diff --git a/.gitignore b/.gitignore index ef009a2..935f522 100644 --- a/.gitignore +++ b/.gitignore @@ -3,7 +3,8 @@ data/ etc/ result/ save_model/ -gen_data/ +vae_gen_data/ +gan_gen_data/ tensorboard/ ### Notebook ### diff --git a/run_timegan.py b/run_timegan.py index 3f4c3a2..f49434a 100644 --- a/run_timegan.py +++ b/run_timegan.py @@ -63,8 +63,7 @@ print('>>>> TRAINING COMPLETE!') if args.is_generate: gen_data=timegan_generator(model, args.num_generation, args) - np.save(os.getcwd()+"\\save_data\\",gen_data) - + np.save(f'./gan_gen_data/gen_data',gen_data) diff --git a/run_vrae.py b/run_vrae.py index b0f3fa2..fdf7203 100644 --- a/run_vrae.py +++ b/run_vrae.py @@ -99,13 +99,13 @@ # save original data train_org = pd.DataFrame(TRAIN_DF if args.undo == True else TRAIN_SCALED, columns= cols) - train_org.to_csv(f'./gen_data/train/original_{args.scale_type}_un_{args.undo}.csv') - print('>> SAVED TRAIN ORIGINAL Data!! (Loc: gen_data)') + train_org.to_csv(f'./vae_gen_data/train/original_{args.scale_type}_un_{args.undo}.csv') + print('>> SAVED TRAIN ORIGINAL Data!! (Loc: vae_gen_data)') # save reconstructed data train_gen = pd.DataFrame(train_recon, columns= cols) - train_gen.to_csv(f'./gen_data/train/VRAE_{args.scale_type}_un_{args.undo}_hidden_{args.hidden_layer_depth}_win_{args.sequence_length}_ep_{args.n_epochs}.csv') - print('>> SAVED TRAIN RECONSTRUCTED Data!! (Loc: gen_data)') + train_gen.to_csv(f'./vae_gen_data/train/VRAE_{args.scale_type}_un_{args.undo}_hidden_{args.hidden_layer_depth}_win_{args.sequence_length}_ep_{args.n_epochs}.csv') + print('>> SAVED TRAIN RECONSTRUCTED Data!! (Loc: vae_gen_data)') # TEST dataset reconstruction if args.is_generate_test: @@ -132,13 +132,13 @@ # save original data test_org = pd.DataFrame(TRAIN_DF if args.undo == True else TRAIN_SCALED, columns= cols) - test_org.to_csv(f'./gen_data/test/original_{args.scale_type}_un_{args.undo}.csv') - print('>> SAVED TEST ORIGINAL Data!! (Loc: gen_data)') + test_org.to_csv(f'./vae_gen_data/test/original_{args.scale_type}_un_{args.undo}.csv') + print('>> SAVED TEST ORIGINAL Data!! (Loc: vae_gen_data)') # save reconstructed data test_gen = pd.DataFrame(test_recon, columns= cols) - test_gen.to_csv(f'./gen_data/test/VRAE_{args.scale_type}_un_{args.undo}_hidden_{args.hidden_layer_depth}_win_{args.sequence_length}_ep_{args.n_epochs}.csv') - print('>> SAVED TEST RECONSTRUCTED Data!! (Loc: gen_data)') + test_gen.to_csv(f'./vae_gen_data/test/VRAE_{args.scale_type}_un_{args.undo}_hidden_{args.hidden_layer_depth}_win_{args.sequence_length}_ep_{args.n_epochs}.csv') + print('>> SAVED TEST RECONSTRUCTED Data!! (Loc: vae_gen_data)') # IF Both TRAIN and TEST data reconstruction is conducted if args.is_generate_train and args.is_generate_test: diff --git a/vrae_experiment.sh b/vrae_experiment.sh new file mode 100644 index 0000000..cd66856 --- /dev/null +++ b/vrae_experiment.sh @@ -0,0 +1,22 @@ +#!/bin/sh + +BATCH_SIZE=8 +EPOCH=10 +LR=5e-5 +ACCUMULATION_STEP=1 + +# N_ENC=6 +# N_DEC=6 + +# run distilBART-6-3 +python ./src/kobart/main.py\ + --batch-size=${BATCH_SIZE}\ + --lr=${LR}\ + --epoch=${EPOCH}\ + --gradient-accumulation-step=${ACCUMULATION_STEP}\ + --amp\ + --distributed +# --distill\ + # --n_enc=${N_ENC}\ + # --n_dec=${N_DEC}\ +