srcAccessMask, VkAccessFlags dstAccessMask, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask)
{
if (dedicatedComputeQueue) {
VkBufferMemoryBarrier bufferBarrier = vks::initializers::bufferMemoryBarrier();
bufferBarrier.srcAccessMask = srcAccessMask;
bufferBarrier.dstAccessMask = dstAccessMask;
bufferBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
bufferBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
bufferBarrier.size = VK_WHOLE_SIZE;
std::vector<VkBufferMemoryBarrier> bufferBarriers;
bufferBarrier.buffer = storageBuffers.input.buffer;
bufferBarriers.push_back(bufferBarrier);
bufferBarrier.buffer = storageBuffers.output.buffer;
bufferBarriers.push_back(bufferBarrier);
vkCmdPipelineBarrier(
commandBuffer,
srcStageMask,
dstStageMask,
VK_FLAGS_NONE,
0, nullptr,
static_cast<uint32_t>(bufferBarriers.size()), bufferBarriers.data(),
0, nullptr);
}
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 1.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
// Acquire storage buffers from compute queue
addComputeToGraphicsBarriers(drawCmdBuffers[i], 0, VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_VERTEX_INPUT_BIT);
// Draw the particle system using the update vertex buffer
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
// Render sphere
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelines.sphere);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelineLayout, 0, 1, &graphics.descriptorSet, 0, NULL);
modelSphere.draw(drawCmdBuffers[i]);
// Render cloth
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelines.cloth);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelineLayout, 0, 1, &graphics.descriptorSet, 0, NULL);
vkCmdBindIndexBuffer(drawCmdBuffers[i], graphics.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &storageBuffers.output.buffer, offsets);
vkCmdDrawIndexed(drawCmdBuffers[i], indexCount, 1, 0, 0, 0);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
// release the storage buffers to the compute queue
addGraphicsToComputeBarriers(drawCmdBuffers[i], VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT, 0, VK_PIPELINE_STAGE_VERTEX_INPUT_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void buildComputeCommandBuffer()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
cmdBufInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT;
for (uint32_t i = 0; i < 2; i++) {
VK_CHECK_RESULT(vkBeginCommandBuffer(compute.commandBuffers[i], &cmdBufInfo));
// Acquire the storage buffers from the graphics queue
addGraphicsToComputeBarriers(compute.commandBuffers[i], 0, VK_ACCESS_SHADER_WRITE_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT);
vkCmdBindPipeline(compute.commandBuffers[i], VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipeline);
uint32_t calculateNormals = 0;
vkCmdPushConstants(compute.commandBuffers[i], compute.pipelineLayout, VK_SHADER_STAGE_COMPUTE_BIT, 0, sizeof(uint32_t), &calculateNormals);
// Dispatch the compute job
const uint32_t iterations = 64;
for (uint32_t j = 0; j < iterations; j++) {
readSet = 1 - readSet;
vkCmdBindDescriptorSets(compute.commandBuffers[i], VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipelineLayout, 0, 1, &compute.descriptorSets[readSet], 0, 0);
if (j == iterations - 1) {
calculateNormals = 1;
vkCmdPushConstants(compute.commandBuffers[i], compute.pipelineLayout, VK_SHADER_STAGE_COMPUTE_BIT, 0, sizeof(uint32_t), &calculateNormals);
}
vkCmdDispatch(compute.commandBuffers[i], cloth.gridsize.x / 10, cloth.gridsize.y / 10, 1);
// Don't add a barrier on the last iteration of the loop, since we'll have an explicit release to the graphics queue
if (j != iterations - 1) {
addComputeToComputeBarriers(compute.commandBuffers[i]);
}
}
// release the storage buffers back to the graphics queue
addComputeToGraphicsBarriers(compute.commandBuffers[i], VK_ACCESS_SHADER_WRITE_BIT, 0, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT);
vkEndCommandBuffer(compute.commandBuffers[i]);
}
}
// Setup and fill the shader storage buffers containing the particles
// These buffers are used as shader storage buffers in the compute shader (to update them) and as vertex input in the vertex shader (to display them)
void prepareStorageBuffers()
{
std::vector<Particle> particleBuffer(cloth.gridsize.x * cloth.gridsize.y);
float dx = cloth.size.x / (cloth.gridsize.x - 1);
float dy = cloth.size.y / (cloth.gridsize.y - 1);
float du = 1.0f / (cloth.gridsize.x - 1);
float dv = 1.0f / (cloth.gridsize.y - 1);
// Set up a flat cloth that falls onto sphere
glm::mat4 transM = glm::translate(glm::mat4(1.0f), glm::vec3(-cloth.size.x / 2.0f, -2.0f, -cloth.size.y / 2.0f));
for (uint32_t i = 0; i < cloth.gridsize.y; i++) {
for (uint32_t j = 0; j < cloth.gridsize.x; j++) {
