From cc54f7404b10e530ed6cfdb351f3695063cb9fa7 Mon Sep 17 00:00:00 2001 From: euisuk-chung Date: Tue, 23 Nov 2021 02:23:36 +0000 Subject: [PATCH] add notebooks --- .gitignore | 145 --- LICENSE | 21 - README.md | 1 - Timeseries_clustering.ipynb | 1635 ------------------------- "VRAE_\354\230\210\354\213\234.ipynb" | 656 ---------- params.txt | 14 - requirements.txt | 7 - 7 files changed, 2479 deletions(-) delete mode 100644 .gitignore delete mode 100644 LICENSE delete mode 100644 README.md delete mode 100644 Timeseries_clustering.ipynb delete mode 100644 "VRAE_\354\230\210\354\213\234.ipynb" delete mode 100644 params.txt delete mode 100644 requirements.txt diff --git a/.gitignore b/.gitignore deleted file mode 100644 index 02c381e..0000000 --- a/.gitignore +++ /dev/null @@ -1,145 +0,0 @@ -### Data ### -data/ -erc/ - -### Python ### -# Byte-compiled / optimized / DLL files -__pycache__/ -*.py[cod] -*$py.class - -# C extensions -*.so - -# Distribution / packaging -.Python -build/ -develop-eggs/ -dist/ -downloads/ -eggs/ -.eggs/ -lib/ -lib64/ -parts/ -sdist/ -var/ -wheels/ -share/python-wheels/ -*.egg-info/ -.installed.cfg -*.egg -MANIFEST - -# PyInstaller -# Usually these files are written by a python script from a template -# before PyInstaller builds the exe, so as to inject date/other infos into it. -*.manifest -*.spec - -# Installer logs -pip-log.txt -pip-delete-this-directory.txt - -# Unit test / coverage reports -htmlcov/ -.tox/ -.nox/ -.coverage -.coverage.* -.cache -nosetests.xml -coverage.xml -*.cover -*.py,cover -.hypothesis/ -.pytest_cache/ -cover/ - -# Translations -*.mo -*.pot - -# Django stuff: -*.log -local_settings.py -db.sqlite3 -db.sqlite3-journal - -# Flask stuff: -instance/ -.webassets-cache - -# Scrapy stuff: -.scrapy - -# Sphinx documentation -docs/_build/ - -# PyBuilder -.pybuilder/ -target/ - -# Jupyter Notebook -.ipynb_checkpoints - -# IPython -profile_default/ -ipython_config.py - -# pyenv -# For a library or package, you might want to ignore these files since the code is -# intended to run in multiple environments; otherwise, check them in: -# .python-version - -# pipenv -# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. -# However, in case of collaboration, if having platform-specific dependencies or dependencies -# having no cross-platform support, pipenv may install dependencies that don't work, or not -# install all needed dependencies. -#Pipfile.lock - -# PEP 582; used by e.g. github.com/David-OConnor/pyflow -__pypackages__/ - -# Celery stuff -celerybeat-schedule -celerybeat.pid - -# SageMath parsed files -*.sage.py - -# Environments -.env -.venv -env/ -venv/ -ENV/ -env.bak/ -venv.bak/ - -# Spyder project settings -.spyderproject -.spyproject - -# Rope project settings -.ropeproject - -# mkdocs documentation -/site - -# mypy -.mypy_cache/ -.dmypy.json -dmypy.json - -# Pyre type checker -.pyre/ - -# pytype static type analyzer -.pytype/ - -# Cython debug symbols -cython_debug/ - -# End of https://www.toptal.com/developers/gitignore/api/python \ No newline at end of file diff --git a/LICENSE b/LICENSE deleted file mode 100644 index f37218e..0000000 --- a/LICENSE +++ /dev/null @@ -1,21 +0,0 @@ -MIT License - -Copyright (c) 2021 Chung_es - -Permission is hereby granted, free of charge, to any person obtaining a copy -of this software and associated documentation files (the "Software"), to deal -in the Software without restriction, including without limitation the rights -to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -copies of the Software, and to permit persons to whom the Software is -furnished to do so, subject to the following conditions: - -The above copyright notice and this permission notice shall be included in all -copies or substantial portions of the Software. - -THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -SOFTWARE. diff --git a/README.md b/README.md deleted file mode 100644 index 89ecc5a..0000000 --- a/README.md +++ /dev/null @@ -1 +0,0 @@ -# Time Series Generation \ No newline at end of file diff --git a/Timeseries_clustering.ipynb b/Timeseries_clustering.ipynb deleted file mode 100644 index 7f59b46..0000000 --- a/Timeseries_clustering.ipynb +++ /dev/null @@ -1,1635 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Timeseries clustering\n", - "\n", - "Time series clustering is to partition time series data into groups based on similarity or distance, so that time series in the same cluster are similar.