-
Notifications
You must be signed in to change notification settings - Fork 2
/
main_doc_linking_2013.py
41 lines (31 loc) · 2.18 KB
/
main_doc_linking_2013.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from doc_linking import get_test_dataset, get_topic_model_similar_docs_and_distance, get_cr5_similar_docs_and_distance, get_wasserstein_similar_docs_and_distance
from doc_linking import save_distance_results
import json
import os
max_articles = 100
test_year = 2013
print("Opening test data")
aligned_path = "aligned_articles_2013_2015_monthly.json"
aligned_data = json.load(open(aligned_path, 'r'))
for test_month in list(range(0,12)):
print("* Running document linking for Month", test_month, "- Year", test_year)
fi_articles, sv_articles, fi_keys, sv_keys, sv_keys_dict, actual_related = get_test_dataset(aligned_data, num_articles=max_articles, month=test_month, year=test_year)
# # Get Topic Model predictions and distances
model_name = "yle_100topics_5"
results_path = "results/" + model_name + "_" + str(test_year) + "_" + str(test_month) + "_iter"
if os.path.exists(results_path + ".pkl") == False:
model_filepath = "trained_models/" + model_name
tm_dist, tm_predictions = get_topic_model_similar_docs_and_distance(model_filepath, fi_articles, sv_articles)
save_distance_results(tm_dist, tm_predictions, fi_keys, sv_keys, sv_keys_dict, actual_related, out_filepath=results_path)
# # Get Cr5 predictions and distances
# results_path = "results/cr5_" + str(test_year) + "_" + str(test_month) + "_2"
# if os.path.exists(results_path + ".pkl") == False:
# cr5_dist, cr5_predictions = get_cr5_similar_docs_and_distance(fi_keys, sv_keys, sv_keys_dict)
# save_distance_results(cr5_dist, cr5_predictions, fi_keys, sv_keys, sv_keys_dict, actual_related, out_filepath=results_path)
# # Get Wasserstein predictions and distances
# entropic_reg = 0.01
# results_path = "results/wass_" + str(test_year) + "_" + str(test_month) + "_entropic"
# if os.path.exists(results_path + ".pkl") == False:
# wass_dist, wass_pred = get_wasserstein_similar_docs_and_distance(fi_articles, sv_articles, chunk_size=10, entropic_reg=entropic_reg)
# wass_predictions = [list(w) for w in wass_pred]
# save_distance_results(wass_dist, wass_predictions, fi_keys, sv_keys, sv_keys_dict, actual_related, out_filepath=results_path)