particleBuffer[i + j * cloth.gridsize.y].pos = transM * glm::vec4(dx * j, 0.0f, dy * i, 1.0f);
particleBuffer[i + j * cloth.gridsize.y].vel = glm::vec4(0.0f);
particleBuffer[i + j * cloth.gridsize.y].uv = glm::vec4(1.0f - du * i, dv * j, 0.0f, 0.0f);
}
}
VkDeviceSize storageBufferSize = particleBuffer.size() * sizeof(Particle);
// Staging
// SSBO won't be changed on the host after upload so copy to device local memory
vks::Buffer stagingBuffer;
vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&stagingBuffer,
storageBufferSize,
particleBuffer.data());
// SSBOs will be used both as storage buffers (compute) and vertex buffers (graphics)
vulkanDevice->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
&storageBuffers.input,
storageBufferSize);
vulkanDevice->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
&storageBuffers.output,
storageBufferSize);
// Copy from staging buffer
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
VkBufferCopy copyRegion = {};
copyRegion.size = storageBufferSize;
vkCmdCopyBuffer(copyCmd, stagingBuffer.buffer, storageBuffers.output.buffer, 1, ©Region);
// Add an initial release barrier to the graphics queue,
// so that when the compute command buffer executes for the first time
// it doesn't complain about a lack of a corresponding "release" to its "acquire"
addGraphicsToComputeBarriers(copyCmd, VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT, 0, VK_PIPELINE_STAGE_VERTEX_INPUT_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT);
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
stagingBuffer.destroy();
// Indices
std::vector<uint32_t> indices;
for (uint32_t y = 0; y < cloth.gridsize.y - 1; y++) {
for (uint32_t x = 0; x < cloth.gridsize.x; x++) {
indices.push_back((y + 1) * cloth.gridsize.x + x);
indices.push_back((y)*cloth.gridsize.x + x);
}
// Primitive restart (signaled by special value 0xFFFFFFFF)
indices.push_back(0xFFFFFFFF);
}
uint32_t indexBufferSize = static_cast<uint32_t>(indices.size()) * sizeof(uint32_t);
indexCount = static_cast<uint32_t>(indices.size());
vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&stagingBuffer,
indexBufferSize,
indices.data());
vulkanDevice->createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
&graphics.indices,
indexBufferSize);
// Copy from staging buffer
copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
copyRegion = {};
copyRegion.size = indexBufferSize;
vkCmdCopyBuffer(copyCmd, stagingBuffer.buffer, graphics.indices.buffer, 1, ©Region);
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
stagingBuffer.destroy();
}
// Prepare the resources used for the graphics part of the sample
void prepareGraphics()
{
// Uniform buffer for passing data to the vertex shader
vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &graphics.uniformBuffer, sizeof(Graphics::UniformData));
VK_CHECK_RESULT(graphics.uniformBuffer.map());
// Descriptor pool
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 4),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 3);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
// Descriptor layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &graphics.descriptorSetLayout));
// Decscriptor set
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &graphics.descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &graphics.descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
vks::initializers::writeDescriptorSet(graphics.descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &graphics.uniformBuffer.descriptor),
vks::initializers::writeDescriptorSet(graphics.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textureCloth.descriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
// Layout
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&graphics.descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &graphics.pipelineLayout));
// Pipeline
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, 0, VK_TRUE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
// Rendering pipeline
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] = loadShader(getShadersPath() + "computecloth/cloth.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "computecloth/cloth.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo(graphics.pipelineLayout, renderPass);
// Vertex Input
std::vector<VkVertexInputBindingDescription> inputBindings = {
vks::initializers::vertexInputBindingDescription(0, sizeof(Particle), VK_VERTEX_INPUT_RATE_VERTEX)
};
// Attribute descriptions based on the particles of the cloth
std::vector<VkVertexInputAttributeDescription> inputAttributes = {
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Particle, pos)),
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32_SFLOAT, offsetof(Particle, uv)),