\n", - "\n", - "Methodology followed:\n", - "* Use Variational Recurrent AutoEncoder (VRAE) for dimensionality reduction of the timeseries\n", - "* To visualize the clusters, PCA and t-sne are used\n", - "\n", - "Paper:\n", - "https://arxiv.org/pdf/1412.6581.pdf" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Contents\n", - "\n", - "0. [Load data and preprocess](#Load-data-and-preprocess)\n", - "1. [Initialize VRAE object](#Initialize-VRAE-object)\n", - "2. [Fit the model onto dataset](#Fit-the-model-onto-dataset)\n", - "3. [Transform the input timeseries to encoded latent vectors](#Transform-the-input-timeseries-to-encoded-latent-vectors)\n", - "4. [Save the model to be fetched later](#Save-the-model-to-be-fetched-later)\n", - "5. [Visualize using PCA and tSNE](#Visualize-using-PCA-and-tSNE)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Import required modules" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - " \n", - " " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from model.org_vrae import VRAE\n", - "from model.utils import *\n", - "import numpy as np\n", - "import torch\n", - "\n", - "import plotly\n", - "from torch.utils.data import DataLoader, TensorDataset\n", - "plotly.offline.init_notebook_mode()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Input parameters" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "dload = './model_dir' #download directory" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Hyper parameters" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "hidden_size = 90\n", - "hidden_layer_depth = 1\n", - "latent_length = 20\n", - "batch_size = 32\n", - "learning_rate = 0.0005\n", - "n_epochs = 1\n", - "dropout_rate = 0.2\n", - "optimizer = 'Adam' # options: ADAM, SGD\n", - "cuda = True # options: True, False\n", - "print_every=30\n", - "clip = True # options: True, False\n", - "max_grad_norm=5\n", - "loss = 'MSELoss' # options: SmoothL1Loss, MSELoss\n", - "block = 'LSTM' # options: LSTM, GRU" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Load data and preprocess" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "X_train, X_val, y_train, y_val = open_data('data', ratio_train=0.9)\n", - "\n", - "num_classes = len(np.unique(y_train))\n", - "base = np.min(y_train) # Check if data is 0-based\n", - "if base != 0:\n", - " y_train -= base\n", - "y_val -= base" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(8549, 140, 1)\n" - ] - } - ], - "source": [ - "print(X_train.shape)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "train_dataset = TensorDataset(torch.from_numpy(X_train))\n", - "test_dataset = TensorDataset(torch.from_numpy(X_val))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Fetch `sequence_length` from dataset**" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "140" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sequence_length = X_train.shape[1]\n", - "sequence_length" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Fetch `number_of_features` from dataset**\n", - "\n", - "This config corresponds to number of input features" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "number_of_features = X_train.shape[2]\n", - "number_of_features" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Initialize VRAE object\n", - "\n", - "VRAE inherits from `sklearn.base.BaseEstimator` and overrides `fit`, `transform` and `fit_transform` functions, similar to sklearn modules" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/rnn.py:65: UserWarning:\n", - "\n", - "dropout option adds dropout after all but last recurrent layer, so non-zero dropout expects num_layers greater than 1, but got dropout=0.2 and num_layers=1\n", - "\n", - "/usr/local/lib/python3.6/dist-packages/torch/nn/_reduction.py:42: UserWarning:\n", - "\n", - "size_average and reduce args will be deprecated, please use reduction='sum' instead.\n", - "\n" - ] - } - ], - "source": [ - "vrae = VRAE(sequence_length=sequence_length,\n", - " number_of_features = number_of_features,\n", - " hidden_size = hidden_size, \n", - " hidden_layer_depth = hidden_layer_depth,\n", - " latent_length = latent_length,\n", - " batch_size = batch_size,\n", - " learning_rate = learning_rate,\n", - " n_epochs = n_epochs,\n", - " dropout_rate = dropout_rate,\n", - " optimizer = optimizer, \n", - " cuda = cuda,\n", - " print_every=print_every, \n", - " clip=clip, \n", - " max_grad_norm=max_grad_norm,\n", - " loss = loss,\n", - " block = block,\n", - " dload = dload)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Fit the model onto dataset" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fit result\n", - "torch.Size([32, 140, 1])\n", - "Epoch: 0\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "Batch 30, loss = 4126.4561, recon_loss = 4126.3960, kl_loss = 0.0602\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "Batch 60, loss = 3002.3113, recon_loss = 2999.1250, kl_loss = 3.1863\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "Batch 90, loss = 2697.9019, recon_loss = 2694.5222, kl_loss = 3.3796\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "Batch 120, loss = 2783.7349, recon_loss = 2780.4021, kl_loss = 3.3327\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "Batch 150, loss = 2799.6096, recon_loss = 2796.6382, kl_loss = 2.9714\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "Batch 180, loss = 2885.5581, recon_loss = 2882.9241, kl_loss = 2.6341\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "Batch 210, loss = 2366.8254, recon_loss = 2364.6108, kl_loss = 2.2146\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "Batch 240, loss = 2797.3643, recon_loss = 2795.4651, kl_loss = 1.8991\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "Average loss: 2893.1905\n" - ] - } - ], - "source": [ - "vrae.fit(train_dataset)\n", - "\n", - "#If the model has to be saved, with the learnt parameters use:\n", - "# vrae.fit(dataset, save = True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Transform the input timeseries to encoded latent vectors" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([140, 32, 1])\n", - "--------------------------\n" - ] - } - ], - "source": [ - "z_run = vrae.transform(test_dataset)\n", - "\n", - "#If the latent vectors have to be saved, pass the parameter `save`\n", - "# z_run = vrae.transform(dataset, save = True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Save the model to be fetched later" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "vrae.save('vrae.pth')\n", - "\n", - "# To load a presaved model, execute:\n", - "# vrae.load('vrae.pth')" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.9" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git "a/VRAE_\354\230\210\354\213\234.ipynb" "b/VRAE_\354\230\210\354\213\234.ipynb" deleted file mode 100644 index c88052c..0000000 --- "a/VRAE_\354\230\210\354\213\234.ipynb" +++ /dev/null @@ -1,656 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Contents\n", - "\n", - "0. [Load data and preprocess](#Load-data-and-preprocess)\n", - "1. [Initialize VRAE object](#Initialize-VRAE-object)\n", - "2. [Fit the model onto dataset](#Fit-the-model-onto-dataset)\n", - "3. [Transform the input timeseries to encoded latent vectors](#Transform-the-input-timeseries-to-encoded-latent-vectors)\n", - "4. [Save the model to be fetched later](#Save-the-model-to-be-fetched-later)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Import required modules" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "%load_ext autoreload\n", - "%autoreload 2\n", - "\n", - "from model.vrae import VRAE\n", - "from model.utils import *\n", - "import numpy as np\n", - "import torch\n", - "from torch.utils.data import DataLoader, Dataset\n", - "from tqdm.notebook import trange\n", - "import tqdm" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Input parameters" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "dload = './saved_model' #download directory" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Hyper parameters" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Load data and preprocess\n", - "- `folder` : data location\n", - "- `cols_to_remove` : generation 수행하지 않을 column 제거" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**TODO : 해당 변수에 대한 처리를 어떻게 해줘야하는가 확인 작업이 필요함**\n", - "\n", - "~~~\n", - "YYYYMMDD : 년월일\n", - "HHMMSS : 시분초\n", - "MNG_NO : 장비번호\n", - "IF_IDX : 회선 index\n", - "~~~\n", - "\n", - "- 현재는 분석의 편의를 위해 ['YYYYMMDD', 'HHMMSS']만 제거해줌" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(23195128, 56)\n" - ] - } - ], - "source": [ - "# params\n", - "folder = 'data'\n", - "cols_to_remove = ['YYYYMMDD', 'HHMMSS']\n", - "\n", - "# load data\n", - "df_total = load_data(folder, cols_to_remove)\n", - "\n", - "# shape\n", - "print(df_total.shape)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "class HamonDataset(Dataset):\n", - " def __init__(self, data, window, stride):\n", - " self.data = torch.Tensor(data)\n", - " self.window = window\n", - " \n", - " def __len__(self):\n", - " return len(self.data) - self.window \n", - " \n", - " def __getitem__(self, index):\n", - " x_index = index*self.window\n", - " x = self.data[x_index:x_index+self.window]\n", - " return x" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "data = df_total\n", - "stride = 10\n", - "window = 100" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "<__main__.HamonDataset at 0x7f7cbaa3f940>" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "train_dataset = HamonDataset(data, window, stride)\n", - "train_dataset" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "torch.Size([100, 56])" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "train_dataset[0].shape" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Fetch `sequence_length` from dataset**" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "100" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sequence_length = train_dataset[0].shape[0]\n", - "sequence_length" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Fetch `number_of_features` from dataset**\n", - "\n", - "This config corresponds to number of input features" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "56" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "number_of_features = train_dataset[0].shape[1]\n", - "number_of_features" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Parameters" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "n_epochs = 1\n", - "hidden_size = 90\n", - "hidden_layer_depth = 1\n", - "latent_length = 20\n", - "batch_size = 32\n", - "learning_rate = 0.0005\n", - "dropout_rate = 0.2\n", - "optimizer = 'Adam' # options: ADAM, SGD\n", - "cuda = True # options: True, False\n", - "print_every=30\n", - "clip = True # options: True, False\n", - "max_grad_norm=5\n", - "loss = 'MSELoss' # options: SmoothL1Loss, MSELoss\n", - "block = 'LSTM' # options: LSTM, GRU" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "train_loader = DataLoader(dataset = train_dataset,\n", - " batch_size = batch_size,\n", - " shuffle = False,\n", - " drop_last=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/plain": [ - "tensor([[[2.7220e+03, 1.2400e+02, 1.8431e+05, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00],\n", - " [2.7220e+03, 1.2400e+02, 3.8349e+05, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00],\n", - " [2.7220e+03, 1.2400e+02, 2.3519e+05, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00],\n", - " ...,\n", - " [2.8500e+03, 1.2400e+02, 2.3200e+02, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00],\n", - " [2.8500e+03, 1.2400e+02, 2.4000e+02, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00],\n", - " [2.8500e+03, 1.2400e+02, 2.4000e+02, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00]],\n", - "\n", - " [[2.8500e+03, 1.2400e+02, 2.4000e+02, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00],\n", - " [2.8500e+03, 1.2400e+02, 2.4000e+02, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00],\n", - " [2.8500e+03, 1.2400e+02, 2.4000e+02, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00],\n", - " ...,\n", - " [2.8630e+03, 1.2400e+02, 1.8664e+04, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00],\n", - " [2.8630e+03, 1.2400e+02, 1.9056e+04, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00],\n", - " [2.8630e+03, 1.2400e+02, 1.8104e+04, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00]],\n", - "\n", - " [[2.8630e+03, 1.2400e+02, 1.8096e+04, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00],\n", - " [2.8630e+03, 1.2400e+02, 1.8640e+04, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00],\n", - " [2.8630e+03, 1.2400e+02, 1.9448e+04, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00],\n", - " ...,\n", - " [2.8730e+03, 1.2400e+02, 3.3920e+03, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00],\n", - " [2.8730e+03, 1.2400e+02, 3.4480e+03, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00],\n", - " [2.8730e+03, 1.2400e+02, 3.3840e+03, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00]],\n", - "\n", - " ...,\n", - "\n", - " [[3.7730e+03, 1.2400e+02, 2.0880e+03, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00],\n", - " [3.7730e+03, 1.2400e+02, 1.9360e+03, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00],\n", - " [3.7730e+03, 1.2400e+02, 1.9840e+03, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00],\n", - " ...,\n", - " [3.7810e+03, 1.2400e+02, 1.7760e+03, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00],\n", - " [3.7810e+03, 1.2400e+02, 1.6800e+03, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00],\n", - " [3.7810e+03, 1.2400e+02, 1.7600e+03, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00]],\n", - "\n", - " [[3.7820e+03, 1.2400e+02, 5.1096e+04, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00],\n", - " [3.7820e+03, 1.2400e+02, 1.2566e+06, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00],\n", - " [3.7820e+03, 1.2400e+02, 5.2016e+04, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00],\n", - " ...,\n", - " [3.7900e+03, 1.2400e+02, 1.6496e+04, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00],\n", - " [3.7900e+03, 1.2400e+02, 1.6416e+04, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00],\n", - " [3.7900e+03, 1.2400e+02, 1.6776e+04, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00]],\n", - "\n", - " [[3.7900e+03, 1.2400e+02, 1.6032e+04, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00],\n", - " [3.7900e+03, 1.2400e+02, 1.6528e+04, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00],\n", - " [3.7900e+03, 1.2400e+02, 1.7032e+04, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00],\n", - " ...,\n", - " [3.7980e+03, 1.2400e+02, 6.1760e+03, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00],\n", - " [3.7980e+03, 1.2400e+02, 6.1920e+03, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00],\n", - " [3.7980e+03, 1.2400e+02, 5.9840e+03, ..., 0.0000e+00,\n", - " 0.0000e+00, 0.0000e+00]]])" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X = iter(train_loader).next()\n", - "X" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "torch.Size([32, 100, 56])" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X.shape" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Initialize VRAE