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Particle, normal))
};
// Assign to vertex buffer
VkPipelineVertexInputStateCreateInfo inputState = vks::initializers::pipelineVertexInputStateCreateInfo();
inputState.vertexBindingDescriptionCount = static_cast<uint32_t>(inputBindings.size());
inputState.pVertexBindingDescriptions = inputBindings.data();
inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(inputAttributes.size());
inputState.pVertexAttributeDescriptions = inputAttributes.data();
pipelineCreateInfo.pVertexInputState = &inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfo.pStages = shaderStages.data();
pipelineCreateInfo.renderPass = renderPass;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &graphics.pipelines.cloth));
// Sphere rendering pipeline
pipelineCreateInfo.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::UV, vkglTF::VertexComponent::Normal });
inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(inputAttributes.size());
inputAssemblyState.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
inputAssemblyState.primitiveRestartEnable = VK_FALSE;
rasterizationState.polygonMode = VK_POLYGON_MODE_FILL;
shaderStages[0] = loadShader(getShadersPath() + "computecloth/sphere.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "computecloth/sphere.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &graphics.pipelines.sphere));
buildCommandBuffers();
}
// Prepare the resources used for the compute part of the sample
void prepareCompute()
{
// Create a compute capable device queue
vkGetDeviceQueue(device, vulkanDevice->queueFamilyIndices.compute, 0, &compute.queue);
// Uniform buffer for passing data to the compute shader
vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &compute.uniformBuffer, sizeof(Compute::UniformData));
VK_CHECK_RESULT(compute.uniformBuffer.map());
// Set some initial values
float dx = cloth.size.x / (cloth.gridsize.x - 1);
float dy = cloth.size.y / (cloth.gridsize.y - 1);
compute.uniformData.restDistH = dx;
compute.uniformData.restDistV = dy;
compute.uniformData.restDistD = sqrtf(dx * dx + dy * dy);
compute.uniformData.particleCount = cloth.gridsize;
// Create compute pipeline
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT, 0),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT, 1),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT, 2),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &compute.descriptorSetLayout));
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&compute.descriptorSetLayout, 1);
// Push constants used to pass some parameters
VkPushConstantRange pushConstantRange = vks::initializers::pushConstantRange(VK_SHADER_STAGE_COMPUTE_BIT, sizeof(uint32_t), 0);
pipelineLayoutCreateInfo.pushConstantRangeCount = 1;
pipelineLayoutCreateInfo.pPushConstantRanges = &pushConstantRange;
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &compute.pipelineLayout));
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &compute.descriptorSetLayout, 1);
// Create two descriptor sets with input and output buffers switched
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &compute.descriptorSets[0]));
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &compute.descriptorSets[1]));
std::vector<VkWriteDescriptorSet> computeWriteDescriptorSets = {
vks::initializers::writeDescriptorSet(compute.descriptorSets[0], VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 0, &storageBuffers.input.descriptor),
vks::initializers::writeDescriptorSet(compute.descriptorSets[0], VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, &storageBuffers.output.descriptor),
vks::initializers::writeDescriptorSet(compute.descriptorSets[0], VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &compute.uniformBuffer.descriptor),
vks::initializers::writeDescriptorSet(compute.descriptorSets[1], VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 0, &storageBuffers.output.descriptor),
vks::initializers::writeDescriptorSet(compute.descriptorSets[1], VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, &storageBuffers.input.descriptor),
vks::initializers::writeDescriptorSet(compute.descriptorSets[1], VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &compute.uniformBuffer.descriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(computeWriteDescriptorSets.size()), computeWriteDescriptorSets.data(), 0, NULL);
// Create pipeline
VkComputePipelineCreateInfo computePipelineCreateInfo = vks::initializers::computePipelineCreateInfo(compute.pipelineLayout, 0);
computePipelineCreateInfo.stage = loadShader(getShadersPath() + "computecloth/cloth.comp.spv", VK_SHADER_STAGE_COMPUTE_BIT);
VK_CHECK_RESULT(vkCreateComputePipelines(device, pipelineCache, 1, &computePipelineCreateInfo, nullptr, &compute.pipeline));