object\n", - "\n", - "VRAE inherits from `sklearn.base.BaseEstimator` and overrides `fit`, `transform` and `fit_transform` functions, similar to sklearn modules" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [], - "source": [ - "vrae = VRAE(sequence_length=sequence_length,\n", - " number_of_features = number_of_features,\n", - " hidden_size = hidden_size, \n", - " hidden_layer_depth = hidden_layer_depth,\n", - " latent_length = latent_length,\n", - " batch_size = batch_size,\n", - " learning_rate = learning_rate,\n", - " n_epochs = n_epochs,\n", - " dropout_rate = dropout_rate,\n", - " optimizer = optimizer, \n", - " cuda = cuda,\n", - " print_every=print_every, \n", - " clip=clip, \n", - " max_grad_norm=max_grad_norm,\n", - " loss = loss,\n", - " block = block,\n", - " dload = dload)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Fit the model onto dataset" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "tensor([[2.7220e+03, 1.2400e+02, 1.8431e+05, ..., 0.0000e+00, 0.0000e+00,\n", - " 0.0000e+00],\n", - " [2.7220e+03, 1.2400e+02, 3.8349e+05, ..., 0.0000e+00, 0.0000e+00,\n", - " 0.0000e+00],\n", - " [2.7220e+03, 1.2400e+02, 2.3519e+05, ..., 0.0000e+00, 0.0000e+00,\n", - " 0.0000e+00],\n", - " ...,\n", - " [2.8500e+03, 1.2400e+02, 2.3200e+02, ..., 0.0000e+00, 0.0000e+00,\n", - " 0.0000e+00],\n", - " [2.8500e+03, 1.2400e+02, 2.4000e+02, ..., 0.0000e+00, 0.0000e+00,\n", - " 0.0000e+00],\n", - " [2.8500e+03, 1.2400e+02, 2.4000e+02, ..., 0.0000e+00, 0.0000e+00,\n", - " 0.0000e+00]])" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "train_dataset[0]" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [], - "source": [ - "train_loader_test = DataLoader(dataset = train_dataset[0],\n", - " batch_size = 32,\n", - " shuffle = False,\n", - " drop_last=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "torch.Size([32, 56])\n" - ] - } - ], - "source": [ - "tmp = iter(train_loader_test).next()\n", - "print(tmp.shape)" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fit result\n", - "<__main__.HamonDataset object at 0x7f7cbaa3f940>\n", - "tensor([[2.7220e+03, 1.2400e+02, 1.8431e+05, ..., 0.0000e+00, 0.0000e+00,\n", - " 0.0000e+00],\n", - " [2.7220e+03, 1.2400e+02, 3.8349e+05, ..., 0.0000e+00, 0.0000e+00,\n", - " 0.0000e+00],\n", - " [2.7220e+03, 1.2400e+02, 2.3519e+05, ..., 0.0000e+00, 0.0000e+00,\n", - " 0.0000e+00],\n", - " ...,\n", - " [2.8500e+03, 1.2400e+02, 2.3200e+02, ..., 0.0000e+00, 0.0000e+00,\n", - " 0.0000e+00],\n", - " [2.8500e+03, 1.2400e+02, 2.4000e+02, ..., 0.0000e+00, 0.0000e+00,\n", - " 0.0000e+00],\n", - " [2.8500e+03, 1.2400e+02, 2.4000e+02, ..., 0.0000e+00, 0.0000e+00,\n", - " 0.0000e+00]])\n", - "torch.Size([32, 100, 56])\n", - "Epoch: 0\n", - "--------------------------\n", - "DEBUGGING\n", - "torch.Size([32, 100, 56])\n", - "--------------------------\n" - ] - }, - { - "ename": "RuntimeError", - "evalue": "Expected hidden[0] size (1, 32, 90), got [1, 100, 90]", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mvrae\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_dataset\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;31m#If the model has to be saved, with the learnt parameters use:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m# vrae.fit(dataset, save = True)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/repo/projects/timeseries-generation/model/vrae.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, dataset, save)\u001b[0m\n\u001b[1;32m 352\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Epoch: %s'\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 353\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 354\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_train\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_loader\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 355\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 356\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_fitted\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/repo/projects/timeseries-generation/model/vrae.py\u001b[0m in \u001b[0;36m_train\u001b[0;34m(self, train_loader)\u001b[0m\n\u001b[1;32m 308\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 309\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptimizer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mzero_grad\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 310\u001b[0;31m \u001b[0mloss\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrecon_loss\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkl_loss\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcompute_loss\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 311\u001b[0m \u001b[0mloss\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbackward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 312\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/repo/projects/timeseries-generation/model/vrae.py\u001b[0m in \u001b[0;36mcompute_loss\u001b[0;34m(self, X)\u001b[0m\n\u001b[1;32m 287\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mVariable\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrequires_grad\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 288\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 289\u001b[0;31m \u001b[0mx_decoded\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 290\u001b[0m \u001b[0mloss\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrecon_loss\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkl_loss\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_rec\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx_decoded\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdetach\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mloss_fn\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 291\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *input, **kwargs)\u001b[0m\n\u001b[1;32m 1100\u001b[0m if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks\n\u001b[1;32m 1101\u001b[0m or _global_forward_hooks or _global_forward_pre_hooks):\n\u001b[0;32m-> 1102\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mforward_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1103\u001b[0m \u001b[0;31m# Do not call functions when jit is used\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1104\u001b[0m \u001b[0mfull_backward_hooks\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnon_full_backward_hooks\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/repo/projects/timeseries-generation/model/vrae.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, x)\u001b[0m\n\u001b[1;32m 257\u001b[0m \u001b[0mcell_output\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mencoder\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 258\u001b[0m \u001b[0mlatent\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlmbd\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcell_output\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 259\u001b[0;31m \u001b[0mx_decoded\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdecoder\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlatent\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 260\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 261\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mx_decoded\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlatent\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *input, **kwargs)\u001b[0m\n\u001b[1;32m 1100\u001b[0m if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks\n\u001b[1;32m 1101\u001b[0m or _global_forward_hooks or _global_forward_pre_hooks):\n\u001b[0;32m-> 1102\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mforward_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1103\u001b[0m \u001b[0;31m# Do not call functions when jit is used\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1104\u001b[0m \u001b[0mfull_backward_hooks\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnon_full_backward_hooks\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/repo/projects/timeseries-generation/model/vrae.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, latent)\u001b[0m\n\u001b[1;32m 139\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mLSTM\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 140\u001b[0m \u001b[0mh_0\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstack\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mh_state\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0m_\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhidden_layer_depth\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 141\u001b[0;31m \u001b[0mdecoder_output\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdecoder_inputs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mh_0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mc_0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 142\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mGRU\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 143\u001b[0m \u001b[0mh_0\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstack\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mh_state\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0m_\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhidden_layer_depth\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *input, **kwargs)\u001b[0m\n\u001b[1;32m 1100\u001b[0m if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks\n\u001b[1;32m 1101\u001b[0m or _global_forward_hooks or _global_forward_pre_hooks):\n\u001b[0;32m-> 1102\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mforward_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1103\u001b[0m \u001b[0;31m# Do not call functions when jit is used\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1104\u001b[0m \u001b[0mfull_backward_hooks\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnon_full_backward_hooks\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/torch/nn/modules/rnn.