// Separate command pool as queue family for compute may be different than graphics
VkCommandPoolCreateInfo cmdPoolInfo = {};
cmdPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
cmdPoolInfo.queueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
cmdPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
VK_CHECK_RESULT(vkCreateCommandPool(device, &cmdPoolInfo, nullptr, &compute.commandPool));
// Create a command buffer for compute operations
VkCommandBufferAllocateInfo cmdBufAllocateInfo = vks::initializers::commandBufferAllocateInfo(compute.commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, 2);
VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &compute.commandBuffers[0]));
// Semaphores for graphics / compute synchronization
VkSemaphoreCreateInfo semaphoreCreateInfo = vks::initializers::semaphoreCreateInfo();
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &compute.semaphores.ready));
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &compute.semaphores.complete));
// Build a single command buffer containing the compute dispatch commands
buildComputeCommandBuffer();
}
void updateComputeUBO()
{
if (!paused) {
// SRS - Clamp frameTimer to max 20ms refresh period (e.g. if blocked on resize), otherwise image breakup can occur
compute.uniformData.deltaT = fmin(frameTimer, 0.02f) * 0.0025f;
if (simulateWind) {
std::default_random_engine rndEngine(benchmark.active ? 0 : (unsigned)time(nullptr));
std::uniform_real_distribution<float> rd(1.0f, 12.0f);
compute.uniformData.gravity.x = cos(glm::radians(-timer * 360.0f)) * (rd(rndEngine) - rd(rndEngine));
compute.uniformData.gravity.z = sin(glm::radians(timer * 360.0f)) * (rd(rndEngine) - rd(rndEngine));
}
else {
compute.uniformData.gravity.x = 0.0f;
compute.uniformData.gravity.z = 0.0f;
}
}
else {
compute.uniformData.deltaT = 0.0f;
}
memcpy(compute.uniformBuffer.mapped, &compute.uniformData, sizeof(Compute::UniformData));
}
void updateGraphicsUBO()
{
graphics.uniformData.projection = camera.matrices.perspective;
graphics.uniformData.view = camera.matrices.view;
memcpy(graphics.uniformBuffer.mapped, &graphics.uniformData, sizeof(Graphics::UniformData));
}
void draw()
{
// As we use both graphics and compute, frame submission is a bit more involved
// We'll be using semaphores to synchronize between the compute shader updating the cloth and the graphics pipeline drawing it
static bool firstDraw = true;
VkSubmitInfo computeSubmitInfo = vks::initializers::submitInfo();
VkPipelineStageFlags computeWaitDstStageMask = VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT;
if (!firstDraw) {
computeSubmitInfo.waitSemaphoreCount = 1;
computeSubmitInfo.pWaitSemaphores = &compute.semaphores.ready;
computeSubmitInfo.pWaitDstStageMask = &computeWaitDstStageMask;
}
else {
firstDraw = false;
}
computeSubmitInfo.signalSemaphoreCount = 1;
computeSubmitInfo.pSignalSemaphores = &compute.semaphores.complete;
computeSubmitInfo.commandBufferCount = 1;
computeSubmitInfo.pCommandBuffers = &compute.commandBuffers[readSet];
VK_CHECK_RESULT(vkQueueSubmit(compute.queue, 1, &computeSubmitInfo, VK_NULL_HANDLE));
// Submit graphics commands
VulkanExampleBase::prepareFrame();
VkPipelineStageFlags waitDstStageMask[2] = {
submitPipelineStages, VK_PIPELINE_STAGE_VERTEX_INPUT_BIT
};
VkSemaphore waitSemaphores[2] = {
semaphores.presentComplete, compute.semaphores.complete
};
VkSemaphore signalSemaphores[2] = {
semaphores.renderComplete, compute.semaphores.ready
};
submitInfo.waitSemaphoreCount = 2;
submitInfo.pWaitDstStageMask = waitDstStageMask;
submitInfo.pWaitSemaphores = waitSemaphores;
submitInfo.signalSemaphoreCount = 2;
submitInfo.pSignalSemaphores = signalSemaphores;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
// Make sure the code works properly both with different queues families for graphics and compute and the same queue family
// You can use DEBUG_FORCE_SHARED_GRAPHICS_COMPUTE_QUEUE preprocessor define to force graphics and compute from the same queue family
#ifdef DEBUG_FORCE_SHARED_GRAPHICS_COMPUTE_QUEUE
vulkanDevice->queueFamilyIndices.compute = vulkanDevice->queueFamilyIndices.graphics;
#endif
// Check whether the compute queue family is distinct from the graphics queue family
dedicatedComputeQueue = vulkanDevice->queueFamilyIndices.graphics != vulkanDevice->queueFamilyIndices.compute;
loadAssets();
prepareStorageBuffers();
prepareGraphics();
prepareCompute();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
updateGraphicsUBO();
updateComputeUBO();
draw();
}
virtual void OnUpdateUIOverlay(vks::UIOverlay* overlay)
{
if (overlay->header("Settings")) {
overlay->checkBox("Simulate wind", &simulateWind);
}
}
};
VULKAN_EXAMPLE_MAIN()