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, input, hx)\u001b[0m\n\u001b[1;32m 687\u001b[0m \u001b[0mhx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpermute_hidden\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msorted_indices\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 688\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 689\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcheck_forward_args\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_sizes\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 690\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mbatch_sizes\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 691\u001b[0m result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,\n", - "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/torch/nn/modules/rnn.py\u001b[0m in \u001b[0;36mcheck_forward_args\u001b[0;34m(self, input, hidden, batch_sizes)\u001b[0m\n\u001b[1;32m 632\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcheck_input\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_sizes\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 633\u001b[0m self.check_hidden_size(hidden[0], self.get_expected_hidden_size(input, batch_sizes),\n\u001b[0;32m--> 634\u001b[0;31m 'Expected hidden[0] size {}, got {}')\n\u001b[0m\u001b[1;32m 635\u001b[0m self.check_hidden_size(hidden[1], self.get_expected_cell_size(input, batch_sizes),\n\u001b[1;32m 636\u001b[0m 'Expected hidden[1] size {}, got {}')\n", - "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/torch/nn/modules/rnn.py\u001b[0m in \u001b[0;36mcheck_hidden_size\u001b[0;34m(self, hx, expected_hidden_size, msg)\u001b[0m\n\u001b[1;32m 224\u001b[0m msg: str = 'Expected hidden size {}, got {}') -> None:\n\u001b[1;32m 225\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mhx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0mexpected_hidden_size\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 226\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mRuntimeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmsg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mexpected_hidden_size\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 227\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 228\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mcheck_forward_args\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minput\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mTensor\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhidden\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mTensor\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_sizes\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mOptional\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mTensor\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mRuntimeError\u001b[0m: Expected hidden[0] size (1, 32, 90), got [1, 100, 90]" - ] - } - ], - "source": [ - "vrae.fit(train_dataset)\n", - "\n", - "#If the model has to be saved, with the learnt parameters use:\n", - "# vrae.fit(dataset, save = True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Transform the input timeseries to encoded latent vectors" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "z_run = vrae.transform(test_dataset)\n", - "\n", - "#If the latent vectors have to be saved, pass the parameter `save`\n", - "# z_run = vrae.transform(dataset, save = True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Save the model to be fetched later" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "vrae.save('vrae.pth')\n", - "\n", - "# To load a presaved model, execute:\n", - "# vrae.load('vrae.pth')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Visualize using PCA and tSNE" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "plot_clustering(z_run, y_val, engine='matplotlib', download = False)\n", - "\n", - "# If plotly to be used as rendering engine, uncomment below line\n", - "#plot_clustering(z_run, y_val, engine='plotly', download = False)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.9" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/params.txt b/params.txt deleted file mode 100644 index 6272edd..0000000 --- a/params.txt +++ /dev/null @@ -1,14 +0,0 @@ -hidden_size = 90 -hidden_layer_depth = 1 -latent_length = 20 -batch_size = 100 -learning_rate = 0.0005 -n_epochs = 50 -dropout_rate = 0.2 -optimizer = 'Adam' -cuda = True -print_every=30 -clip = True -max_grad_norm=5 -loss = 'MSELoss' -block = 'LSTM' \ No newline at end of file diff --git a/requirements.txt b/requirements.txt deleted file mode 100644 index fe1979c..0000000 --- a/requirements.txt +++ /dev/null @@ -1,7 +0,0 @@ -matplotlib==3.3.4 -numpy==1.19.5 -plotly==5.4.0 -scikit-learn==0.24.2 -scipy==1.5.4 -torch==1.10.0 -torchvision==0.11.1 \ No newline at end of file